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ABSTRACT

In this article, we study the cyclicity problem of elliptic curves E/ℚ modulo primes in a given arithmetic pro-
gression. We extend the recent work of Akbal and Güloğlu by proving an unconditional asymptotic for such 
a cyclicity problem over arithmetic progressions for elliptic curves E, which also presents a generalization of 
the previous works of Akbary, Cojocaru, M.R. Murty, V.K. Murty and Serre. In addition, we refine the con-
ditional estimates of Akbal and Güloğlu, which gives log-power savings (for small moduli) and consequently 
improves the work of Cojocaru and M.R. Murty. Moreover, we study the average exponent of E modulo primes 
in a given arithmetic progression and obtain several conditional and unconditional estimates, extending the 
previous works of Freiberg, Kim, Kurlberg and Wu.

1 . I N T R O D U CT I O N
Let E be an elliptic curve, defined over ℚ, of conductor NE. For a prime p of good reduction, we let Ē
denote the reduction of E modulo p and Ē(𝔽p) be the group of rational points of Ē over 𝔽p. The study 
of Ē(𝔽p), as p varies, manifests as part of the ‘analytic theory’ of elliptic curves. Most profoundly, Lang 
and Trotter [17] formulated an elliptic curve analogue of Artin’s primitive root conjecture, and Serre 
[25] considered the cyclicity problem of estimating 

𝜋c(x, E) = #{p ≤ x ∣ p ∤ NE and Ē(𝔽p)is cyclic }.

For each m ∈ ℕ, let E[m] denote the group of m-torsion points of E, and let ℚ(E[m]) be the mth 
division field of E. In light of Hooley’s conditional resolution of Artin’s primitive root conjecture, Serre 
proved that assuming the generalized Riemann hypothesis (GRH), if ℚ(E[2]) ≠ ℚ, then one has 

𝜋c(x, E) = 𝔠ELi(x) + o( x
logx

) ,
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where Li(x) is the usual logarithmic integral, 

𝔠E =
∞

∑
m=1

𝜇(m)
[ℚ(E[m]) : ℚ]

,

and 𝜇(m) is the Möbius function. This was improved by M.R. Murty [20, pp. 160–161], who showed 
that under GRH, one has 

𝜋c(x, E) = 𝔠ELi(x) + O(
x(log logx)

(logx)2
) .

Moreover, the error term above was sharpened considerably by Cojocaru and M.R. Murty [5]. They 
proved under GRH that for any elliptic curve E/ℚ of conductor NE, if E is with complex multiplication 
(CM) by the full ring of integers 𝒪K  of an imaginary quadratic field K, one has 

𝜋c(x, E) = 𝔠ELi(x) + O(x3/4(log(NEx))1/2), (1)

and if E is non-CM, one has 

𝜋c(x, E) = 𝔠ELi(x) + O(x5/6(log(NEx))2/3) + O(
(log logx)(log(NEx))

logx
A(E)3) , (2)

where A(E) is the Serre’s constant associated with E. (Recall that for each m, there is a natural injective 
representation 𝜌m : Gal(ℚ(E[m])/ℚ) → GL2(ℤ/mℤ) associated with E. Serre [24] proved that if 
E is non-CM, then there exists a finite set SE of primes such that 𝜌ℓ is surjective whenever ℓ ∉ SE. 
Furthermore, setting 

A(E) = 2 ⋅ 3 ⋅ 5 ⋅ ∏
ℓ∈SE\{2,3,5}

ℓ, (3)

Serre’s constant associated to E, 𝜌m is surjective when (m, A(E)) = 1 (see [4, Appendix]).)
There are several unconditional results regarding 𝜋c(x, E). For any elliptic curve E/ℚ, Gupta and 

M.R. Murty [10] showed that 𝜋c(x, E) ≫ x/(logx)2. Moreover, for CM elliptic curves, the assump-
tion of GRH was removed by M.R. Murty in [20] (where Wilson’s Bombieri–Vinogradov theorem 
for number fields [26] was used, and no error terms were given). Furthermore, by the sieve of Eratos-
thenes and the effective version of the Chebotarev density theorem due to Lagarias and Odlyzko 
[16] (instead of using Wilson’s theorem), Cojocaru [3] proved that for any CM elliptic curve E/ℚ
of conductor NE, 

𝜋c(x, E) = 𝔠ELi(x) + O( x
(logx)(log log((logx)/N2

E))
log logx

log((logx)/N2
E)

) .

Moreover, adapting M.R. Murty’s argument and applying the Bombieri–Vinogradov theorem for 
number fields established by Huxley [12], Akbary and V.K. Murty [2] obtained the improvement that 
given any CM elliptic curve E/ℚ of conductor NE, for any A, B > 0, one has 

𝜋c(x, E) = 𝔠ELi(x) + OA,B ( x
(logx)A

) (4)

uniformly in NE ≤ (logx)B, where the implied constant only depends on A and B.
Recently, Akbal and Güloğlu [1] proposed the cyclicity problem over arithmetic progressions, 

asking for estimates of 

𝜋c(x, E, q, a) = #{p ≤ x ∣ p ∤ NE, p ≡ a (modq), and Ē(𝔽p)is cyclic }

when (a, q) = 1. By extending the argument of Gupta and M.R. Murty [10], they proved the following 
theorem.
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Theorem 1.1 ([1, Theorem 1])  Let E/ℚ be an elliptic curve, and let a and q be coprime natural 
numbers such that (a − 1, q) has no odd prime divisors. Assume that [ℚ(E[2]) : ℚ] = 3. Then, 
for any fixed A ≥ 0 and sufficiently large x, when q ≪ (logx)A, one has 
𝜋c(x, E, q, a) ≫ x/(logx)2+A unless ℚ(E[2]) ⊆ ℚ(𝜁q) and 𝜎a fixes ℚ(E[2]). (Here, as later, 
ℚ(𝜁q) is the qth cyclotomic extension of the rationals formed by adjoining a primitive qth root of 
unity 𝜁q, and 𝜎a denotes the automorphism 𝜁q ↦ 𝜁a

q .)

Furthermore, under GRH, by generalizing the work of Cojocaru and M.R. Murty [5], Akbal and 
Güloğlu [1] determined the asymptotics for 𝜋c(x, E, q, a) as follows.

Theorem 1.2 ([1, Theorems 3 and 5])  Let E/ℚ be an elliptic curve of conductor NE, and let a 
and q be coprime natural numbers. Assume that GRH is valid for the Dedekind zeta function of 
ℚ(E[m])ℚ(𝜁q) for every square-free m. Define 

𝔠E(q, a) =
∞

∑
m=1

𝛾E,m(q, a)𝜇(m)

[ℚ(E[m])ℚ(𝜁q) : ℚ]
,

where 𝛾E,m(q, a) = 1 if the automorphism 𝜎a, defined as in Theorem 1.1, fixes ℚ(E[m]) ∩ℚ(𝜁q), 
and it is 0 otherwise. Then, one has 

𝜋c(x, E, q, a) = 𝔠E(q, a)Li(x) +ℰc(x),

where if E is with CM by the full ring of integers 𝒪K  of an imaginary quadratic field 
K = ℚ(

√
−D), ℰc(x) satisfies 

ℰc(x) ≪ x3/4 (
log(qNEx)GD(a, q)

q3 )
1/2

+ x3/4 (
log(qNEx)

logx
)

1/2

+ x1/2q log(qNEx) + x1/2 (1
q

+
logx

q2 )GD(a, q)

with GD(a, q) < c ⋅ 4𝜔(q)𝜏2(q)q2, (here, c = 2 if D ≡ 1, 2 (mod4), or D ≡ 3 (mod4) and q is 
odd; c = 49 otherwise), and if E is non-CM, one has 

ℰc(x) ≪ x5/6 (
H(q)(log(qNEx))2

q
)

1/3

+ x5/8 (
𝜏2(q2)(log(qNEx))3

𝜙(q) logx
M3

E)
1/4

+ x1/2q log(qNEx) +
𝜏2(q2)

𝜙(q)x1/2 logx
M3

E,

(5)

 where q2 denotes the largest divisor of q that is coprime to ME defined in (6) below.

Here, as later, 𝜔(n) denotes the number of prime divisors of n, and 𝜏2(n) is the number of (positive) 
divisors of n. In addition, 𝜙(n) is Euler’s totient function, and the arithmetic function H(n) is defined 
by 

H(n) = ∑
d∣n

∑
1≤k≤d

d∣k2

1.

Also, GD(a, q) is the cardinality of the set defined in [1, Equation (23)], and its bound is given in 
[1, Equation (11)]. Last but not least, ME ∈ ℕ is defined by 

ME = ∏
ℓ∣A(E)NE

ℓ, (6)

where A(E) is the Serre’s constant defined in (3).
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One of the main objectives of this article is to prove the following unconditional asymptotic of 
𝜋c(x, E, q, a) for CM elliptic curves E.

Theorem 1.3 Let E/ℚ be a CM elliptic curve of conductor NE, and let a and q be coprime natural 
numbers. Then, for any A, B > 0, we have 

𝜋c(x, E, q, a) = 𝔠E(q, a)Li(x) + OA,B ( x
(logx)A

) , (7)

uniformly in qNE ≤ (logx)B, where the implied constant only depends on A and B.

In addition, we have the following refinement of Theorem 1.2, which notably improves the 
estimates (1) and (2) of Cojocaru and M.R. Murty by factors of (logx)1/2 and (logx)1/3, respectively.

Theorem 1.4 Let E/ℚ be an elliptic curve of conductor NE, and let a and q be coprime natural 
numbers. Assume GRH. If E has CM, then we have 

𝜋c(x, E, q, a) = 𝔠E(q, a)Li(x) + O(x3/4 (log(qNEx))1/2

(logx)1/2
+ x1/4 logNE) . (8)

In particular, we have 

𝜋c(x, E) = 𝔠ELi(x) + O(x3/4 (log(NEx))1/2

(logx)1/2
+ x1/4 logNE) .

Furthermore, if E is non-CM, we have 

𝜋c(x, E, q, a)

= 𝔠E(q, a)Li(x) + O(x5/6 (log(qNEx))2/3

(logx)1/3
+

𝜏2(q2) log(qNEx)
𝜙(q)

RE,q1
) ,

(9)

where q1 = q
q2

, q2 denotes the largest divisor of q that is coprime to ME, and 

RE,q1
= ∑

d∣ME

𝜙((d, q1))d3

𝜙(d)
. (10)

Consequently, we have 

𝜋c(x, E) = 𝔠ELi(x) + O(x5/6 (log(NEx))2/3

(logx)1/3
+ log(NEx)∑

d∣ME

d3

𝜙(d)
) .

In addition, both factors M3
E in (5) can be replaced by RE,q1

.

To obtain the improved asymptotic (8), we invoke the work of Hinz and Lodemann [11] on the Brun–
Titchmarsh inequality for number fields, which allows us to deduce a refined bound (31) (cf. (21) 
and (22)). This is our key new observation. For the non-CM case, our results rely on an alternative 
bound for the ‘middle range’ Σ′

2 in (36) and a refined bound for the ‘tail’ Σ3 in (37) arising from 
the sieving argument of Akbal and Güloğlu [1, Section 3.2]. When H(q)/q is of a constant size, our 
result reduces the leading term of (5) by a factor of (logx)1/3. (It shall be noted that, in general, the 
leading error term in (9) is smaller than the one in (5) only if q

H(q)
≪ (logx)1/3. So, our result does 

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/75/2/757/7681831 by guest on 01 July 2024
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not yield a consistent improvement but relies on q. It is worth further noting that the reason why we 
were not able to give a uniform description for the range of q, where the improvement is granted, 
mainly came from the irregular behaviour of H(q) as discussed in [1, Remark 1].) Such a ‘log-saving’ 
is due to the insert of the Burn–Titchmarsh theorem when estimating Σ′

2. Also, when q and ME do not 
have too many common divisors, RE,q1

 gives a better estimate than M3
E. For instance, if (q, ME) = 1, 

RE,q1
= ∑d∣ME

d3/𝜙(d) presents a power-saving for the factors M3
E in (5).

Remark. (i) Note that 𝜋c(x, E, q, a) ≤ 𝜋(x, q, a) = #{p ≤ x ∣ p ≡ a (modq)} and that under 
GRH for Dirichlet L-functions, for (a, q) = 1, one has 

𝜋(x, q, a) = 1
𝜙(q)

Li(x) + O(x1/2 log(qx)).

Hence, when 
√

x ≤ q ≤ x, assuming GRH, we have 𝜋c(x, E, q, a) ≪ x1/2 logx, which provides a 
superior estimate than (8) and (9).
(ii) As may be noticed, applying Theorems 1.1 and 1.3, for coprime a, q ∈ ℕ such that (a − 1, q)
has no odd prime divisors, if E/ℚ has CM and satisfies [ℚ(E[2]) : ℚ] = 3, then 𝔠E(q, a) is positive 
unless ℚ(E[2]) ⊆ ℚ(𝜁q) and 𝜎a fixes ℚ(E[2]). (Under these assumptions, suppose, on the contrary, 
that 𝔠E(q, a) = 0. Then, Theorem 1.3 gives 𝜋c(x, E, q, a) ≪ x/(logx)3, which contradicts the estimate 
𝜋c(x, E, q, a) ≫ x/(logx)2+𝜀 given by Theorem 1.1 (with A = 𝜀 ∈ (0, 1)).) In general, determining 
necessary and sufficient conditions for the positivity of 𝔠E(q, a) appears as an interesting question. For 
example, there is an observation of Serre that 𝔠E ≠ 0 if and only if E has an irrational 2-torsion point 
(see [5, p. 619] for a proof). Also, in [1, Theorems 4 and 6], Akbal and Güloğlu gave some sufficient 
conditions for the positivity of 𝔠E(q, a). More recently, Jones and Lee [13] systemically studied the 
question of which arithmetic progressions a (modq) admit the property that for all but finitely many 
primes p ≡ a (modq), Ē(𝔽p) is not cyclic. In particular, they gave a criterion for 𝔠E(q, a) = 0 in [13, 
Section 3.2].

In a slightly different vein, knowing that for any prime p of good reduction, there are natural 
numbers dp and ep such that dp ∣ ep and 

Ē(𝔽p) ≃ ℤ/dpℤ⊕ℤ/epℤ,

one may also study the behaviours of dp and ep as p varies. As the exponent ep is the largest possible 
order of points on Ē(𝔽p), determining the asymptotic for 

𝜋e(x, E) = ∑
p≤x

ep

presents an interesting problem. Freiberg and Kurlberg [7] investigated this problem and showed that 
under GRH, 

∑
p≤x

ep = 𝔢ELi(x2) + O(x19/10(logx)6/5),

where 

𝔢E =
∞

∑
m=1

1
[ℚ(E[m]) : ℚ]

∑
de∣m

𝜇(d)
e

;

they also showed that 

∑
p≤x

ep = 𝔢ELi(x2) + O(
x2(log loglogx)

(logx)(log logx)
) ,

unconditionally, if E/ℚ is a CM elliptic curve. The errors in these two estimates were improved by 
Wu [28] to O(x11/6(logx)1/3) and O(x2/(logx)15/14), respectively. Furthermore, adapting the work 
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762 • P.-J. Wong

of Akbary and V.K. Murty [2], Kim [11] used Huxley’s Bombieri–Vinogradov theorem for number 
fields [12] to show that if E/ℚ has CM, then for any A, B > 0, one has 

𝜋e(x, E) = 𝔢ELi(x2) + OA,B ( x2

(logx)A
) (11)

uniformly in NE ≤ (logx)B, where the implied constant only depends on A and B.
Inspired by the previously mentioned work of Akbal and Güloğlu [1], we consider the average of 

exponents over arithmetic progressions: 

𝜋e(x, E, q, a) = ∑
p≤x

p≡a(modq)

ep

and prove the following generalization of Kim’s work [11]. (Note that when q = 1, our result recovers 
Kim’s estimate (11).)

Theorem 1.5 Let E/ℚ be a CM elliptic curve of conductor NE, and let a and q be coprime natural 
numbers. Then setting 

𝔢E(q, a) =
∞

∑
m=1

∑
de∣m

𝜇(d)
e

𝛾E,m(q, a)𝜇(m)

[ℚ(E[m])ℚ(𝜁q) : ℚ]
,

for any A, B > 0, we have 

𝜋e(x, E, q, a) = 𝔢E(q, a)Li(x2) + OA,B ( x2

(logx)A
) (12)

uniformly in qNE ≤ (logx)B, where the implied constant only depends on A and B.

Moreover, we have the following extension of the works of Freiberg–Kurlberg and Wu mentioned 
earlier, which particularly presents refinements of their results by taking q = 1.

Theorem 1.6 Let E/ℚ be an elliptic curve of conductor NE, and let a and q be coprime natural 
numbers. Assume that GRH is valid for the Dedekind zeta function of ℚ(E[m])ℚ(𝜁q) for every 
square-free m. Then 

𝜋e(x, E, q, a) = 𝔢E(q, a)Li(x2) + xℰe(x),

where if E is with CM by the full ring of integers 𝒪K  of an imaginary quadratic field 
K = ℚ(

√
−D), ℰe(x) satisfies both bounds 

ℰe(x) ≪ x3/4 (log(qNEx))1/2

(logx)1/2
+ x1/4 logNE

and 

ℰe(x) ≪ x3/4 (
log(qNEx)GD(a, q)

q3 )
1/2

+ x3/4 (
log(qNEx)

logx
)

1/2

+ x1/2q log(qNEx) + x1/2 (1
q

+
logx

q2 )GD(a, q),

(13)

with the same GD(a, q) as in Theorem 1.2, and if E is non-CM, ℰe(x) satisfies both estimates 

ℰe(x) ≪ x5/6 (log(qNEx))2/3

(logx)1/3
+ x1/2

q
(14)
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and 

ℰe(x) ≪ x5/6 (
H(q)(log(qNEx))2

q
)

1/3

+ x5/8 (
𝜏2(q2)(log(qNEx))3

𝜙(q2) logx
SE)

1/4

+ x1/2q log(qNEx) +
𝜏2(q2)

𝜙(q2)x1/2 logx
SE,

(15)

where SE = ∑d∣M∞
E

BE

d𝜙(d)
, and BE is the constant, depending only on E, as in [7, Proposition 3.2], 

such that BE ⋅ [ℚ(E[m]) : ℚ] ≥ |GL2(ℤ/mℤ)| for every m. (The existence of BE is due to Serre’s 
open image theorem. It may be possible to determine BE in terms of NE by an effective version of 
Serre’s open image theorem (see [19] and references therein) or the index bound for the image of 
the ‘adelic’ representation attached to E (see [18]). However, as it seemingly requires a delicate 
algebraic and representation-theoretic argument that appears beyond this article’s scope, we shall 
reserve it as a future project.)

Remark. (i) It is worthwhile noting that our unconditional estimates (7) and (12) come from the 
effective version of the Chebotarev density theorem established by V.K. Murty [23]. This is the main 
observation in the proofs of Theorems 1.3 and 1.5 that verifying Artin’s (holomorphy) conjecture 
for the Galois extensions L/ℚ involved (see Lemma 2.5) allows us to remove nL, the degree of L, in 
the error term of the effective version of the Chebotarev density theorem (26) due to Lagarias and 
Odlyzko [16].
(ii) Compared to the works [2, 11], our argument does not rely on Huxley’s Bombieri–Vinogradov 
theorem for number fields. Still, it obtains results of the same strength (which also particularly gives 
an improvement of Cojocaru’s work [3]). Moreover, our method allows us to express the errors in 
terms of the location of the possible Landau–Siegel zeros of Dirichlet L-functions. This feature could 
not be seen from the method relying on the Bombieri–Vinogradov theorem for number fields, and it 
leads to a conditional resolution of a question of Akbary and V.K. Murty on improving the error term 
in their estimate (4) as discussed below.

Akbary and V.K. Murty [2] remarked that their theorem can be viewed as an elliptic analogue of 
the following weak form of the classical Siegel-Walfisz theorem: for any (a, q) = 1, one has 

𝜋(x, q, a) = 1
𝜙(q)

Li(x) + OA,B ( x
(logx)A

) ,

uniformly for q ≤ (logx)B, for any given A, B > 0. Moreover, recalling that the Siegel–Walfisz theo-
rem, in fact, states that for any B > 0, there exists c0 = c0,B such that 

𝜋(x, q, a) = 1
𝜙(q)

Li(x) + O(xexp(−c0√logx))

uniformly in q ≤ (logx)B, Akbary and V.K. Murty noted that it seems quite unclear how to extend 
this to their setting (i.e., to the cyclicity problem). In Section 7, we shall show that such an expected 
stronger estimate follows from the non-existence of the Landau–Siegel zeros of Dirichlet L-functions. 
Indeed, we have the following conditional result.

Theorem 1.7 Let E/ℚ be a CM elliptic curve of conductor NE, and let a and q be coprime natural 
numbers. Assume that there exists a constant S ≥ −1 such that for any Q ∈ ℕ and any real 
primitive character 𝜒 modulo Q, 

L(1,𝜒) ≫ (logQ )−S, (16)

where L(s,𝜒) is the Dirichlet L-function attached to 𝜒, and the implied constant is absolute. Then, 
there is an absolute constant c1 > 0 so that uniformly for log(qNE) ≪ (logx)1/(2S+4), (such 
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uniformity can be precisely written as qNE ≤ exp( 1
2𝜅

(logx)1/(2S+4)) with the same 𝜅 as in 
(24)), we have 

𝜋c(x, E, q, a) = 𝔠E(q, a)Li(x) + O(xexp(−c1(logx)1/(2S+4)))

and 

𝜋e(x, E, q, a) = 𝔢E(q, a)Li(x2) + O(x2 exp(−c1(logx)1/(2S+4))) .

Remark. It is well known that the non-existence of the Landau-Siegel zeros implies that (16) holds 
with S = −1 (see [8, Section 1]). In his recent preprint [29], Zhang announced that S = 2022 is admis-
sible; however, as [29] is still unpublished, Theorem 1.7 shall be treated with caution as a conditional 
result.

The rest of the article is organized as follows. In the next section, we will collect the necessary 
preliminaries to prove our results (particularly, we will discuss the effective version of the Cheb-
otarev density theorem established by V.K. Murty). Theorems 1.3, 1.4, 1.5 and 1.6 will be proved 
in Sections 3, 4, 5 and 6, respectively. In the last section, we will prove Theorem 1.7.

2 . P R E L I M I N A R I E S
2.1. Artin’s (holomorphy) conjecture and the Chebotarev density theorem

In this section, we shall recall the effective version of the Chebotarev density theorem established by 
V.K. Murty. To state his result, we require the following notation. For a number field F, we let dF  and 
nF  denote the absolute discriminant and degree of F, respectively. Let L/K  be a Galois extension of 
number fields with Galois group G. The set of irreducible characters of G will be denoted by Irr(G), and 
the biggest character degree of G is defined by b(G) = max𝜒∈Irr(G) 𝜒(1). Also, for each 𝜒 ∈ Irr(G), 
we let 𝔣𝜒 stand for the (global) Artin conductor of 𝜒, and we set 

𝒜 = 𝒜(L/K) = max
𝜒∈Irr(G)

A𝜒,

where A𝜒 = d𝜒(1)
K N(𝔣𝜒). Moreover, we recall from [22, Proposition 2.5] that 

logN(𝔣𝜒) ≤ 2𝜒(1)nK ( ∑
p∈P(L/K)

logp + log(nL/nK )) , (17)

where P(L/K) denotes the set of rational primes p for which there is a prime 𝔭 ∣ p of K such that 𝔭 is 
ramified in L. Following [23, Section 4], we further put 

logℳ = logℳ(L/K) = 1
nK

logdK + 2 ∑
p∈P(L/K)

logp + 2 log(nL/nK ). (18)

Let C be a conjugacy class of G = Gal(L/K), and let 𝜋C(x) denote the number of primes 𝔭 of K, 
with N(𝔭) ≤ x, whose Artin symbol equals C. In [23], V.K. Murty proved the following effective 
version of the Chebotarev density theorem under Artin’s conjecture.

Theorem 2.1 ([23, Theorem 4.1])  If Artin’s conjecture holds for L/K, then there is an absolute 
c2 > 0 such that for any conjugacy class C in G, one has 

𝜋C(x) =
|C|
|G|

Li(x) −
|C|
|G|

𝜒1(C)Li(x𝛽1)

+ O(|C|
1
2 nK x(log(ℳx))2 exp(

−c2 logx

b(G)
3
2 √b(G)3(log𝒜)2 + nK logx

))
(19)
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provided that logx ≫ b(G)4nK logℳ. Here, 𝛽1 is the possible exceptional zero of 𝜁L(s), the 
Dedekind zeta function of L. If 𝛽1 exists, then it must arise from L(s,𝜒1, L/K), the Artin 
L-function attached to 𝜒1, for some character 𝜒1 that is real and abelian (i.e one-dimensional).

When K = ℚ, we know that 𝜒1 corresponds to a real (quadratic) Dirichlet character modulo Q 1
(say). By (17), we have 

logQ1 ≪ ∑
p∈P(L/ℚ)

logp + lognL, (20)

which will allow us to apply the following theorem of Siegel later.

Theorem 2.2 (Siegel)  With the same notation as above, for any 𝜀 > 0, there is an absolute 
(ineffective) constant c3(𝜀) > 0 such that 

𝛽1 < 1 −
c3(𝜀)
Q 𝜀

1
.

2.2. Elliptic curves and associated prime-counting functions
Let E/ℚ be an elliptic curve of conductor NE, and let E[m] denote the set of m-torsion points of E. 
It is well known that ℚ(E[m])/ℚ forms a Galois extension. Also, the ramified primes of ℚ(E[m])/ℚ
are divisors of mNE (see [5, Proposition 3.5]). Consequently, as ℚ(𝜁q) ⊂ ℚ(E[q]), we know that 
ℚ(E[m])ℚ(𝜁q) ⊂ ℚ(E[mq]), and thus the ramified primes of ℚ(E[m])ℚ(𝜁q) must divide mqNE.

We shall require the following handy lemmata (see [5, Lemma 2.1] and [11, Lemma 2.2]).

Lemma 2.3 Assume that p ∤ NE. Then Ē(𝔽p) is cyclic if and only if p does not split completely in 
ℚ(E[m]) for any square-free m > 1.

Lemma 2.4 Let E/ℚ be an elliptic curve and p be a prime of good reduction. Then, p splits 
completely in ℚ(E[m]) if and only if m ∣ dp.

We set 𝜋E,1(x, q, a) = #{p ≤ x ∣ p ∤ NE, p ≡ a (modq)}, and for integers m > 1, we define 

𝜋E,m(x, q, a) = #{p ≤ x ∣ p ∤ NE splits completely in ℚ(E[m]), p ≡ a (modq)}.

In the remaining part of this section, we shall further assume that E has CM by the ring of integers 
𝒪K  of an imaginary quadratic field K. Recall that for any 3 ≤ m ≤

√
x + 1, one has 

𝜋E,m(x, q, a) ≤ #{p ≤ x ∣ p ∤ NEsplits completely in ℚ(E[m])} ≪ x
m2 , (21)

where the implied constant is absolute (see [11, Lemma 2.3] or [20, Lemma 5]). In addition, the 
argument used in [1, Sectioon 4.1] yields 

∑
y<m≤

√
x+1

𝜋E,m(x, q, a) ≪ (
√

x
q

+
√

x logx
q2 + x

yq3 )GD(a, q), (22)

for 2q ≤ y ≤
√

x, where GD(a, q) is the same as in Theorem 1.2.
Remark. It may be noticed that in (21), the dependence of q is dropped. It is undoubtedly desir-

able to obtain a uniform upper bound for 𝜋E,m(x, q, a) with explicit dependence of q (whenever E is 
with CM or not). In general, it manifests as a Brun–Titchmarsh type inequality for the Chebotarev 
density theorem. The known results usually require x significantly greater than a power of the abso-
lute discriminant of ℚ(E[m]), (see [15, Theorem 1.4]), which is often too large for our purpose. On 
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the other hand, for CM curves, the proof of (21) translates the original estimate to a lattice-counting 
problem over quadratic fields (see [20, Lemma 5]). However, tracing the involving mod q condition 
appears to be unclear during the translating procedure. To a certain degree, this reflects the fact that the 
degrees of the composite fields ℚ(E[m])ℚ(𝜁q) do not behave uniformly but depend on the common 
prime factors of m, q and ME.

It can be shown that if E is with CM by 𝒪K , then ℚ(E[m])/ℚ is a meta-abelian extension, and 
thus Artin’s conjecture holds for ℚ(E[m])/ℚ. (By a meta-abelian extension L/K , we mean that L/K
is a Galois extension with Galois group G, and G admits an abelian normal subgroup N such that 
G/N  is also abelian. For such an instance, all the irreducible representations of G are monomial 
(namely, induced from one-dimensional representations of subgroups of G), and thus Artin’s con-
jecture is known. In fact, it can be further shown that Langlands reciprocity holds for such L/K  (see 
[27, Theorem 2.5]).) In what follows, we shall extend this result to ℚ(E[m])ℚ(𝜁q)/ℚ.

Lemma 2.5 In the notation as above, if E is with CM by 𝒪K , then Artin’s conjecture holds for 
ℚ(E[m])ℚ(𝜁q)/ℚ. In addition, the biggest character degree b(Gal(ℚ(E[m])ℚ(𝜁q)/ℚ)) of the 
Galois group of ℚ(E[m])ℚ(𝜁q)/ℚ is at most 2.

Proof. In [20, Lemma 4], M.R. Murty proved that there exists an integral ideal 𝔣 = 𝔣E of K such 
that 

K𝔪 ⊆ K(E[m]) ⊆ K𝔣𝔪,

where K𝔪 and K𝔣𝔪 are ray class fields of K of levels 𝔪 = m𝒪K  and 𝔣𝔪, respectively. In 
addition, he showed that if m ≥ 3, then ℚ(E[m]) = K(E[m]). Consequently, for m ≥ 3, 
Gal(ℚ(E[m])/K) is abelian, and so there is an abelian normal subgroup N of 
G = Gal(ℚ(E[m])/ℚ) such that the fixed field of N in ℚ(E[m])/ℚ is K. As [K : ℚ] = 2, 
G/N  is of order two and thus a nilpotent group. Therefore, by [12, Proposition 2.7], when 
m ≥ 3, for any 𝜒 ∈ Irr(Gal(ℚ(E[m])/ℚ)), we have 𝜒(1) ≤ 2. On the other hand, since 
Gal(ℚ(E[2])/ℚ) is a subgroup of GL2(ℤ/2ℤ), |Gal(ℚ(E[2])/ℚ)| is either 1, 2, 3 or 6, 
which means that Gal(ℚ(E[2])/ℚ) is an abelian group or S3. Thus, 
b(Gal(ℚ(E[2])/ℚ)) ≤ 2.

Now, since Gal(ℚ(𝜁q)/ℚ) is abelian, it then follows that for m ≥ 2, every irreducible 
character of Gal(ℚ(E[m])/ℚ) × Gal(ℚ(𝜁q)/ℚ) is of degree at most 2. Furthermore, 
recalling that the map 𝜎 ↦ (𝜎 ∣ℚ(E[m]),𝜎 ∣ℚ(𝜁q)) defines an injective homomorphism from 
Gal(ℚ(E[m])ℚ(𝜁q)/ℚ) to Gal(ℚ(E[m])/ℚ) × Gal(ℚ(𝜁q)/ℚ), from the above 
discussion, we conclude that 

b(Gal(ℚ(E[m])ℚ(𝜁q)/ℚ)) ≤ b(Gal(ℚ(E[m])/ℚ) × Gal(ℚ(𝜁q)/ℚ)) ≤ 2.

In other words, the set 

cd(Gal(ℚ(E[m])ℚ(𝜁q)/ℚ)) := {𝜒(1) ∣ 𝜒 ∈ Irr(Gal(ℚ(E[m])ℚ(𝜁q)/ℚ))}

is either {1} or {1, 2}, where the former instance implies that Gal(ℚ(E[m])ℚ(𝜁q)/ℚ) is 
abelian. Hence, applying Artin reciprocity and [27, Corollary 5.2], Artin’s conjecture holds 
for ℚ(E[m])ℚ(𝜁q)/ℚ. �

Now, we shall consider L/K = ℚ(E[m])ℚ(𝜁q)/ℚ. By (18) and the fact that [ℚ(E[m]) : ℚ] ≪ m2, 
we deduce 

logℳ(ℚ(E[m])ℚ(𝜁q)/ℚ) ≪ ∑
p∣mqNE

logp + log(m2q) ≪ log(mqNE).
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Hence, when (log(mqNE))2 ≪ logx, as (log𝒜)2 ≪ logx in this case, (19) implies that 

𝜋C(x) =
|C|
|G|

Li(x) −
|C|
|G|

𝜒1(C)Li(x𝛽1) + O(|C|
1
2 xexp(−c′

2
√logx)) , (23)

for some c′
2 ∈ (0, c2) with c2 given in Theorem 2.1, where 𝛽1 is the possible exceptional zero of the 

Artin L-function L(s,𝜒1,ℚ(E[m])ℚ(𝜁q)/ℚ). As 𝜒1 is abelian, Artin reciprocity tells us that 𝜒1 can 
be regarded as a Dirichlet character, (by a slight abuse of notation, we shall denote such a Dirichlet 
character by 𝜒1), and L(s,𝜒1,ℚ(E[m])ℚ(𝜁q)/ℚ) corresponds to the Dirichlet L-function attached 
to 𝜒1. Moreover, by (20), the modulus Q 1 of 𝜒1 satisfies 

logQ1 ≪ ∑
p∣mqNE

logp + log(m2q) ≪ log(mqNE)

which means that 

logQ1 ≤ 𝜅 log(mqNE) (24)

for some absolute 𝜅 > 0. Thus, by Theorem 2.2, for any 𝜀 > 0, we have 

Li(x𝛽1) ≪ x𝛽1

logx
≪ x

logx
exp(logx

−c3(𝜀)
Q 𝜀

1
) ≤ x

logx
exp(logx

−c3(𝜀)

e𝜀𝜅 log(mqNE)
) .

Assume that m ≤ (logx)A and qNE ≤ (logx)B. Note that under this assumption, we have 

log(mqNE) ≤ (A + B) log logx,

which particularly gives 

(logmqNE)2 ≪A,B logx.

Hence, choosing 𝜀 = 1/(2𝜅(A + B)), we arrive at 

𝜋C(x) =
|C|
|G|

Li(x) + O( x
logx

exp(−c3√logx) + |C|
1
2 xexp(−c′

2
√logx))

with c3 = c3(1/(2𝜅(A + B))). Thus, for any A, B > 0, we have 

𝜋E,m(x, q, a) =
𝛾E,m(q, a)

[ℚ(E[m])ℚ(𝜁q) : ℚ]
Li(x) + O(xexp(−c5,A,B√logx)) , (25)

for some positive constant c5,A,B depending only on A, B, provided m ≤ (logx)A and qNE ≤ (logx)B. 
Here, the factor 𝛾E,m(q, a) is defined as in Theorem 1.2 (for the rationale of the appearance of 
𝛾E,m(q, a), see [1, Section 3.2.1]).

Remark. (i) The effective version of the Chebotarev density theorem due to Lagarias and Odlyzko 
[16] gives 

𝜋C(x) =
|C|
|G|

Li(x) + O(|C|xexp(−c′
5√(logx)/nL)) (26)

with some absolute c′
5 > 0. (See also [21, Lemma 2]. It is worth noting that as Artin’s conjecture is 

known for abelian extensions, one may improve [21, Theorem 1] on an analogue of Artin’s primi-
tive root conjecture for abelian extensions by utilizing (19) instead of [21, Lemma 2].) So, without 
Artin’s conjecture, to have an estimate of similar strength as (23) (and its consequence (25)) for 
L = ℚ(E[m])ℚ(𝜁q), one would have to work over a much more restricted range of m (which is roughly 
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at most ≪ √logx since 𝜙(m) ≪ [ℚ(E[m]) : ℚ] ≪ m2). However, to prove (7) and (12) for any 
given A > 0, it is crucial to the uniformity of the estimate (25) for m ≤ (logx)A.
(ii) The Siegel–Walfisz type estimate (25) can be improved significantly under GRH. Indeed, assum-
ing GRH, by the work of Lagarias–Odlyzko [16], for any elliptic curve E/ℚ (not necessarily with 
CM), one has 

𝜋E,m(x, q, a) =
𝛾E,m(q, a)

[ℚ(E[m])ℚ(𝜁q) : ℚ]
Li(x) + O(x

1
2 log([ℚ(E[m])ℚ(𝜁q) : ℚ]mqNE)) ,

(see also [5, Theorem 3.1 and Lemma 3.4]). If E has CM, [ℚ(E[m])ℚ(𝜁q) : ℚ] ≪ m2q; otherwise, 
[ℚ(E[m])ℚ(𝜁q) : ℚ] ≪ m4q. Therefore, the above estimate becomes 

𝜋E,m(x, q, a) =
𝛾E,m(q, a)

[ℚ(E[m])ℚ(𝜁q) : ℚ]
Li(x) + O(x

1
2 log(mqNE)) , (27)

where the implied constant is absolute. As shall be seen in the proofs of Theorems 1.4 and 1.6, (27) 
plays a crucial role in helping us to obtain the power-savings for the estimates involved.

3 . P R O O F O F T H EO R E M 1 . 3
Let E be an elliptic curve over ℚ. Recall that the order of Ē(𝔽p) can be written as |Ē(𝔽p)| = p + 1 − ap
for some ap ∈ ℤ satisfying Hasse’s bound |ap| ≤ 2

√
p. Also, by Lemma 2.4, if p ∤ NE splits completely 

in ℚ(E[m]), then m2 divides |Ē(𝔽p)|. Consequently, for such an instance, we must have m2 ≤ p + 1 +
2
√

p = (
√

p + 1)2 ≤ (
√

x + 1)2 if p ≤ x.
In the remaining part of this section, we shall further assume that E is with CM by the ring of inte-

gers 𝒪K  of an imaginary quadratic field K. Now, an application of the inclusion–exclusion principle, 
Lemma 2.3, and the above discussion give 

𝜋c(x, E, q, a) = #{p ≤ x ∣ p ∤ NE, p ≡ a (modq), and Ē(𝔽p)is cyclic }

= ∑
m≤y

𝜇(m)𝜋E,m(x, q, a) + O(x
y
) ,

(28)

for any 3 ≤ y ≤
√

x + 1, where 𝜋E,m(x, q, a) is defined as in Section 2.2, and the big-O term follows 
from (21) and the elementary bound 

∑
m>y

x
m2 ≪ x

y
.

From (25), it follows that the sum in (28) equals 

∑
m≤y

𝛾E,m(q, a)𝜇(m)

[ℚ(E[m])ℚ(𝜁q) : ℚ]
Li(x) + O(yxexp(−c5,A,B√logx)) , (29)

provided that 3 ≤ y ≤ (logx)A and qNE ≤ (logx)B, where 𝛾E,m(q, a) is defined as before. By the fact 
that [ℚ(E[m]) : ℚ] ≫ 𝜙(m)2, it has been shown in the first displayed estimate of [1, Section 4.1] 
that 

∑
m>y

𝜇(m)2

[ℚ(E[m])ℚ(𝜁q) : ℚ]
≪ 1

y
,

and thus 

∑
m>y

𝛾E,m(q, a)𝜇(m)

[ℚ(E[m])ℚ(𝜁q) : ℚ]
Li(x) ≪ x

y logx
. (30)
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Finally, choosing y = (logx)A and combining (28), (29) and (30), we establish 

𝜋c(x, E, q, a) = ∑
m≤(logx)A

𝛾E,m(q, a)𝜇(m)

[ℚ(E[m])ℚ(𝜁q) : ℚ]
Li(x)

+ O(x(logx)A exp(−c5,A,B√logx) + x
(logx)A

)

=
∞

∑
m=1

𝛾E,m(q, a)𝜇(m)

[ℚ(E[m])ℚ(𝜁q) : ℚ]
Li(x) + OA,B ( x

(logx)A
) ,

whenever qNE ≤ (logx)B, as desired.

4 . P R O O F O F T H EO R E M 1 . 4
In this section, we will prove Theorem 1.4. As shall be seen, the key new input is the Brun-Titchmarsh 
theorem and its variant for number fields.

4.1. A CM refinement
We begin by recalling the work of Hinz and Lodemann on the Brun–Titchmarsh inequality for number 
fields. Given a number filed F, for any coprime integral ideals 𝔞,𝔮 of F, we set 

𝜋(x,𝔮,𝔞) = #{𝔭 ⊂ 𝒪F ∣ N(𝔭) ≤ x and 𝔭 ∼ 𝔞(mod𝔮)},

where 𝔭 stands for a prime of F, and 𝔭 ∼ 𝔞 (mod𝔮) means that 𝔭 and 𝔞 are in the same ray class of 
the ray class group modulo 𝔮. By [11, Theorem 4] of Hinz and Lodemann, it is known that for any 
(𝔞,𝔮) = 1, if N(𝔮) < x, then 

𝜋(x,𝔮,𝔞) ≤ 2x
h(𝔮) log(x/N(𝔮))

⋅ (1 + O(
log log(3x/N(𝔮))
log(x/N(𝔮))

)) ,

where h(𝔮) denotes the cardinality of the ray class group modulo 𝔮.
Let hF  denote the class number of F and r1 be the number of real embeddings of F. Recall that h(𝔮)

can be expressed as 

h(𝔮) =
hF2r1Φ(𝔮)

T(𝔮)
,

where T(𝔮) is the number of residue classes (mod𝔮) that contain a unit, and Φ(𝔮) is the number 
field analogue of Euler’s totient function for F. Moreover, if F is an imaginary quadratic field, then 
T(𝔮) ≤ 6. Therefore, if F is an imaginary quadratic field of class number 1, one has 

1
h(𝔮)

≤ 6
Φ(𝔮)

.

For an elliptic curve E with CM by the full ring of integers 𝒪K  of an imaginary quadratic field K, 
K must be of class number 1. As discussed in the proof of Lemma 2.5, by the work of M.R. Murty 
[20], we know that K𝔪 ⊆ K(E[m]) = ℚ(E[m]) for m ≥ 3, where K𝔪 is the ray class field of K of 
level 𝔪 = m𝒪K . Hence, if a rational prime p splits completely in ℚ(E[m]), then for any 𝔭 of K that is 
above p, 𝔭 must splits completely in K(E[m]) and thus in K𝔪. Consequently, for m ≥ 3, we have 

𝜋E,m(x) ≤ 𝜋(x,𝔪,1) + logNE,
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where 1 = 1 ⋅𝒪K = 𝒪K , and NE is the conductor of E. Therefore, from the above discussion, it follows 
that for any fixed 𝜃 ∈ (0, 1

2
), if 3 ≤ y ≤ x𝜃, then 

∑
y<m≤x𝜃

𝜋E,m(x, q, a) ≪ ∑
y<m≤x𝜃

x
Φ(𝔪) log(x/N(𝔪))

+ x𝜃 logNE

≪𝜃 ∑
y<m≤x𝜃

x
𝜙(m)2 logx

+ x𝜃 logNE.
(31)

This bound, together with the estimate 

∑
m>X

1
𝜙(m)2

≪ 1
X

(32)

(see [1, Lemma 11]) and (21), then gives 

∑
y<m≤

√
x+1

𝜋E,m(x, q, a) ≪ x
y logx

+ x𝜃 logNE + x
x𝜃 . (33)

Thus, by an argument similar to the one leading to (28) and the above bound, we have 

𝜋c(x, E, q, a) = ∑
m≤y

𝜇(m)𝜋E,m(x, q, a) + O( x
y logx

+ x𝜃 logNE + x
x𝜃 ) .

Hence, using (27) and (30), we obtain 

𝜋c(x, E, q, a) =
∞

∑
m=1

𝛾E,m(q, a)

[ℚ(E[m])ℚ(𝜁q) : ℚ]
Li(x) + O(yx1/2 log(qNEx))

+ O( x
y logx

+ x𝜃 logNE + x1−𝜃) .

(34)

Finally, choosing 

y = x1/4

(logx)1/2(log(qNEx))1/2

and 𝜃 = 1
4

 in (34), we establish (8).

4.2. A non-CM refinement
Recall that in [1, Section 3.2] (see, particularly, [1, Equations (15)–(18)]), it has been shown that 
under GRH, one has 

𝜋c(x, E, q, a) = 𝔠E(q, a)Li(x) + O(yx1/2 log(qNEx)) + O(Σ′
2 + Σ3Li(x)), (35)

where 

Σ′
2 := ∑

y<m≤
√

x+1

𝜋E,m(x, q, a) ≪ x1/2 logx + x3/2

y2q
H(q), (36)

and 

Σ3 := ∑
m>y

𝜇(m)2

[ℚ(E[m])ℚ(𝜁q) : ℚ]
≪

𝜏2(q2)
y3𝜙(q)

M3
E. (37)

In this section, we shall refine the estimates for Σ2 (for ‘small’ q) and Σ3 (when q and ME do not 
have many common prime factors) as follows.
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First, by using Hasse’s bound |ap| ≤ 2
√

p ≤ 2
√

x for p ≤ x, we have 

𝜋E,m(x, q, a) ≤ #{p ≤ x ∣ p ∤ 2NE, p ≡ a (modq), p ≡ 1 (modm), m2 ∣ |Ē(𝔽p)|} + 1

≤ ∑
|b|≤2

√
x

#{p ≤ x ∣ p ∤ 2NE, m ∣ p − 1, m2 ∣ p + 1 − b, ap = b} + 1

≤ ∑
|b|≤2

√
x,b≠2

m∣b−2

∑
p≤x

m2∣p+1−b

1 + ∑
p≤x

m2∣p−1

1

≪ ∑
|b|≤2

√
x,b≠2

m∣b−2

x
𝜙(m2) log(9x/m2)

+ x
m2 ,

where the last estimate follows from the Burn–Titchmarsh theorem, provided that m ≤
√

x + 1. (We 
shall note that this argument is inspired by the argument of Cojocaru and M.R. Murty [5, Section 4], 
and our new input is the use of the Burn–Titchmarsh theorem in the last estimate.) Note that 
t log(9x/t2) is increasing for 0 < t ≤

√
x + 1, as its derivative is log(9x/t2) + t(−2/t) ≥ (log8) − 2 >

0, when x is sufficiently large. Thus, we obtain 

∑
y<m≤

√
x+1

𝜋E,m(x, q, a) ≪ ∑
y<m≤

√
x+1

√
x

m
x

m𝜙(m) log(9x/m2)
+ x

y

≤ x3/2

y log(9x/y2)
∑

y<m≤
√

x+1

1
m𝜙(m)

+ x
y

.

By Abel’s summation and the elementary estimate ∑m≤t
1

𝜙(m)
= 𝛾 log t + O(1) for some constant 

𝛾 > 0, the last sum above is ≪ 1
y

 (see also [1, Lemma 10]). Hence, we derive 

Σ′
2 ≪ x3/2

y2 log(3x/y2)
+ x

y
. (38)

To estimate the tail Σ3, we shall closely follow the argument of [1, p. 1294]. For each q, we set 
q1 = q

q2
 where q2 denotes the largest divisor of q that is coprime to ME. As 𝜇(m)2 = 1 if and only if m

is square-free, recalling that ME is square-free by its definition (6), we can write 

Σ3 = ∑
m>y

m square-free 

1
[ℚ(E[m])ℚ(𝜁q) : ℚ]

= ∑
de>y

d∣ME,(e,ME)=1

1
[ℚ(E[de])ℚ(𝜁q) : ℚ]

,

which, by the decomposition q = q1q2, is 

∑
d∣ME

1
[ℚ(E[d])ℚ(𝜁q1

) : ℚ]
∑
e>y/d

(e,ME)=1

1
[ℚ(E[e])ℚ(𝜁q2

) : ℚ]

≤ ∑
d∣ME

1
𝜙([d, q1])

∑
e>y/d

(e,ME)=1

[ℚ(E[e]) ∩ℚ(𝜁q2
) : ℚ]

[ℚ(E[e]) : ℚ][ℚ(𝜁q2
) : ℚ]

.

(Here, we used the fact that the dth cyclotomic field is contained in ℚ(E[d]).) Moreover, it follows 
from the facts 

[ℚ(E[e]) : ℚ] ≫ e3𝜙(e) and [ℚ(E[e]) ∩ℚ(𝜁q2
) : ℚ] = 𝜙((e, q2))
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(see [1, p. 1294]) that the last sum above is 

≪ 1
𝜙(q2)

∑
k∣q2

𝜙(k) ∑
e>y/d

(e,q2)=k

1
e3𝜙(e)

≤ 1
𝜙(q2)

∑
k∣q2

𝜙(k) ∑
kr>y/d

1
(kr)3𝜙(kr)

.

By the inequality 𝜙(k)𝜙(r) ≤ 𝜙(kr) and the estimate ∑r>X
1

r3𝜙(r)
≪ X−3 (see [1, Lemma 10]), 

we see that the last quantity is 

≤ 1
𝜙(q2)

∑
k∣q2

1
k3 ∑

r>y/(dk)

1
r3𝜙(r)

≪ 1
𝜙(q2)

∑
k∣q2

1
k3

(dk)3

y3 .

Thus, recalling that 𝜙([d, q1])𝜙((d, q1)) = 𝜙(d)𝜙(q1), we derive 

Σ3 ≪
𝜏2(q2)

y3 ∑
d∣ME

1
𝜙([d, q1])

1
𝜙(q2)

d3 =
𝜏2(q2)
y3𝜙(q)

∑
d∣ME

𝜙((d, q1))d3

𝜙(d)
=

𝜏2(q2)
y3𝜙(q)

RE,q1
, (39)

where RE,q1
 is defined as in (10). Thus, inserting (39) into the argument of [1, Section 3.2] (instead 

of using the bound given in (37)) yields the last assertion of the theorem.
Furthermore, by (35), (38) and (39), we can choose 

y = x1/3

(logx)1/3(log(qNEx))1/3
(40)

to deduce (9), which completes the proof.

5 . P R O O F O F T H EO R E M 1 . 5
Throughout this section, p will denote a (rational) prime coprime to NE. We start by observing dpep =
|Ē(𝔽p)| = p + 1 − ap and writing 

𝜋e(x, E, q, a) = ∑
p≤x

p≡a(modq)

ep = ∑
p≤x

p≡a(modq)

p
dp

+ ∑
p≤x

p≡a(modq)

1
dp

(1 − ap),

where by Hasse’s bound, the last sum is 

≪ ∑
p≤x

p≡a(modq)

(1 + |ap|) ≪ ∑
p≤x

p≡a(modq)

√
p ≪ x3/2

q
.

For the main term, as done in [7] and [28], it follows from the identity 

1
m

= ∑
de∣m

𝜇(d)
e

(41)

(see, e.g., the formula below [28, Equation (3.2)]) that 

∑
p≤x

p≡a(modq)

p
dp

= ∑
p≤x

p≡a(modq)

p∑
de∣dp

𝜇(d)
e

= ∑
m≤

√
x+1

∑
de∣m

𝜇(d)
e

∑
p≤x

p≡a(modq)
m∣dp

p.
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Therefore, we can consider the splitting 

𝜋e(x, E, q, a)

= ∑
m≤y

∑
de∣m

𝜇(d)
e

∑
p≤x

p≡a(modq)
m∣dp

p + ∑
y<m≤

√
x+1

∑
de∣m

𝜇(d)
e

∑
p≤x

p≡a(modq)
m∣dp

p + O(x3/2

q
) , (42)

where y = y(x) ≤
√

x + 1 is a parameter to be chosen later. Since 

∣∑
de∣m

𝜇(d)
e

∣ ≤ 1
m

≤ 1

(cf. [28, Equation (3.6)]), Lemma 2.4, together with (21), yields that the last triple sum in (42) is 

≪ ∑
y≤m≤

√
x+1

x𝜋E,m(x, q, a) ≪ ∑
y≤m≤

√
x+1

x2

m2 ≪ x2

y
.

Now, applying Abel’s summation, we deduce 

∑
p≤x

p≡a(modq)
m∣dp

p =x𝜋E,m(x, q, a) − ∫
x

2
𝜋E,m(t, q, a)dt

= x
𝛾E,m(q, a)

[ℚ(E[m])ℚ(𝜁q) : ℚ]
Li(x) + xℰE,m(x, q, a)

− ∫
x

2

𝛾E,m(q, a)

[ℚ(E[m])ℚ(𝜁q) : ℚ]
Li(t)dt − ∫

x

2
ℰE,m(t, q, a)dt,

where ℰE,m(x, q, a) = 𝜋E,m(x, q, a) − 𝛾E,m(q,a)

[ℚ(E[m])ℚ(𝜁q):ℚ]
Li(x). Hence, by the expression 

Li(x2) = xLi(x) − ∫
x

2
Li(t)dt + O(1),

we have 

∑
p≤x

p≡a(modq)
m∣dp

p =
𝛾E,m(q, a)

[ℚ(E[m])ℚ(𝜁q) : ℚ]
Li(x2) + O(xmax

t≤x
|ℰE,m(t, q, a)| + 1) .

(43)

Again, by (25), we obtain 

∑
m≤(logx)A

max
t≤x

|ℰE,m(t, q, a)| ≪ x(logx)A exp(−c5,A,B√logx). (44)

Therefore, by (42), (43) and (44), choosing y = (logx)A, we conclude that 

𝜋e(x, E, q, a) = ∑
1≤m≤(logx)A

∑
de∣m

𝜇(d)
e

𝛾E,m(q, a)

[ℚ(E[m])ℚ(𝜁q) : ℚ]
Li(x2)

+ O(x2(logx)A exp(−c5,A,B√logx) + x2

(logx)A
+ x3/2

q
) .
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Note that 

∑
m>y

∑
de∣m

𝜇(d)
e

𝛾E,m(q, a)

[ℚ(E[m])ℚ(𝜁q) : ℚ]
Li(x2) ≪ ∑

m>y

1
𝜙(m)2

x2

logx
≪ 1

y
x2

logx
, (45)

where the last estimate follows from (32). Hence, we finally arrive at 

𝜋e(x, E, q, a) = 𝔢E(q, a)Li(x2) + OA,B ( x2

(logx)A
)

whenever qNE ≤ (logx)B.

6 . CO N D I T I O N A L E ST I M AT E S F O R 𝜋e(x, E, q, a)
Throughout this section, we shall assume GRH and apply (27). More precisely, by (27) and (43), 
under GRH, we have 

∑
p≤x

p≡a(modq)
m∣dp

p =
𝛾E,m(q, a)

[ℚ(E[m])ℚ(𝜁q) : ℚ]
Li(x2) + O(x3/2 log(mqNE)) .

(46)

Also, bounding each p trivially by x and using Lemma 2.4, we have 

∑
y≤m≤

√
x+1

∑
de∣m

𝜇(d)
e

∑
p≤x

p≡a(modq)
m∣dp

p ≪ x ∑
y<m≤

√
x+1

𝜋E,m(x, q, a). (47)

6.1. Elliptic curves with CM
We begin by noting that if E has CM, (22) and (33) tell us that the right of (47) is ≪ xℰ1(x) with 

ℰ1(x) := min{(
√

x
q

+
√

x logx
q2 + x

yq3 )GD(a, q), x
y logx

+ x𝜃 logNE + x
x𝜃 } .

Putting (42), (45) and (46), and this bound together then yields 

𝜋e(x, E, q, a) =
∞

∑
m=1

∑
de∣m

𝜇(d)
e

𝛾E,m(q, a)

[ℚ(E[m])ℚ(𝜁q) : ℚ]
Li(x2) + O(yx3/2 log(qNEx))

+ O(xℰ1(x) + x2

y logx
+ x3/2

q
) .

(48)

Finally, as done in [1, p. 1301], applying [9, Lemma 2.4] to find y ∈ [2q, x1/2] to balance the error 
terms in (48), we deduce (13).

6.2. Non-CM elliptic curves
Assume that E is non-CM. As discussed in Section 4.2, by (36) and (38), the last sum in (47) is 

≪ ℰ2(x) := min{x1/2 logx + x3/2

y2q
H(q), x3/2

y2 log(3x/y2)
+ x

y
}

provided that 2q ≤ y ≤
√

x, and thus the triple sum on the left of (47) is ≪ xℰ2(x).
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By (41), we have 

∑
m>y

∑
de∣m

𝜇(d)
e

𝛾E,m(q, a)

[ℚ(E[m])ℚ(𝜁q) : ℚ]
≪ ∑

m>y

1
m

1
[ℚ(E[m])ℚ(𝜁q) : ℚ]

. (49)

From an argument analogous to the one leading to (39), it follows that the right of (49) is 

≪ ∑
d∣M∞

E

1
d[ℚ(E[d])ℚ(𝜁q1

) : ℚ]
1

𝜙(q2)
∑
k∣q2

1
k3

(dk)3

y3 .

Unfortunately, if we used the bound [ℚ(E[d])ℚ(𝜁q1
) : ℚ] ≥ 𝜙([d, q1]) as before, the above sum over 

d would not converge. To resolve this issue, we recall that by Serre’s open image theorem, Freiberg 
and Kurlberg [7, Proposition 3.2] showed that there exists a constant BE, depending only on E, such 
that BE ⋅ [ℚ(E[m]) : ℚ] ≥ |GL2(ℤ/mℤ)| ≫ m3𝜙(m), for any m ∈ ℕ, whenever E is non-CM. From 
which, we derive the upper bound 

≪ ∑
d∣M∞

E

BE

d4𝜙(d)
1

𝜙(q2)
∑
k∣q2

1
k3

(dk)3

y3 =
𝜏2(q2)

y3𝜙(q2)
∑

d∣M∞
E

BE

d𝜙(d)
.

Thus, by (42), (46) and the above discussion, we obtain 

𝜋e(x, E, q, a) =
∞

∑
m=1

∑
de∣m

𝜇(d)
e

𝛾E,m(q, a)

[ℚ(E[m])ℚ(𝜁q) : ℚ]
Li(x2) + O(yx3/2 log(qNEx))

+ O(xℰ2(x) +
𝜏2(q2)
𝜙(q2)

∑
d∣M∞

E

BE

d𝜙(d)
x2

y3 logx
+ x3/2

q
) .

Hence, balancing the errors as in [1, Section 3.2.3] gives the desired estimate (15).
Finally, to derive (14), we instead use the bound [ℚ(E[m])ℚ(𝜁q) : ℚ] ≥ 𝜙(m) in (49) so that 

the resulting error is ≪ y−1. Consequently, the last big-O term above can be replaced by O(xℰ2(x) +
x2

y logx
+ x3/2

q
), and choosing y as in (40) yields (14).

7 . W H E N T H E L A N DAU - S I EG E L Z E R O I S N OT TO O C LO S E TO 1
In this section, we shall assume (16). Suppose that there is an exceptional Dirichlet character 𝜒1 mod-
ulo Q 1 such that L(s,𝜒1) admits a Landau–Siegel zero 𝛽1. Arguing classically, by the mean value 
theorem, we have 

1 − 𝛽1 =
L(1,𝜒1)

L′(𝜎1,𝜒1)
for some 𝜎1 ∈ (𝛽1, 1). This, combined with (16) and the well-known estimate L′(𝜎1,𝜒1) =
O((logQ1)2), yields 

1 − 𝛽1 >
c6

(logQ1)S+2

for some c6 > 0. From this lower bound, one has 

x𝛽1 ≪ xexp(−c6(logx)(logQ1)−S−2) ≪ xexp(−c6√logx) (50)

whenever (logQ1)S+2 ≤ √logx or, equivalently, Q1 ≤ exp((logx)1/(2S+4)), which leads to the 
following improvement of the Siegel–Walfisz theorem: 

𝜋(x, q, a) = 1
𝜙(q)

Li(x) + O(xexp(−c′
6
√logx))
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uniformly in q ≤ exp((logx)1/(2S+4)) for some abosulte c′
6 ∈ (0, c6) (cf. [6, Sections 21–22].)

Now, in the same notation of Section 2.2, for any CM elliptic curve E of conductor NE, assuming 
that logm ≤ 1

2𝜅
(logx)1/(2S+4) and log(qNE) ≤ 1

2𝜅
(logx)1/(2S+4), by (24), we know that 

logQ1 ≤ 𝜅 log(mqNE) ≤ (logx)1/(2S+4).

Therefore, by (23) and (50), we arrive at 

𝜋C(x) =
|C|
|G|

Li(x) + O(|C|
1
2 xexp(−c′

2
√logx) + xexp(−c6√logx)) .

Hence, under the assumption of (16), the estimate (25) can be improved as 

𝜋E,m(x, q, a) =
𝛾E,m(q, a)

[ℚ(E[m])ℚ(𝜁q) : ℚ]
Li(x) + O(xexp(−c7√logx)) , (51)

uniformly in logm ≤ 1
2𝜅

(logx)1/(2S+4) and log(qNE) ≤ 1
2𝜅

(logx)1/(2S+4), for some c7 > 0.
Thus, gathering (28), (30) and (51) (instead of (29)), we get 

𝜋c(x, E, q, a) =
∞

∑
m=1

𝛾E,m(q, a)𝜇(m)

[ℚ(E[m])ℚ(𝜁q) : ℚ]
Li(x) + O(yxexp(−c7√logx) + x

y
)

whenever log(qNE) ≤ 1
2𝜅

(logx)1/(2S+4). This, together with the choice 

y = exp(min{ 1
2𝜅

,
c7

2
}(logx)1/(2S+4)) ,

then yields the first claimed estimate of Theorem 1.7. Finally, we conclude this section by noting that 
the last estimate of Theorem 1.7 follows similarly while using (51) (instead of (29)) in the argument 
starting from (43).
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