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ABSTRACT. The purpose of this paper is to investigate the problem of finding a common element
of the set of fixed points of an asymptotically strict pseudocontractive mapping in the inter-
mediate sense and the set of solutions of a variational inequality problem for a monotone and
Lipschitz continuous mapping. We introduce an extragradient-like iterative algorithm that is
based on the extragradient-like approximation method and the modified Mann iteration process.
We establish a strong convergence theorem for two sequences generated by this extragradient-
like iterative algorithm. Utilizing this theorem, we also design an iterative process for finding a
common fixed point of two mappings, one of which is an asymptotically strict pseudocontractive
mapping in the intermediate sense and the other taken from the more general class of Lipschitz
pseudocontractive mappings.

1991 MSC: 47H09; 47J20.

Keywords: extragradient-like approximation method; modified Mann iteration process; vari-
ational inequality; asymptotically strict pseudocontractive mapping in the intermediate sense;

fixed point; monotone mapping; strong convergence; demiclosedness principle.
1



2 L.-C. CENG, Q. H. ANSARI, N.-C. WONG AND J.-C. YAO

1. INTRODUCTION
Let H be a real Hilbert space whose inner product and norm are denoted by (-,-) and || - ||,

respectively, and let C' be a nonempty closed convex subset of H. Corresponding to an operator

A:C — H and set C, the variational inequality problem VIP(A, C) is defined as follows:

(1.1) Find z € C such that (Az,y —z) >0, VYyeC.

The set of solutions of VIP(A,C) is denoted by Q. It is well known that if A is a strongly
monotone and Lipschitz-continuous mapping on C, then the VIP(A, C') has a unique solution.
Not only the existence and uniqueness of a solution are important topics in the study of the
VIP(A, C) but also how to compute a solution of the VIP(A, C) is important. For applications
and further details on VIP(A, C), we refer to [1, 2, 3, 4] and the references therein.

The set of fixed points of a mapping S is denoted by Fix(S), that is, Fix(S) = {z € H :
Sz =z}

For finding an element of F(S) N 2 under the assumption that a set C' C H is nonempty,
closed and convex, a mapping S : C — C is nonexpansive and a mapping A : C — H is (-
inverse-strongly monotone, Takahashi and Toyoda [5] proposed an iterative scheme and proved
that the sequence generated by the proposed scheme converges weakly to a point z € F(S) N
if F(S)NQ#0.

Recently, motivated by the idea of Korpelevich’s extragradient method [6], Nadezhkina and
Takahashi [7] introduced an iterative scheme, called extragradient method, for finding an element
of F(S) N Q and established the weak convergence result. Very recently, inspired by the work
in [7], Zeng and Yao [8] introduced an iterative scheme for finding an element of F'(S) N Q and
obtained the weak convergence result. The viscosity approximation method for finding a fixed

point of a given nonexpansive mapping was proposed by Moudafi [9]. He proved the strong
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convergence of the sequence generated by the proposed method to a unique solution of some
variational inequality. Xu [10] extended the results of [9] to the more general version. Later on,
Ceng and Yao [11] also introduced an extragradient-like approximation method, which is based
on the above extragradient method and viscosity approximation method, and proved the strong
convergence result under certain conditions.

An iterative method for the approximation of fixed points of asymptotically nonexpansive
mappings was developed by Schu [12]. Iterative methods for the approximation of fixed points of
asymptotically nonexpansive mappings have been further studied in [13, 14] and the references
therein. The class of asymptotically nonexpansive mappings in the intermediate sense was
introduced by Bruck et al. [15]. The iterative methods for the approximation of fixed points
of such types of non-Lipschitzian mappings have been further studied in [16, 17, 18]. On the
other hand, Kim and Xu [19] introduced the concept of asymptotically x-strict pseudocontractive
mappings in a Hilbert space and studied the weak and strong convergence theorems for this class
of mappings. Sahu et al. [20] considered the concept of asymptotically k-strict pseudocontractive
mappings in the intermediate sense, which are not necessarily Lipschitzian. They proposed
modified Mann iteration process and proved its weak convergence for an asymptotically k-strict
pseudocontractive mapping in the intermediate sense.

Very recently, Ceng et al. [21] established the strong convergence of viscosity approximation
method for a modified Mann iteration process for asymptotically strict pseudocontractive map-
pings in intermediate sense and then proved the strong convergence of general CQ algorithm
for asymptotically strict pseudocontractive mappings in intermediate sense. They extended the
concept of asymptotically strict pseudocontractive mappings in intermediate sense to Banach

space setting, called nearly asymptotically k-strict pseudocontractive mapping in intermediate



4 L.-C. CENG, Q. H. ANSARI, N.-C. WONG AND J.-C. YAO

sense. They also established the weak convergence theorems for a fixed point of a nearly as-
ymptotically k-strict pseudocontractive mapping in intermediate sense which is not necessarily
Lipschitzian.

In this paper, we propose and study an extragradient-like iterative algorithm that is based on
the extragradient-like approximation method in [11] and the modified Mann iteration process
in [20]. We apply the extragradient-like iterative algorithm to designing an iterative scheme
for finding a common fixed point of two nonlinear mappings. Here, we remind the reader of
the following facts: (i) the modified Mann iteration process in [20, Theorem 3.4] is extended
to develop the extragradient-like iterative algorithm for finding an element of F'(S) N Q; (ii)
the extragradient-like iterative algorithm is very different from the extragradient-like iterative
scheme in [11] since the class of mappings S in our scheme is more general than the class of

nonexpansive mappings.

2. PRELIMINARIES

Throughout the paper, unless otherwise specified, we assume that H is a real Hilbert space
whose inner product and norm are denoted by (-,-) and || - ||, respectively, and C' is a nonempty
closed convex subset of H. The set of fixed points of a mapping S is denoted by Fix(S), that
is, Fix(S) = {x € H : Sx = z}. We write z,, — z to indicate that the sequence {z,} converges
weakly to z. The sequence {x,} converges strongly to x is denoted by x,, — =.

Recall that a mapping S : C — C is said to be L-Lipschitzian if there exists a constant
L > 0 such that ||Sz — Sy|| < L|jz — y||, Vz,y € C. In particular, if L € [0,1), then S is called
a contraction on C; if L = 1, then S is called a nonexpansive mapping on C. The mapping

S : C' — C is called pseudocontractive if

1Sz = Syl* < |l — yl* + I(I = S)z — (I = S)yl*, Va,yeC.
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A mapping A : C — H is called

(i) monotone if

(Az — Ay,x —y) >0, Vz,ye€ C,

(ii) [-inverse-strongly monotone [22, 23] if there exists a positive constant § such that
<A.’E-Ay,[]3—y> ZﬂHALC—AyHQ, VnyZ/GC

It is obvious that if A is (-inverse-strongly monotone, then A is monotone and Lipschitz
continuous.

It is easy to see that if a mapping S : C' — C' is nonexpansive, then the mapping A=1- 5
is 1/2-inverse-strongly monotone; moreover, F(S) = Q (see, e.g., [5]). At the same time, if
a mapping S : C — (' is pseudocontractive and L-Lipschitz continuous, then the mapping
A = (I — S) is monotone and L + 1-Lipschitz continuous; moreover, F(S) = Q (see, e.g., [24,

proof of Theorem 4.5]).

Definition 2.1. Let C be a nonempty subset of a normed space X. A mapping S : C — C is

said to be

(a) asymptotically nonexpansive [25] if there exists a sequence {ky,} of positive numbers such

that lim,, .~ k, = 1 and
|5z = S"y|| < kullz —yl, Vn>1, Vo,y € C;

(b) asymptotically nonexpansive in the intermediate sense [15] provided S is uniformly con-
tinuous and

limsup sup (||S"z —S"y|| — ||z —yl|) < 0;

n—oo z,yeC

(c) uniformly Lipschitzian if there exists a constant L > 0 such that

15"z = S"y|| < Lllz —yll, Yn=1, Va,y € C.
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It is clear that every nonexpansive mapping is asymptotically nonexpansive and every as-
ymptotically nonexpansive mapping is uniformly Lipschitzian.

The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [25]
as an important generalization of the class of nonexpansive mappings. The existence of fixed

points of asymptotically nonexpansive mappings was proved by Goebel and Kirk [25] as below:

Theorem 2.1. [25, Theorem 1] If C' is a nonempty closed convex bounded subset of a uniformly
conver Banach space, then every asymptotically nonexpansive mapping S : C — C has a fized

point in C.

Definition 2.2. [19] A mapping S : C — C is said to be an asymptotically k-strict pseudo-
contractive mapping with sequence {~,} if there exist a constant x € [0,1) and a sequence {7, }

in [0, 00) with lim,_,o yn, = 0 such that
(2.1)  [IS"2 = S"y[I* < (L+yn)lle —yl® + kllz — S"z — (y = S"y)|*, V¥n>1, Yo,y e C.

It is important to note that every asymptotically x-strict pseudocontractive mapping with

sequence {7,} is a uniformly L-Lipschitzian mapping with L = sup {'W n > 1}.

Definition 2.3. [20] A mapping S : C' — C' is said to be an asymptotically x-strict pseudocon-
tractive mapping in the intermediate sense with sequence {7, } if there exist a constant x € [0, 1)

and a sequence {7y,} in [0, 00) with lim,,_,. 7, = 0 such that

(22)  limsup sup (15" — S™y|? — (1+3a)lla — yll* — £l — 5™z — (y — S")|?) < 0.

n—oo z,yeC

Put

z,yeC

cw—mw{&wmOW%—S%W—U+wmm—yW—mu—y%—@—st%}
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Then, ¢, >0 (Vn > 1), ¢, — 0 (n — 00) and (2.2) reduces to the relation

(23) [1S" = S™y|* < L+ )z —yl* + Kz — 5"z — (y — S"Y)|* + cn, Vn > 1, Va,y € C.

Whenever ¢, = 0 for all n > 1 in (2.3), then S is an asymptotically s-strict pseudocontractive
mapping with sequence {v,}.

For every point « € H, there exists a unique nearest point in C', denoted by Pox, such that

le = Pox| < llz —yll, VyeC.

Pc is called the metric projection of H onto C. Recall that the inequality holds

(2.4) (x — Pcx,Pcx—y) >0, VYxeHyeC.

Moreover, it is equivalent to

|Pox — Peyl|* < (Pox — Pey,x —y), Va,y € H;

it is also equivalent to

(2.5) lz = yl* = llz — Peal® + |ly — Pez|?, Vo€ H,yeC.

It is easy to see that Pr is a nonexpansive mapping from H onto C; see, e.g., [26] for further

detail.

Lemma 2.1. Let A: C — H be a monotone mapping. Then,

ueQ & u=PFPo(u—Nu), VA>0.

Lemma 2.2. Let H be a real Hilbert space. Then, the following hold:

lz =yl = llz]* = |yll* - 2(z —y,y), Va,yeH.
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Lemma 2.3. [20, Lemma 2.6] Let S : C — C be an asymptotically k-strict pseudocontractive

mapping in the intermediate sense with sequence {v,}. Then,

1
87 — 8"yl < —=— (sllz — yll + VT + (= )z — yP+ (1= men)
forallx,y € C andn > 1.

Lemma 2.4. [20, Lemma 2.7] Let S : C — C be a uniformly continuous asymptotically r-strict
pseudocontractive mapping in the intermediate sense with sequence {v,}. Let {x,} be a sequence

in C such that ||z, — Tpt1]| — 0 and ||z, — S™zy|| — 0 as n — oo. Then, ||z, — Sxy,| — 0 as

Proposition 2.1 (Demiclosedness Principle). [20, Proposition 3.1] Let S : C — C be a contin-
uwous asymptotically k-strict pseudocontractive mapping in the intermediate sense with sequence
{}. Then, I — S is demiclosed at zero in the sense that if {x,} is a sequence in C such that

xp — x € C and limsup,, . limsup,,_, ||zn, — S™x,|| =0, then (I — S)z = 0.

Proposition 2.2. [20, Proposition 3.2] Let S : C — C be a continuous asymptotically k-strict
pseudocontractive mapping in the intermediate sense with sequence {v,} such that F(S) # 0.

Then, F(S) is closed and convez.

Remark 2.1. Propositions 2.1 and 2.2 give some basic properties of an asymptotically k-strict
pseudocontractive mapping in the intermediate sense with sequence {, }. Moreover, Proposition
2.1 extends the demiclosedness principles studied for certain classes of nonlinear mappings in

19, 27, 28, 29).

Lemma 2.5. [30] Let (X, (-,)) be an inner product space. Then, for all z,y,z € X and all

a, B, € 10,1] with o« + 5+ ~v =1, we have

lazx + By + 2|1 = allz|® + Bllyll* + yll2I* = abllz — ylI* — evlle — 2|1 = Bylly — =II*.
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Lemma 2.6. [31, Lemma 2.5] Let {s,} be a sequence of nonnegative real numbers satisfying
Sn+1 < (1 - dn)sn + O?nlgn + Yn, Vn > 1,

where {ay,}, {Bn} and {3,} satisfy the conditions:
(i) {an} C [0,1], anl Qn = 00, or equivalently, anl(l —ay) =0;
(ii) limsup,, o Bn < 0;
(@) Jn >0 (n > 1), Z:;l Fn < 00.

Then, lim,_ o s, = 0.

Lemma 2.7. [32] Let {x,,} and {z,} be bounded sequences in a Banach space X and let {on}
be a sequence in [0,1] with 0 < liminf, o 0, < limsup,,_,. 0n < 1. Suppose that xp+1 =
0n%n+ (1 — 0n) 2y for all integers n > 1 and limsup,,_, o (||zn+1 — 2nl| = ||Zn+1 — z0]|) < 0. Then,

lim,, 0 |20 — 2n|] = 0.
The following lemma can be easily proved, and therefore, we omit the proof.
Lemma 2.8. In a real Hilbert space H, there holds the inequality
2 +yll? < lzl* +2{y, « + ), Va,y € H.

A set-valued mapping T : H — 2¥ is called monotone if for all z,y € H, f € Tz and g € Ty
imply (z — v, f —g) > 0. A monotone mapping 7 : H — 2 is maximal if its graph G(T) is not
properly contained in the graph of any other monotone mapping. It is known that a monotone
mapping 7' is maximal if and only if for (z, f) € H x H, (x —y, f —g) > 0 for all (y,g) € G(T)
implies f € Tx. Let A: C — H be a monotone, L-Lipschitz continuous mapping and let Nov

be the normal cone to C' at v € C, i.e., Nov ={w € H : (v —u,w) >0, Yu € C'}. Define

Av+ Neov ifv e C,
Ty =

0 ifvégC.
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It is known that in this case T' is maximal monotone, and 0 € T if and only if v € ; see [33].

3. EXTRAGRADIENT-LIKE APPROXIMATION METHOD AND STRONG CONVERGENCE RESULTS

Let A : C — H be a monotone and L-Lipschitz continuous mapping, f : C — C be a
contraction with contractive constant o« € (0,1) and S : C — C be an asymptotically -
strict pseudocontractive mapping in the intermediate sense with sequence {~,}. In this paper,
we introduce an extragradient-like iterative algorithm that is based on the extragradient-like

approximation method in [11] and the modified Mann iteration process in [20]:

;

x1 = x € C chosen arbitrary,

Yn = (1 - #n)xn + ,unPC(xn - )\nAfn)a
(3.1)

tn = PC(xn - )\nAyn)y

I+l = (1 — Op — /Bn - Vn)!Tn + anf(yn) + 5ntn + VnSntny Vn > 17

where {\,} is a sequence in (0,1) with Zoo 1)\n < o0, and {an}, {Bn}, {pn} and {v,} are
n—=

sequences in [0, 1] satisfying the following conditions:

(A1) ap + Bn+ v < 1foralln >1;

o
(A2) limy, o0 ap =0, anl Oy = 00;
(A3) k <liminf, .o B, <limsup, . Bn < 1;
[e.e]
(A4) anl vy < 00.
The following result shows the strong convergence of the sequences {z,}, {y,} generated

by the scheme (3.1) to the same point ¢ = Pp(s)nof(q) if and only if {Az,} is bounded,

(I —S™)zy| — 0 and liminf, o (Azy,y —x,) > 0 for all y € C.

Theorem 3.1. Let A: C — H be a monotone and L-Lipschitz continuous mapping, f : C — C
be a contraction with contractive constant o € (0,1) and S : C — C be a uniformly continuous

asymptotically k-strict pseudocontractive mapping in the intermediate sense with sequence {vy,}
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such that F(S)NQ # 0 and Zzo:l Yn < 00. Let {zn}, {yn} be the sequences generated by (3.1),
where {\,} is a sequence in (0,1) with Zzozl An < 00, and {an}, {Bn}, {un} and {v,} are
sequences in [0, 1] satisfying the conditions (A1)-(A4). Then, the sequences {xyn}, {yn} converge
strongly to the same point ¢ = Pps)naf(q) if and only if {Ax,} is bounded, ||(I — S™)xn| — 0

and liminf, o (Az,,y — x,) >0 for ally € C.

Proof. “Necessity”. Suppose that the sequences {z,}, {y,} converge strongly to the same point
q = Pp(s)naf(q). Then from the L-Lipschitz continuity of A, it follows that { Az, } is bounded,

and for each y € C:

(A, y — zn) — (Aq,y — )|
< (Azn,y — 2p) — (Azn,y — @) + [(Azn,y — @) — (Ag,y — q)
= [(Azn,q — xp)| + [(Azn — Agq,y — q)|
< [[Azn|lllg — ol + [[Azn — Aqllly — g

< || Aznllllg — znll + Lllzn — qlllly — qll — 0,

which implies that

lim (Az,,y — 2n) = (Aq,y —q) 20, VyeC

n—oo

due to g € €. Furthermore, utilizing Lemma 2.3, we have

1
152 = qll < 7= (llan —all + VE+ A= "))l —alP + (= K)eq) =0
due to x, — ¢, 7, — 0 and ¢, — 0. Consequently, we conclude that for each y € C
15" n — xpll < [[S"2n — gl + |20 — gl| — 0.

That is, ||(I — S™)xy| — 0.
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“Sufficiency”. Suppose that {Ax,,} is bounded, |[(I—S")x,|| — 0 and liminf,, o (Azp, y—x,) >
0 for all y € C. Note that liminf,, .. G, > k. Hence, we may assume, without loss of generality,
that 3, > « for all n > 1.

Next, we divide the proof of the sufficiency into several steps.

STEP 1. We claim that {z,,} is bounded. Indeed, put t,, = Po(x, — A\ Ayy,) for all n > 1. Let

z* € F(S)NQ. Then, z* = Po(z* — \,Ax*). Putting = z,, — M\, Ay, and y = 2* in (2.5), we

obtain
[t —2*[* < llzn — AnAyn — ¥ = |20 — A Ayn — tn?
= ||y — x*HQ — 22 (Ayp, Ty — *) + )‘%”AynHQ
(3.2) _”xn_th2+2>‘n<Aynw’Un_tn> _A%HAynHQ

= ||z — x*HQ + 20 (Ayn, ¥ — ty) — ||2n — thQ
= |0 — ¥ = lzn — tall* = 2Mn(Ayn — Az*, y, — 2%)

Since A is monotone and z* is a solution of VIP(A, C'), we have

(Ayp — Ax™,y, —2*) >0 and (Az",y, —2%) >0

It follows from (3.2) that

tn —2** < llzn = 2*|1 = llon — tall® + 200 (AYn, Yo — ta)
= llzn = 2*1* = (@0 = yn) + (Yn = ta) I + 20 (AYn, yn — tn)
(3.3) = zn — 21 = |20 = ynll* = 2(zn — Y, Yo = tn) = lyn — tal®
+2X (AYny Yn — tn)

= [|zn — x*HQ — [|on — yn”2 — [lyn — tn”2 + 2(xn — M AYn — Yns tn — Yn)-
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Note that x,, € C for all n > 1 and that y, = (1 — pn)xn + pnPo(xn — AnAzy,). Hence, we have
(3.4)
2(xn, — M AYn — Yny tn, — Yn)

< 2)zn = A Ay — ynlllltn — ynll < 20 = AnAyn — ynll® + tn — yall?

= |20 = ynll* = 22 (AYn, T — yn) + Aol Aynl® + [[tn — ynl?

= [lzn = ynll® + [[tn = yall® + 2Xapn{Ayn, Po(zn — AnAzs) — Poxn) + A% [ Aynl?

< zn = yall? + 1t = ynll? + 2200 Ayn[| Po(2n — AnAzn) — Pozall + A2 || Aya |

< llon = ynll? + lltn = ynll* + 227 ptn || Ayn [ | Az || + A2 ]| Ay 1.

Since {Axy} is bounded and A is L-Lipschitz continuous, we have

| Ayn — Axp|| < Lllyn — znll = Lpn||Po(zn — A Axy) — Poy|| < L||Azy ||,

and hence || Ay, || < (1+L)|| Az, ||, which implies that { Ay, } is bounded. Hence, we may assume
that there exists a constant M > sup{||Azy| + || Ayn|| + ||Az*|| : n > 1}. Then, it follows from

(3.4) that

2(zn = A Ayn = Ynytn = Yn) < 2 = ynll® + e — ynll* + A2 (| Azl + [ Ayal)

< lzn — yn”2 + [[tn — ynH2 + )‘%MQ'

This together with (3.3) implies that
(3.5)
lltn — x*Hz < lzn — x*HQ — [|on — ?/n||2 —lyn — thQ +2(xn — M AYn — Yn, tn — Yn)
< lwn — 2% = 20 — ynll? = [y — tall® + 120 — ynll? + [[tn — yall® + X2 M?

= ||z, — 2*[|? + N2 M2,
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Observe that

(3.6)
1f (yn) — =*|?
< (1 (yn) = F@OI +11f (&) — 2*])?

< (allyn — 2| + I f (2*) — 2*]))?

_ . ILf(z*) — 2*[|\?
= <a||yn =z + (1 - a)l—oz)
| f(z*) — x*|?

< aflg — o + P2

*\ k|2
- aH(l o Mn)(x” - ZC*) + ,Un(PC(xn - )\nAan) - PC(ZL'* — )\nA.T*)H2 + W
*) — ¥ 2
< al(L— )l 2 + pall P — MAy) - Pola® — A Azt + L2
< of(1 = pn)llwn — &) + pin| (2 — %) = An(Azp — A2*)|?] + w
= (1 = ) llzn — 2|1 + pn((lzn — 2% — 220 {2y — 2%, Az, — Az)
*\ % ]]2
72| Az, — Az*|?] + If (™) — 2|7
l-«
1) = 2"

< af(L = pn)llen — &2 + pn(llan — 2"|* + A3 Az — Az™|*] + ==
(

1) =2

< allz, — 2|2+ N2 M2 + -
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Putting 7, = ay, + B + vy, and utilizing Lemma 2.5, we obtain from (3.5) and (3.6)

(3.7)
|1 — 2 ||?
= [(1 = an — B — vn)(@n — %) + an(f(yn) — %) + Bu(tn — %) + vn(S"t, — 33*)”2
* (|2 Qn * ﬁ” * Un  an *\ 12
< (1 =m)llwn — 2*(° + 7l —(f(yn) — %) + —(tn — ") + —(S"t,, — 27|
Tn Tn Tn
< (U= rllon = 24 7 | 220 ) = 272+ 22 = a7 2+ 225 = 0
Tn Tn Tn
TL
=1 —7)|lrn — $*|’2 + anl| f(yn) — l"*HZ + Bulltn — x*HZ + vn|S" 0 — x*Hz
Oy o 2
n
< (1= 7)) ||7n — x*H2 + an | f(yn) — w*H2 + Balltn — w*H2
BnV,
Fvn[(1+ ) It — x*H2 + l[tn — Snth2 + cn] — — [tn — Sntn”Q
n
=1 —7)|lvn — 55*”2 + anl| f(yn) — m*Hz + (Bn + v + vyt — 73*”2
+vp(k — &)th — S"thQ + vncn
Tn
< (1= 7)) |7n — x*HQ + anll f(yn) — x*H2 + (Bn 4 vn + ) [tn — x*H2 + UnCp
*\ % ||2
< (1= 7a)llen — 2%+ an |allz, — 2|2 + A2M2 + ”f@l) A
-
+(ﬁn +vp + 'Yn)(Hxn - x*HQ + )\%MQ) + UnCn
=(1—(1—a)an +v)|lzn — 2|12 + (n + Bn + vn + Yn) A2 M2
If(z*) — 2*|?
+(1 ) w + vpep
*\ _ .x||2
< (1= (1= an + ) max oo — o2, LI LR e
2
—x
+(1 - a)ay, maX{H |2, W} + vy
%2
< (1+v) max{”xn —z*|)?, W} +2M3)2 + vpep.
Now, let us show that for all n > 1
(3.8)
- (z*) — *|?

241 = 27||* <

[10 ) (Z M2 4 vies) + max { o — P,
=1

J=1

1

—a)

2

15

)
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As a matter of fact, whenever n = 1, from (3.7), we have

If (*) — |
|2,w +2M2)\%+V]_C]_

(z*) — 2|

<(1+m) <max{”x1 —z*|)?, Hf(l o
*) — r* 2
- (-11(1 +7j)) (;1:1 (2M3X7 + vici) +max{|!:v1 — z*|2, W}> .

J

lz2 — 2|2 < (1 +m) max{”xl — ¥

} + 2M2)\% + rvicq

Assume that (3.8) holds for some n > 1. Consider the case of n + 1. From (3.7), we obtain

22 — 22

(z*) — =*||?

< () max { Jasr o2 LS o v

) — x* 2
< (1 + Yn+1) | max {|$n+l - 95*||27 Hf((l)_a)zn} + 2M2)\?L+1 + Vn41Cn41
" ) W 242 . o2 Hf(x*)—x*”Q
< (T4 vp41) [ max< | TTX+75) | | Do (2M2X; + vic;) + max < ||z — x| Aoz
j=1 i=1 -
If(z*) —a*|?
W + 2M2)‘721+1 + Unt1Cn+1
n n i f ) — r* 2
< (14 vp41) ((Hl(l + fyj)> <Z:1(2M2)\22 + v;c;) + max {Hxl —z*|)?, H((l)—a)Q”
j= i=

+2M2NS )+ Vns1Cnga

- (nﬁl(1+%‘)> (i(ZM?A?JrWCiHmaX{”“ _x*HQ’WD

i=1 (1—a)?

Jj=1

(14 Y1) 2MPN] |+ VngiCagr)

< ("ﬁlaﬂj)) <i(2M2)\%+Vici)+maX{Hx1 _x*HQ,”f(x*)W})

j=1 i=1 (1-a)?
n+1 212
| TTA ) | MEX 4+ vacnn)
J:
n+1 n+1 *\ % |]2
= [Ia+w (Z(QMZ)\? +vici) + maX{Hﬂfl -7 W}) '
j=1 i=1

This shows that (3.8) holds for the case of n + 1. By induction, we know that (3.8) holds for all

n > 1. Since Y00 1 v < 00, Y00 A2 < oo and Y 07 vpe, < 00, from (3.8) we deduce that for

n=1"'n
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alln>1

n n ¥\ _ ax]|2
lzne1 —a*||* < H(l + ;) (Z (2M2A%+uici)+maX{Hx1—x*H2,W})

i1 i=1

(972 )2 w2 (@) — ™|
< exp Z’yj <§ (2M=\; +Vici)+max{”$1—$ | ,W

< exp Z’yj (

This implies that {z,} is bounded.

*\ % ||2
ST (2M32X? + vic) —i—max{”xl —*||?, Hf((gi z a)l; H }) )

=1

STEP 2. We claim that lim, ., ||Zn+1 — 2| = 0. Indeed, observe that

[tns1 = tall = [Po(@ns1 — Ans1AYns1) — Po(@n — AnAyn) |
59) < |(@pg1 — A+1AYn+1) — (T — M Ayn) ||
< @na1 — ol + Mgt [ Aynrall + Anll Ayl
< lns = 2l O + Ans1)M
and
[Yn+1 =yl = [ = st )01 + i1 Po(Tnr = An1 A1)
—(1 = pin)Tr, — pn Py — ApAzy)||
= [[(1 = pt1) (@41 — Tn) — (1 — )T
Fhnt1(Po(@nt1 — Anp1Azni1) — Po(zn — ApAzy))
+(tn41 — pn) Po(zn — AnAzy ||
(3.10) = [|(X = pins1)@nt1 — @) + (png1 — pn)(Po(@n — AnAzp) — 25)

Fhnt1(FPo(@nt1 = Anp1Azni1) — Po(@n — AnAzy))||
< (1= pins1)[[@ns1 = ol + |[ng1 — pn| An | Az
Fhns1[[Tns1 = 2l + Ang1 [ Azpia || + Anl[Azn ]
< @41 = 2l + Anl|Azn || + Ans1 [|Aznia || + A || Aza |
< [ @ns1 = anll + (220 + Apg) M

Define a sequence {z,} by

Tn4+1 = Onln + (1 - Qn)zna vn Z 17
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where o, =1 — oy, — By — Un, Yn > 1. Then we have

(3.11)
_ Tp+4+2 — On4+1Tn+1 Tn+1l — OnTn
Zn+l — Rn = -
1—opt1 1— o0,
_ an—i—lf(yn—l—l) + ﬁn—&-ltn—&—l + Vn+lsn+1tn+1 . @nf(yn) + ﬁntn + VnSntn
1-— Qn—l—l 1— o0,
On+41 ﬁn—l—l
= ———f(Unt1 Iy thyr — ¢
1—Qn+1 (nJr) I—Qn (n) 1_Qn+1(n+ n)
(6 V. Q 1%
< ln + n_ ntl + n+1> t SnJrl n+1 - Sntn
— On 1—ont1 1—ont1 1—o0n
Q11 Qnt1 Onp ﬁnJrl
=———(f(Yny1) = f +< >fy +——(thy1 —
1_Qn+1( ( m ) ( )) 1_Qn+1 1_Qn ( n) 1_Qn+1(n+ n)
+ (a" T — + V"“) Ly — ST,
1—on — On+1 1—-o0nt1 1-o0,

From (3.9)—(3.11), we get

(3.12)
On+1 On+t1 Bt
lonss =zl < T2 ) = Fll 4 1720 = T2l )+ 72—l =t
1_9 On+1 1-—- On+1
o +y « + v v,
| el "+1H|nu~+*——f¢i—fusn+it sl =Sl
1_Qn I_Qn—‘r On+
Q11 Qpt1+VUpt1  Qp +V
e B ”<w<m+mm
1_Qn+1 1_Qn+1 1-—
B
+rﬁ=wm1tw%——fwm%
— On+1 On
aOp+1 « 1—|—l/ 1 o + U
< "*Mzn+l——xnu—+<2xn+—xn+nﬂ41+-( ni1 + Vuvl | O ") UF )l + il
1— ont1 1— ont1 1—on
B 1 1% 1
s = @l + o+ Anga) M 4+ S [ 4 = 5t
1—o0nyt 1—ont1
Qpil+VUnt1  Qp+ v
sum+1——xnu—%<2An+—An+nﬂ4+—( mtl Vot O ”) uuxynﬂ|+runm
1 On+1 1 On
Un+1
P8 g |+ 187l
n

which implies that

Opt1 + Upat oy, + U
rwﬂ—%ww%ﬂ—%ns@M+mmM+<"+ ”*+’17ﬁwﬂ%MHmm
1 Qn+1 1 On
Un+1
+1L\|S”“tn+1|! +
_Qn—i-

o 15" tnll-

Note that the boundedness of {z,} implies that {f(x,)} is also bounded. Since

(3.13) lyn — znl| = wnl|Po(zn — AnAxy) — Poxy|| < Ap||Azy|| < ApM — 0,
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we know that {y,} is bounded and so is {f(y,)}. Moreover, {t,} is bounded by (3.5). Now,

utilizing Lemma 2.3, we obtain that

1
11—k

15" tn — 2| < (8lltn — [ + V(1 + (1 = &)y)[[tn — ¥ + (1 = K)cn).

Thus, from the boundedness of {t,}, it follows that {S"¢,} is bounded. Also, note that conditions

(ii), (iii) imply

li I An <1 dn _
im sup = lim sup <limsup — =0,
n—o00 — On n—oo Qp + 671 + Un n—00 n
and conditions (iii), (iv) lead to

. . Vn . Un

lim su =limsup ———— < limsup — = 0.

nﬂoop — On n—»oop Qp + ﬂn +vy nﬂoop ﬂn
Thus, we deduce from (3.12) that

limsup(||zn11 — 2n| — [Tna1 — 2al|) < 0.

n—oo

Since g, =1 — ay, — B — Vp, we know from conditions (ii), (iii), (iv) that

0 < liminf g, < limsup g, < 1.
n—oo

n—oo

Thus, in terms of Lemma 2.7, we get lim,_, ||z, — 2n|| = 0. Consequently,

(3.14) lim ||zp41 — 2, = lim (1 — 0,)]|2n — 24| = 0.
n—oo n—oo

STEP 3. We claim that lim,, .« [|Szy — || = limy o0 ||Stn — tn|| = 0. Indeed, observe that

lyn —tnll = (1 = pn) (Poxn — Po(an — AnAyn)) + pn(Po(en — AnAzn) — Po(zn — AnAyn)) ||
< (1 - Hn)HPan - PC(mn - )‘nAyn)” + NnHPC(xn - )\nAxn) - PC($n - )‘nAyn)H
< Anl|Aynll + Anl|Azn — Ayn|| — 0,

and hence

tn — 2nll < lltn — ynll + |Yn — znl| — 0.
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Note that the following condition holds:

(3.15) lim ||S"x, — z,|| = 0.

n—oo

Also, observe that

(3.16) [57tn — tull < (157t — S"@pl| + [|S"2n — @al| + |20 — tall-

Utilizing Lemma 2.3 and t¢,, — z,, — 0, we have

1
(3.17) ||S"ty, — S"xy| < T <n||tn — 2ol + VO (1= &)y ltn — zal® + (1 — K)Cn) — 0.
Thus from (3.15)—(3.17), we obtain
(3.18) lim [|S"t, —t,] = 0.

In addition, from (3.9) and z,4+1 — =, — 0, it follows that t,41 — ¢, — 0. Therefore, utiliz-
ing the uniform continuity of S and Lemma 2.4, we know that lim, ., ||Sz, — 2,|| = 0 and

limy, o0 || Sty — tn|| = 0.

STEP 4. We claim that limsup,, ,..(f(¢) — ¢, zn — q) < 0. Indeed, we pick a subsequence {z, }

of {z,,} so that

(3.19) limsup(f(q) — ¢, zn — ¢) = im (f(q) — ¢, 70, — q).

n— 00 1—00

Without loss of generality, let z,, — & € C. Then, (3.19) reduces to

limsup(f(q) — ¢, 2n — q) = (f(¢) — ¢, — q).

n—oo

In order to show (f(q) —q,& —q) < 0, it suffices to show that & € F(S)N$. Since S is uniformly

continuous and ||, — Sz,| — 0, we see that ||z, — S™z,| — 0 for all m > 1. By Proposition
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2.1, we obtain & € F'(S). Now let us show that & € 2. Let

Av+ Nev ifveC,

0 ifvegC.

Then, T" is maximal monotone and 0 € T'v if and only if v € €; see [33]. Let (v,w) € G(T). Then,
we have w € Tv = Av+ Ncv and hence w — Av € Ncov. Therefore, we have (v —u, w — Av) > 0

for all w € C'. In particular, taking u = x,,, we get

(v—2,w) =liminf(v — z,,;,w) > liminf(v — z,,, Av)
1—00 1—00

= liminf[(v — zp,;, Av — Azy,) + (v — zp,, Azp,)]

1— 00

> liminf(v — zp,, Axy,) > liminf(v — x,,, Azy,) > 0

1—00 n—oo

and so (v — #,w) > 0. Since T is maximal monotone, we have # € 7710 and hence & € (2.
This shows that € F(S) N §2. Therefore by the property of the metric projection, we derive

STEP 5. We claim that lim, . [[7n — ¢|| = 0 where ¢ = Pp(g)naf(q). Indeed, since {Az,},

{Ayn}, {S™t,} are bounded, we may assume that there exists a constant M > sup{||Az,| +
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| Ayn |l + [|Aql| + ||S™t, — ¢|| : » > 1}. Then from (3.1), (3.5) and Lemma 2.8, we get

201 — ql)?
= [I(1 = an = B = V) (@n — @) + an(f(yn) — @) + Baltn — @) + v (S"tn — )|
<N = an = B = va)(@n = @) + Baltn — @) + vn(S"tn — O)I? + 200 (f (yn) — ¢, Tnt1 — q)
<1 = an = B = va)llzn = all + Bulltn — all + vall S"tn — all]® + 200 (f (yn) — @ Tn41 — @)
< (1 = an = B = va)llzn — all + Ba(llzn — qll + A M) + v M]? + 200 (f (yn) — 4, Tnt1 — )
= [(1 = an —va)l|lzn — all + (BpAn + va) M]? + 200 (f(Yn) — ¢ Tnt1 — @)
<[ —an)llzn — gl + n + va) M]? + 200 (f(yn) — @ Tnt1 — q)
= [(1 = an)llzn = qll + (An + 1) M]? + 200 [{ f (yn) — f(@n), 241 — )
+(f(@n) = f(@), 2p1 — @) + ([ (@) — ¢, Tnt1 — )]
< (1= an)?[lzn — gl + (A + ) M[2(1 = a)[lzn — gl + (A + ) M]
+2an[alyn — @plll|Tne — qll + alln = glll|znrr — qll + (f(@) = @, Tn1 — )]
< (1= an)?[lzn — ql? + aan[llzn — ql* + znt1 — al’] + 2anlallyn — zalll|lznts — gl

+<f(Q) —4,Tn+1 — Q>] + ()‘n + Vn)M[2Hxn - QH + (/\n + VH)ML

which implies that

(3.20)

Qo

1—a,)?+ aa
Uoon) faom, ey 2
1- aaq, 1—aa,

1
1— aa, ()‘n + VH)M[QHxn - QH + (/\n + Vn)M]
2

<[1-2(1- —n
_< ( a)an+1—aan

[Zns1 — ql]* < [allyn — znlll|zns1 — all + (f(@) — ¢ Tns1 — q))]

2a
)l = al? + 12 fally, = s ~
n

(A 4+ vn) M 2|20 — gl + (Mny + 1) M]

+(f(@) — ¢, Tn1 — @) +

1— aoy
= (1-2(1—a)aw)|lzn — | +2(1 — @),
1 Qi 9
i o = al? + all — aulllonss = all + @ — 0,011~ )
n

1

T aa, (o ) M2len = gl + O+ va) M.



AN EXTRAGRADIENT-LIKE APPROXIMATION METHOD 23
. oo . .
Note that lim,,_, ay, = 0 and E . 2(1—a)ay, = oo. Since limsup,, . (f(q)—q, Tn+1—¢q) <0,
n=

limy, o0 [|Yn — 2n|| = 0 and {z,, — ¢} is bounded, we know that

1
limsu
n_)oop (1-a)(l—oaa,

(e%
7[5 len = al + llgn = alllenss = all + /(@) = 4,001 — a)] <0

o] [o¢]
Also, since E ) An < 00 and E  Un < 00, it is easy to see that
n—= n—=

[e.9]

1
> ——— v M 220 — gl + (Ao + ) M] < o0
= 1 — ooy,

Therefore, according to Lemma 2.6, we deduce that from (3.20) that ||z, — ¢g| — 0. Further

from ||y, — zn|| — 0, we obtain ||y, — ¢|| — 0. This completes the proof. O

In Theorem 3.1, if we put v, = 0 (Vn > 1) and S = I the identity mapping. Then, the

iterative scheme (3.1) reduces to the following scheme:

x1 = x € C chosen arbitrary,

(321) Yn = (1 - #n)xn + ,unPC(xn - )\nAxn)a

Ln+1 = (1 - Qpn — ﬂn)mn + anf(yn) + ﬁnPC(xn - )\nAyn)’ Vn > 1.

\

Moreover, it is easy to see that Y~ v, < oo and ||(I — S™)z,|| — 0. Thus, we have following

corollary.

Corollary 3.1. Let A: C — H be a monotone, L-Lipschitz continuous mapping, and f : C — C
be a contraction with contractive constant o € (0,1). Let Q@ # 0. Let {xyn}, {yn} be the sequences
generated by (3.21), where {\,} is a sequence in (0,1) with Y o7 | A, < 00, and {an}, {Bn} and

{pn} are three sequences in [0,1] satisfying the conditions:
(B1) an+ Bn <1 foralln > 1;

(B2) limy, o0 o, = 0, ZOO_I oy = 00;

(B3) 0 < liminf,, o 5, < limsup,,_,., On < 1.
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Then, the sequences {x,}, {yn} converge strongly to the same point ¢ = Pof(q) if and only if

{Az,} is bounded and liminf,, o (Axy,y — x,) > 0 for ally € C.

If A=10 = Q and Py = I, the identity mapping of H, then the iterative scheme (3.1) reduces

to the following iterative scheme:

x1 = x € H chosen arbitrary,

Yn = (1 - Nn)xn =+ ,un(xn - )\nAfEn)a
(3.22)

tp = Tp — )\nAyny

In+l = (]— — Op — /Bn - Vn)$n + anf(yn) + ﬁntn + VnSntn’ Vn > 1.

The following corollary can be easily derived from Theorem 3.1.

Corollary 3.2. Let f: H — H be a contractive mapping with constant o € (0,1), A: H — H
be a monotone, L-Lipschitz continuous mapping and S : H — H be a uniformly continuous
asymptotically k-strict pseudocontractive mapping in the intermediate sense with sequence {vy}
such that F(S) N A70 # 0 and 0% v < 0o. Let {zn}, {yn} be the sequences generated
by (3.22), where {\,} is a sequence in (0,1) with > 77 Ay < 00, and {on}, {Bn}, {n} and
{vn} are four sequences in [0, 1] satisfying the conditions (A1)-(A4). Then, the sequences {xy},
{yn} converge strongly to the same point ¢ = Pp(s)na-10f(q) if and only if {Azn} is bounded,

|(I —S™)ap| — 0 and liminf,, oo (Azp,y — x5) >0 for ally € H.

Let B : H — 2" be a maximal monotone mapping. Then, for any € H and r > 0, consider
JBx = {2z € H: 2+ rBz > x}. Such JPz is called the resolvent of B and is denoted by

JP=(I+rB)~L
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If we put S = JP and Py = I, then the iterative scheme (3.1) reduces to the following

scheme:

x1 = x € H chosen arbitrary,

Yn = (1 - ,Un)xn + ,Un(xn - )\nAxn)a
(3.23)

tn = Tn — A\Ayn,

Tntl1 = (1 — Op — ﬁn - Vn)xn + anf(yn) + ﬁntn + Vn(JrB)ntna Vn > 1.

\

It is easy to see that K = 0, v, = 0 and ¢, = 0 for all n > 1. Moreover, we have A710 = Q and

F(JP) = B7'0. Thus, utilizing Theorem 3.1, we obtain the following corollary.

Corollary 3.3. Let f : H — H be a contractive mapping with constant « € (0,1), A: H — H be
a monotone, L-Lipschitz continuous mapping and B : H — 28 be a mazimal monotone mapping
such that A='0N B0 # (). Let JP be the resolvent of B for each r > 0. Let {x,}, {y.} be the
sequences generated by (3.23), where {\,} is a sequence in (0,1) with Y o2 | A, < 00, and {ay},
{Bn}, {pn} and {v,} are four sequences in [0, 1] satisfying the conditions (A1)-(A4). Then,
the sequences {x,}, {yn} converge strongly to the same point ¢ = Py-19n5-10f(q) if and only if

{Ax,} is bounded, ||(I — (JB)")x,| — 0 and liminf, o (Axp,y — z,) >0 for ally € H.

Corollary 3.4. Let f : H — H be a contractive mapping with constant o € (0,1) and A : H —
H be a monotone, L-Lipschitz continuous mapping such that A710 # (. Let {x,}, {yn} be the

sequences generated by

x1 =x € H chosen arbitrary,
(3.24) Yn = (1 — pn)xn + pn(zn — A\pAzy,),

Tn4+1 = (1 — Op — ﬁn)xn + anf(yn) + ﬁn(:pn - )\nAyn)y Vn > 17

where {\,} is a sequence in (0,1) with > 271 A, < o0, and {an}, {Bn} and {u,} are three

sequences in [0, 1] satisfying the conditions (B1)-(B3). Then, the sequences {xy}, {yn} converge
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strongly to the same point ¢ = Pa—1¢f(q) if and only if { Az, } is bounded and liminf,,_, o (Azy, y—

Xp) >0 forally e C.

Proof. In Theorem 3.1, put C = H, v, = 0 (Vn > 1) and S = I the identity mapping of H.

Then, we know that £ =0, 7, = 0 and ¢, = 0 for all n > 1. Moreover, we have A710 = 2 and

Py = 1. In this case, it is easy to see that ZOO  Vn <0 and [|(I — S™)xy| — 0. Therefore, by
n—=

Theorem 3.1, we obtain the desired conclusion. O

We also know one more definition of a pseudocontractive mapping, which is equivalent to
the definition given in the preliminaries. A mapping S : C' — C is called pseudocontractive [26]

if

<Sx_Sy7$_y>§Hx_yH27 vwv?JGC-

Obviously, the class of pseudocontractive mappings is more general than the class of nonexpan-
sive mappings. For the class of pseudocontractive mappings, there are some nontrivial examples;
see, e.g., [24, p. 1239] for further details. In the following theorem, we introduce an iterative
process that converges strongly to a common fixed point of two mappings, one of which is an
asymptotically x-strict pseudocontractive mapping in the intermediate sense with sequence {7, }

and the other Lipschitz continuous and pseudocontractive.

Theorem 3.2. Let f : C — C be a contractive mapping with constant o € (0,1), T: C — C be
a pseudocontractive, m-Lipschitz continuous mapping and S : C — C' be a uniformly continuous

asymptotically k-strict pseudocontractive mapping in the intermediate sense with sequence {vy}
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such that F(S)NF(T) # 0 and Y7 yn < 00. Let {zn}, {yn} be the sequences generated by

n=1

x1 = x € C chosen arbitrary,

Yn = (1 - ,U/n)xn + MnPC(xn - )\nAxn>7
(3.25)
ty = PC(xn - /\nAyn>a

Tyl = (L —apn — Bn — Vn)Tn + @ f(yn) + Bntn + vnS™tn, Yn > 1,

where A = I — T, {\,} is a sequence in (0,1) with Zoo_l An < 00, and {an}, {On}, {n}
and {vn} are sequences in [0, 1] satisfying the conditions (A1)-(A4). Then, the sequences {xy},
{yn} converge strongly to the same point ¢ = Pr(synp(r)f(q) if and only if {Axy} is bounded,

(I —S™)zn|| — 0 and liminf, oo (Azp,y — xn) >0 forally € C.

Proof. Let A =1 —T. Let us show that the mapping A is monotone and (m + 1)-Lipschitz

continuous. Indeed, observe that
(Az — Ay,z —y) = ||z —y|* — Tz — Ty,z —y) > 0

and

[Az — Ay|| = [z —y — (Tw = Ty)|| < [lx — yll + [Tz = Ty[| < (m + Dz —yl|.

Now, let us show that F(T') = £2. Indeed, we have, for fixed A\g € (0,1),
Tu=u < u=u— AAu= Po(u— NAu) & (Au,y—u) >0, VyeC.
By Theorem 3.1, we obtain the desired conclusion. U

Theorem 3.3. Let f: C — C be a contractive mapping with constant o € (0,1), T : C — C

be a pseudocontractive, m-Lipschitz continuous mapping and S : C — C be a monexpansive
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mapping such that F(S)NF(T) # 0. Let {xy}, {yn} be the sequences generated by

x1 =x € C chosen arbitrary,

Yn = (1 - Nn)xn + NnPC(xn - AnAl’n)a
(3.26)

th = PC’(-Tn - )\nAyn)a

Tn41 = (1 — Qn — ﬂn - Vn)xn + anf(yn) + Bptn + vnS™ty, Y > 1,

where A = I — T, {\,} is a sequence in (0,1) with Zoo_l An < 00, and {an}, {Bn}, {pn}
and {vn} are sequences in [0, 1] satisfying the conditions (A1)-(A4). Then, the sequences {xy},
{yn} converge strongly to the same point ¢ = Ppg)np(r)f(q) if and only if {Ax,} is bounded,

(I —S™)zn|| — 0 and liminf, oo (Azp,y — xn) >0 for ally € C.

Proof. Let A=1—T. In terms of the proof of Theorem 3.2, we know that A is a monotone and
(m+ 1)-Lipschitz continuous mapping such that F(7') = Q. Since S is a nonexpansive mapping,
we know that kK = 0, 7, = 0 and ¢, = 0 for all n > 1. By Theorem 3.1, we obtain the desired
conclusion. 0
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