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Abstract. The purpose of this paper is to investigate the problem of finding a common element

of the set of fixed points of an asymptotically strict pseudocontractive mapping in the inter-

mediate sense and the set of solutions of a variational inequality problem for a monotone and

Lipschitz continuous mapping. We introduce an extragradient-like iterative algorithm that is

based on the extragradient-like approximation method and the modified Mann iteration process.

We establish a strong convergence theorem for two sequences generated by this extragradient-

like iterative algorithm. Utilizing this theorem, we also design an iterative process for finding a

common fixed point of two mappings, one of which is an asymptotically strict pseudocontractive

mapping in the intermediate sense and the other taken from the more general class of Lipschitz

pseudocontractive mappings.
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1. Introduction

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖,

respectively, and let C be a nonempty closed convex subset of H. Corresponding to an operator

A : C → H and set C, the variational inequality problem VIP(A,C) is defined as follows:

(1.1) Find x̄ ∈ C such that 〈Ax̄, y − x̄〉 ≥ 0, ∀y ∈ C.

The set of solutions of VIP(A,C) is denoted by Ω. It is well known that if A is a strongly

monotone and Lipschitz-continuous mapping on C, then the VIP(A,C) has a unique solution.

Not only the existence and uniqueness of a solution are important topics in the study of the

VIP(A,C) but also how to compute a solution of the VIP(A,C) is important. For applications

and further details on VIP(A,C), we refer to [1, 2, 3, 4] and the references therein.

The set of fixed points of a mapping S is denoted by Fix(S), that is, Fix(S) = {x ∈ H :

Sx = x}.

For finding an element of F (S) ∩ Ω under the assumption that a set C ⊂ H is nonempty,

closed and convex, a mapping S : C → C is nonexpansive and a mapping A : C → H is β-

inverse-strongly monotone, Takahashi and Toyoda [5] proposed an iterative scheme and proved

that the sequence generated by the proposed scheme converges weakly to a point z ∈ F (S) ∩Ω

if F (S) ∩ Ω 6= ∅.

Recently, motivated by the idea of Korpelevich’s extragradient method [6], Nadezhkina and

Takahashi [7] introduced an iterative scheme, called extragradient method, for finding an element

of F (S) ∩ Ω and established the weak convergence result. Very recently, inspired by the work

in [7], Zeng and Yao [8] introduced an iterative scheme for finding an element of F (S) ∩ Ω and

obtained the weak convergence result. The viscosity approximation method for finding a fixed

point of a given nonexpansive mapping was proposed by Moudafi [9]. He proved the strong
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convergence of the sequence generated by the proposed method to a unique solution of some

variational inequality. Xu [10] extended the results of [9] to the more general version. Later on,

Ceng and Yao [11] also introduced an extragradient-like approximation method, which is based

on the above extragradient method and viscosity approximation method, and proved the strong

convergence result under certain conditions.

An iterative method for the approximation of fixed points of asymptotically nonexpansive

mappings was developed by Schu [12]. Iterative methods for the approximation of fixed points of

asymptotically nonexpansive mappings have been further studied in [13, 14] and the references

therein. The class of asymptotically nonexpansive mappings in the intermediate sense was

introduced by Bruck et al. [15]. The iterative methods for the approximation of fixed points

of such types of non-Lipschitzian mappings have been further studied in [16, 17, 18]. On the

other hand, Kim and Xu [19] introduced the concept of asymptotically κ-strict pseudocontractive

mappings in a Hilbert space and studied the weak and strong convergence theorems for this class

of mappings. Sahu et al. [20] considered the concept of asymptotically κ-strict pseudocontractive

mappings in the intermediate sense, which are not necessarily Lipschitzian. They proposed

modified Mann iteration process and proved its weak convergence for an asymptotically κ-strict

pseudocontractive mapping in the intermediate sense.

Very recently, Ceng et al. [21] established the strong convergence of viscosity approximation

method for a modified Mann iteration process for asymptotically strict pseudocontractive map-

pings in intermediate sense and then proved the strong convergence of general CQ algorithm

for asymptotically strict pseudocontractive mappings in intermediate sense. They extended the

concept of asymptotically strict pseudocontractive mappings in intermediate sense to Banach

space setting, called nearly asymptotically κ-strict pseudocontractive mapping in intermediate
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sense. They also established the weak convergence theorems for a fixed point of a nearly as-

ymptotically κ-strict pseudocontractive mapping in intermediate sense which is not necessarily

Lipschitzian.

In this paper, we propose and study an extragradient-like iterative algorithm that is based on

the extragradient-like approximation method in [11] and the modified Mann iteration process

in [20]. We apply the extragradient-like iterative algorithm to designing an iterative scheme

for finding a common fixed point of two nonlinear mappings. Here, we remind the reader of

the following facts: (i) the modified Mann iteration process in [20, Theorem 3.4] is extended

to develop the extragradient-like iterative algorithm for finding an element of F (S) ∩ Ω; (ii)

the extragradient-like iterative algorithm is very different from the extragradient-like iterative

scheme in [11] since the class of mappings S in our scheme is more general than the class of

nonexpansive mappings.

2. Preliminaries

Throughout the paper, unless otherwise specified, we assume that H is a real Hilbert space

whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively, and C is a nonempty

closed convex subset of H. The set of fixed points of a mapping S is denoted by Fix(S), that

is, Fix(S) = {x ∈ H : Sx = x}. We write xn ⇀ x to indicate that the sequence {xn} converges

weakly to x. The sequence {xn} converges strongly to x is denoted by xn → x.

Recall that a mapping S : C → C is said to be L-Lipschitzian if there exists a constant

L ≥ 0 such that ‖Sx− Sy‖ ≤ L‖x− y‖, ∀x, y ∈ C. In particular, if L ∈ [0, 1), then S is called

a contraction on C; if L = 1, then S is called a nonexpansive mapping on C. The mapping

S : C → C is called pseudocontractive if

‖Sx− Sy‖2 ≤ ‖x− y‖2 + ‖(I − S)x− (I − S)y‖2, ∀x, y ∈ C.
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A mapping A : C → H is called

(i) monotone if

〈Ax−Ay, x− y〉 ≥ 0, ∀x, y ∈ C;

(ii) β-inverse-strongly monotone [22, 23] if there exists a positive constant β such that

〈Ax−Ay, x− y〉 ≥ β‖Ax−Ay‖2, ∀x, y ∈ C.

It is obvious that if A is β-inverse-strongly monotone, then A is monotone and Lipschitz

continuous.

It is easy to see that if a mapping S : C → C is nonexpansive, then the mapping A = I − S

is 1/2-inverse-strongly monotone; moreover, F (S) = Ω (see, e.g., [5]). At the same time, if

a mapping S : C → C is pseudocontractive and L-Lipschitz continuous, then the mapping

A = (I − S) is monotone and L + 1-Lipschitz continuous; moreover, F (S) = Ω (see, e.g., [24,

proof of Theorem 4.5]).

Definition 2.1. Let C be a nonempty subset of a normed space X. A mapping S : C → C is

said to be

(a) asymptotically nonexpansive [25] if there exists a sequence {kn} of positive numbers such

that limn→∞ kn = 1 and

‖Snx− Sny‖ ≤ kn‖x− y‖, ∀n ≥ 1, ∀x, y ∈ C;

(b) asymptotically nonexpansive in the intermediate sense [15] provided S is uniformly con-

tinuous and

lim sup
n→∞

sup
x,y∈C

(‖Snx− Sny‖ − ‖x− y‖) ≤ 0;

(c) uniformly Lipschitzian if there exists a constant L > 0 such that

‖Snx− Sny‖ ≤ L‖x− y‖, ∀n ≥ 1, ∀x, y ∈ C.
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It is clear that every nonexpansive mapping is asymptotically nonexpansive and every as-

ymptotically nonexpansive mapping is uniformly Lipschitzian.

The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [25]

as an important generalization of the class of nonexpansive mappings. The existence of fixed

points of asymptotically nonexpansive mappings was proved by Goebel and Kirk [25] as below:

Theorem 2.1. [25, Theorem 1] If C is a nonempty closed convex bounded subset of a uniformly

convex Banach space, then every asymptotically nonexpansive mapping S : C → C has a fixed

point in C.

Definition 2.2. [19] A mapping S : C → C is said to be an asymptotically κ-strict pseudo-

contractive mapping with sequence {γn} if there exist a constant κ ∈ [0, 1) and a sequence {γn}

in [0,∞) with limn→∞ γn = 0 such that

(2.1) ‖Snx− Sny‖2 ≤ (1 + γn)‖x− y‖2 + κ‖x− Snx− (y − Sny)‖2, ∀n ≥ 1, ∀x, y ∈ C.

It is important to note that every asymptotically κ-strict pseudocontractive mapping with

sequence {γn} is a uniformly L-Lipschitzian mapping with L = sup
{

κ+
√

1+(1−κ)γn

1+κ : n ≥ 1
}

.

Definition 2.3. [20] A mapping S : C → C is said to be an asymptotically κ-strict pseudocon-

tractive mapping in the intermediate sense with sequence {γn} if there exist a constant κ ∈ [0, 1)

and a sequence {γn} in [0,∞) with limn→∞ γn = 0 such that

(2.2) lim sup
n→∞

sup
x,y∈C

(
‖Snx− Sny‖2 − (1 + γn)‖x− y‖2 − κ‖x− Snx− (y − Sny)‖2

)
≤ 0.

Put

cn := max

{
0, sup

x,y∈C

(
‖Snx− Sny‖2 − (1 + γn)‖x− y‖2 − κ‖x− Snx− (y − Sny)‖2

)}
.
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Then, cn ≥ 0 (∀n ≥ 1), cn → 0 (n →∞) and (2.2) reduces to the relation

(2.3) ‖Snx− Sny‖2 ≤ (1 + γn)‖x− y‖2 + κ‖x− Snx− (y − Sny)‖2 + cn, ∀n ≥ 1, ∀x, y ∈ C.

Whenever cn = 0 for all n ≥ 1 in (2.3), then S is an asymptotically κ-strict pseudocontractive

mapping with sequence {γn}.

For every point x ∈ H, there exists a unique nearest point in C, denoted by PCx, such that

‖x− PCx‖ ≤ ‖x− y‖, ∀y ∈ C.

PC is called the metric projection of H onto C. Recall that the inequality holds

(2.4) 〈x− PCx, PCx− y〉 ≥ 0, ∀x ∈ H, y ∈ C.

Moreover, it is equivalent to

‖PCx− PCy‖2 ≤ 〈PCx− PCy, x− y〉, ∀x, y ∈ H;

it is also equivalent to

(2.5) ‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2, ∀x ∈ H, y ∈ C.

It is easy to see that PC is a nonexpansive mapping from H onto C; see, e.g., [26] for further

detail.

Lemma 2.1. Let A : C → H be a monotone mapping. Then,

u ∈ Ω ⇔ u = PC(u− λAu), ∀λ > 0.

Lemma 2.2. Let H be a real Hilbert space. Then, the following hold:

‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉, ∀x, y ∈ H.
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Lemma 2.3. [20, Lemma 2.6] Let S : C → C be an asymptotically κ-strict pseudocontractive

mapping in the intermediate sense with sequence {γn}. Then,

‖Snx− Sny‖ ≤ 1
1− κ

(
κ‖x− y‖+

√
(1 + (1− κ)γn)‖x− y‖2 + (1− κ)cn

)
for all x, y ∈ C and n ≥ 1.

Lemma 2.4. [20, Lemma 2.7] Let S : C → C be a uniformly continuous asymptotically κ-strict

pseudocontractive mapping in the intermediate sense with sequence {γn}. Let {xn} be a sequence

in C such that ‖xn − xn+1‖ → 0 and ‖xn − Snxn‖ → 0 as n → ∞. Then, ‖xn − Sxn‖ → 0 as

n →∞.

Proposition 2.1 (Demiclosedness Principle). [20, Proposition 3.1] Let S : C → C be a contin-

uous asymptotically κ-strict pseudocontractive mapping in the intermediate sense with sequence

{γn}. Then, I − S is demiclosed at zero in the sense that if {xn} is a sequence in C such that

xn ⇀ x ∈ C and lim supm→∞ lim supn→∞ ‖xn − Smxn‖ = 0, then (I − S)x = 0.

Proposition 2.2. [20, Proposition 3.2] Let S : C → C be a continuous asymptotically κ-strict

pseudocontractive mapping in the intermediate sense with sequence {γn} such that F (S) 6= ∅.

Then, F (S) is closed and convex.

Remark 2.1. Propositions 2.1 and 2.2 give some basic properties of an asymptotically κ-strict

pseudocontractive mapping in the intermediate sense with sequence {γn}. Moreover, Proposition

2.1 extends the demiclosedness principles studied for certain classes of nonlinear mappings in

[19, 27, 28, 29].

Lemma 2.5. [30] Let (X, 〈·, ·〉) be an inner product space. Then, for all x, y, z ∈ X and all

α, β, γ ∈ [0, 1] with α + β + γ = 1, we have

‖αx + βy + γz‖2 = α‖x‖2 + β‖y‖2 + γ‖z‖2 − αβ‖x− y‖2 − αγ‖x− z‖2 − βγ‖y − z‖2.
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Lemma 2.6. [31, Lemma 2.5] Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1− ᾱn)sn + ᾱnβ̄n + γ̄n, ∀n ≥ 1,

where {ᾱn}, {β̄n} and {γ̄n} satisfy the conditions:

(i) {ᾱn} ⊂ [0, 1],
∑∞

n=1
ᾱn = ∞, or equivalently,

∏∞

n=1
(1− ᾱn) = 0;

(ii) lim supn→∞ β̄n ≤ 0;

(iii) γ̄n ≥ 0 (n ≥ 1),
∑∞

n=1
γ̄n < ∞.

Then, limn→∞ sn = 0.

Lemma 2.7. [32] Let {xn} and {zn} be bounded sequences in a Banach space X and let {%n}

be a sequence in [0, 1] with 0 < lim infn→∞ %n ≤ lim supn→∞ %n < 1. Suppose that xn+1 =

%nxn +(1−%n)zn for all integers n ≥ 1 and lim supn→∞(‖zn+1− zn‖−‖xn+1−xn‖) ≤ 0. Then,

limn→∞ ‖zn − xn‖ = 0.

The following lemma can be easily proved, and therefore, we omit the proof.

Lemma 2.8. In a real Hilbert space H, there holds the inequality

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ H.

A set-valued mapping T : H → 2H is called monotone if for all x, y ∈ H, f ∈ Tx and g ∈ Ty

imply 〈x− y, f − g〉 ≥ 0. A monotone mapping T : H → 2H is maximal if its graph G(T ) is not

properly contained in the graph of any other monotone mapping. It is known that a monotone

mapping T is maximal if and only if for (x, f) ∈ H ×H, 〈x− y, f − g〉 ≥ 0 for all (y, g) ∈ G(T )

implies f ∈ Tx. Let A : C → H be a monotone, L-Lipschitz continuous mapping and let NCv

be the normal cone to C at v ∈ C, i.e., NCv = {w ∈ H : 〈v − u, w〉 ≥ 0, ∀u ∈ C}. Define

Tv =


Av + NCv if v ∈ C,

∅ if v 6∈ C.
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It is known that in this case T is maximal monotone, and 0 ∈ Tv if and only if v ∈ Ω; see [33].

3. Extragradient-like approximation method and strong convergence results

Let A : C → H be a monotone and L-Lipschitz continuous mapping, f : C → C be a

contraction with contractive constant α ∈ (0, 1) and S : C → C be an asymptotically κ-

strict pseudocontractive mapping in the intermediate sense with sequence {γn}. In this paper,

we introduce an extragradient-like iterative algorithm that is based on the extragradient-like

approximation method in [11] and the modified Mann iteration process in [20]:

(3.1)



x1 = x ∈ C chosen arbitrary,

yn = (1− µn)xn + µnPC(xn − λnAxn),

tn = PC(xn − λnAyn),

xn+1 = (1− αn − βn − νn)xn + αnf(yn) + βntn + νnSntn, ∀n ≥ 1,

where {λn} is a sequence in (0, 1) with
∑∞

n=1
λn < ∞, and {αn}, {βn}, {µn} and {νn} are

sequences in [0, 1] satisfying the following conditions:

(A1) αn + βn + νn ≤ 1 for all n ≥ 1;

(A2) limn→∞ αn = 0,
∑∞

n=1
αn = ∞;

(A3) κ < lim infn→∞ βn ≤ lim supn→∞ βn < 1;

(A4)
∑∞

n=1
νn < ∞.

The following result shows the strong convergence of the sequences {xn}, {yn} generated

by the scheme (3.1) to the same point q = PF (S)∩Ωf(q) if and only if {Axn} is bounded,

‖(I − Sn)xn‖ → 0 and lim infn→∞〈Axn, y − xn〉 ≥ 0 for all y ∈ C.

Theorem 3.1. Let A : C → H be a monotone and L-Lipschitz continuous mapping, f : C → C

be a contraction with contractive constant α ∈ (0, 1) and S : C → C be a uniformly continuous

asymptotically κ-strict pseudocontractive mapping in the intermediate sense with sequence {γn}
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such that F (S)∩Ω 6= ∅ and
∑∞

n=1
γn < ∞. Let {xn}, {yn} be the sequences generated by (3.1),

where {λn} is a sequence in (0, 1) with
∑∞

n=1
λn < ∞, and {αn}, {βn}, {µn} and {νn} are

sequences in [0, 1] satisfying the conditions (A1)–(A4). Then, the sequences {xn}, {yn} converge

strongly to the same point q = PF (S)∩Ωf(q) if and only if {Axn} is bounded, ‖(I − Sn)xn‖ → 0

and lim infn→∞〈Axn, y − xn〉 ≥ 0 for all y ∈ C.

Proof. “Necessity”. Suppose that the sequences {xn}, {yn} converge strongly to the same point

q = PF (S)∩Ωf(q). Then from the L-Lipschitz continuity of A, it follows that {Axn} is bounded,

and for each y ∈ C:

|〈Axn, y − xn〉 − 〈Aq, y − q〉|

≤ |〈Axn, y − xn〉 − 〈Axn, y − q〉|+ |〈Axn, y − q〉 − 〈Aq, y − q〉|

= |〈Axn, q − xn〉|+ |〈Axn −Aq, y − q〉|

≤ ‖Axn‖‖q − xn‖+ ‖Axn −Aq‖‖y − q‖

≤ ‖Axn‖‖q − xn‖+ L‖xn − q‖‖y − q‖ → 0,

which implies that

lim
n→∞

〈Axn, y − xn〉 = 〈Aq, y − q〉 ≥ 0, ∀y ∈ C

due to q ∈ Ω. Furthermore, utilizing Lemma 2.3, we have

‖Snxn − q‖ ≤ 1
1− κ

(
κ‖xn − q‖+

√
(1 + (1− κ)γn)‖xn − q‖2 + (1− κ)cn

)
→ 0

due to xn → q, γn → 0 and cn → 0. Consequently, we conclude that for each y ∈ C

‖Snxn − xn‖ ≤ ‖Snxn − q‖+ ‖xn − q‖ → 0.

That is, ‖(I − Sn)xn‖ → 0.
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“Sufficiency”. Suppose that {Axn} is bounded, ‖(I−Sn)xn‖ → 0 and lim infn→∞〈Axn, y−xn〉 ≥

0 for all y ∈ C. Note that lim infn→∞ βn > κ. Hence, we may assume, without loss of generality,

that βn > κ for all n ≥ 1.

Next, we divide the proof of the sufficiency into several steps.

Step 1. We claim that {xn} is bounded. Indeed, put tn = PC(xn − λnAyn) for all n ≥ 1. Let

x∗ ∈ F (S) ∩ Ω. Then, x∗ = PC(x∗ − λnAx∗). Putting x = xn − λnAyn and y = x∗ in (2.5), we

obtain

(3.2)

‖tn − x∗‖2 ≤ ‖xn − λnAyn − x∗‖2 − ‖xn − λnAyn − tn‖2

= ‖xn − x∗‖2 − 2λn〈Ayn, xn − x∗〉+ λ2
n‖Ayn‖2

−‖xn − tn‖2 + 2λn〈Ayn, xn − tn〉 − λ2
n‖Ayn‖2

= ‖xn − x∗‖2 + 2λn〈Ayn, x∗ − tn〉 − ‖xn − tn‖2

= ‖xn − x∗‖2 − ‖xn − tn‖2 − 2λn〈Ayn −Ax∗, yn − x∗〉

−2λn〈Ax∗, yn − x∗〉+ 2λn〈Ayn, yn − tn〉.

Since A is monotone and x∗ is a solution of VIP(A,C), we have

〈Ayn −Ax∗, yn − x∗〉 ≥ 0 and 〈Ax∗, yn − x∗〉 ≥ 0.

It follows from (3.2) that

(3.3)

‖tn − x∗‖2 ≤ ‖xn − x∗‖2 − ‖xn − tn‖2 + 2λn〈Ayn, yn − tn〉

= ‖xn − x∗‖2 − ‖(xn − yn) + (yn − tn)‖2 + 2λn〈Ayn, yn − tn〉

= ‖xn − x∗‖2 − ‖xn − yn‖2 − 2〈xn − yn, yn − tn〉 − ‖yn − tn‖2

+2λn〈Ayn, yn − tn〉

= ‖xn − x∗‖2 − ‖xn − yn‖2 − ‖yn − tn‖2 + 2〈xn − λnAyn − yn, tn − yn〉.
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Note that xn ∈ C for all n ≥ 1 and that yn = (1− µn)xn + µnPC(xn − λnAxn). Hence, we have

(3.4)

2〈xn − λnAyn − yn, tn − yn〉

≤ 2‖xn − λnAyn − yn‖‖tn − yn‖ ≤ ‖xn − λnAyn − yn‖2 + ‖tn − yn‖2

= ‖xn − yn‖2 − 2λn〈Ayn, xn − yn〉+ λ2
n‖Ayn‖2 + ‖tn − yn‖2

= ‖xn − yn‖2 + ‖tn − yn‖2 + 2λnµn〈Ayn, PC(xn − λnAxn)− PCxn〉+ λ2
n‖Ayn‖2

≤ ‖xn − yn‖2 + ‖tn − yn‖2 + 2λnµn‖Ayn‖‖PC(xn − λnAxn)− PCxn‖+ λ2
n‖Ayn‖2

≤ ‖xn − yn‖2 + ‖tn − yn‖2 + 2λ2
nµn‖Ayn‖‖Axn‖+ λ2

n‖Ayn‖2.

Since {Axn} is bounded and A is L-Lipschitz continuous, we have

‖Ayn −Axn‖ ≤ L‖yn − xn‖ = Lµn‖PC(xn − λnAxn)− PCxn‖ ≤ L‖Axn‖,

and hence ‖Ayn‖ ≤ (1+L)‖Axn‖, which implies that {Ayn} is bounded. Hence, we may assume

that there exists a constant M ≥ sup{‖Axn‖+ ‖Ayn‖+ ‖Ax∗‖ : n ≥ 1}. Then, it follows from

(3.4) that

2〈xn − λnAyn − yn, tn − yn〉 ≤ ‖xn − yn‖2 + ‖tn − yn‖2 + λ2
n(‖Axn‖+ ‖Ayn‖)2

≤ ‖xn − yn‖2 + ‖tn − yn‖2 + λ2
nM2.

This together with (3.3) implies that

(3.5)

‖tn − x∗‖2 ≤ ‖xn − x∗‖2 − ‖xn − yn‖2 − ‖yn − tn‖2 + 2〈xn − λnAyn − yn, tn − yn〉

≤ ‖xn − x∗‖2 − ‖xn − yn‖2 − ‖yn − tn‖2 + ‖xn − yn‖2 + ‖tn − yn‖2 + λ2
nM2

= ‖xn − x∗‖2 + λ2
nM2.
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Observe that

(3.6)

‖f(yn)− x∗‖2

≤ (‖f(yn)− f(x∗)‖+ ‖f(x∗)− x∗‖)2

≤ (α‖yn − x∗‖+ ‖f(x∗)− x∗‖)2

=
(

α‖yn − x∗‖+ (1− α)
‖f(x∗)− x∗‖

1− α

)2

≤ α‖yn − x∗‖2 +
‖f(x∗)− x∗‖2

1− α

= α‖(1− µn)(xn − x∗) + µn(PC(xn − λnAxn)− PC(x∗ − λnAx∗)‖2 +
‖f(x∗)− x∗‖2

1− α

≤ α[(1− µn)‖xn − x∗‖2 + µn‖PC(xn − λnAxn)− PC(x∗ − λnAx∗)‖2] +
‖f(x∗)− x∗‖2

1− α

≤ α[(1− µn)‖xn − x∗‖2 + µn‖(xn − x∗)− λn(Axn −Ax∗)‖2] +
‖f(x∗)− x∗‖2

1− α

= α[(1− µn)‖xn − x∗‖2 + µn(‖xn − x∗‖2 − 2λn〈xn − x∗, Axn −Ax∗〉

+λ2
n‖Axn −Ax∗‖2] +

‖f(x∗)− x∗‖2

1− α

≤ α[(1− µn)‖xn − x∗‖2 + µn(‖xn − x∗‖2 + λ2
n‖Axn −Ax∗‖2] +

‖f(x∗)− x∗‖2

1− α

≤ α‖xn − x∗‖2 + λ2
nM2 +

‖f(x∗)− x∗‖2

1− α
.
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Putting τn = αn + βn + νn and utilizing Lemma 2.5, we obtain from (3.5) and (3.6)

(3.7)

‖xn+1 − x∗‖2

= ‖(1− αn − βn − νn)(xn − x∗) + αn(f(yn)− x∗) + βn(tn − x∗) + νn(Sntn − x∗)‖2

≤ (1− τn)‖xn − x∗‖2 + τn‖
αn

τn
(f(yn)− x∗) +

βn

τn
(tn − x∗) +

νn

τn
(Sntn − x∗)‖2

≤ (1− τn)‖xn − x∗‖2 + τn

[
αn

τn
‖f(yn)− x∗‖2 +

βn

τn
‖tn − x∗‖2 +

νn

τn
‖Sntn − x∗‖2

−βnνn

τ2
n

‖tn − Sntn‖2

]
= (1− τn)‖xn − x∗‖2 + αn‖f(yn)− x∗‖2 + βn‖tn − x∗‖2 + νn‖Sntn − x∗‖2

−βnνn

τn
‖tn − Sntn‖2

≤ (1− τn)‖xn − x∗‖2 + αn‖f(yn)− x∗‖2 + βn‖tn − x∗‖2

+νn[(1 + γn)‖tn − x∗‖2 + κ‖tn − Sntn‖2 + cn]− βnνn

τn
‖tn − Sntn‖2

= (1− τn)‖xn − x∗‖2 + αn‖f(yn)− x∗‖2 + (βn + νn + νnγn)‖tn − x∗‖2

+νn(κ− βn

τn
)‖tn − Sntn‖2 + νncn

≤ (1− τn)‖xn − x∗‖2 + αn‖f(yn)− x∗‖2 + (βn + νn + γn)‖tn − x∗‖2 + νncn

≤ (1− τn)‖xn − x∗‖2 + αn

[
α‖xn − x∗‖2 + λ2

nM2 +
‖f(x∗)− x∗‖2

1− α

]
+(βn + νn + γn)(‖xn − x∗‖2 + λ2

nM2) + νncn

= (1− (1− α)αn + γn)‖xn − x∗‖2 + (αn + βn + νn + γn)λ2
nM2

+(1− α)αn
‖f(x∗)− x∗‖2

(1− α)2
+ νncn

≤ (1− (1− α)αn + γn) max
{
‖xn − x∗‖2,

‖f(x∗)− x∗‖2

(1− α)2

}
+ (1 + γn)λ2

nM2

+(1− α)αn max
{
‖xn − x∗‖2,

‖f(x∗)− x∗‖2

(1− α)2

}
+ νncn

≤ (1 + γn) max
{
‖xn − x∗‖2,

‖f(x∗)− x∗‖2

(1− α)2

}
+ 2M2λ2

n + νncn.

Now, let us show that for all n ≥ 1

(3.8)

‖xn+1 − x∗‖2 ≤

 n∏
j=1

(1 + γj)

( n∑
i=1

(
2M2λ2

i + νici

)
+ max

{
‖x1 − x∗‖2,

‖f(x∗)− x∗‖2

(1− α)2

})
.
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As a matter of fact, whenever n = 1, from (3.7), we have

‖x2 − x∗‖2 ≤ (1 + γ1) max
{
‖x1 − x∗‖2,

‖f(x∗)− x∗‖2

(1− α)2

}
+ 2M2λ2

1 + ν1c1

≤ (1 + γ1)
(

max
{
‖x1 − x∗‖2,

‖f(x∗)− x∗‖2

(1− α)2

}
+ 2M2λ2

1 + ν1c1

)
=

(
1∏

j=1
(1 + γj)

)(
1∑

i=1

(
2M2λ2

i + νici

)
+ max

{
‖x1 − x∗‖2,

‖f(x∗)− x∗‖2

(1− α)2

})
.

Assume that (3.8) holds for some n ≥ 1. Consider the case of n + 1. From (3.7), we obtain

‖xn+2 − x∗‖2

≤ (1 + γn+1) max
{
‖xn+1 − x∗‖2,

‖f(x∗)− x∗‖2

(1− α)2

}
+ 2M2λ2

n+1 + νn+1cn+1

≤ (1 + γn+1)
(

max
{
‖xn+1 − x∗‖2,

‖f(x∗)− x∗‖2

(1− α)2

}
+ 2M2λ2

n+1 + νn+1cn+1

)
≤ (1 + γn+1)

(
max

{(
n∏

j=1
(1 + γj)

)(
n∑

i=1
(2M2λ2

i + νici) + max
{
‖x1 − x∗‖2,

‖f(x∗)− x∗‖2

(1− α)2

})
‖f(x∗)− x∗‖2

(1− α)2

}
+ 2M2λ2

n+1 + νn+1cn+1

)

≤ (1 + γn+1)

((
n∏

j=1
(1 + γj)

)(
n∑

i=1
(2M2λ2

i + νici) + max
{
‖x1 − x∗‖2,

‖f(x∗)− x∗‖2

(1− α)2

})
+2M2λ2

n+1 + νn+1cn+1

)

=

(
n+1∏
j=1

(1 + γj)

)(
n∑

i=1
(2M2λ2

i + νici) + max
{
‖x1 − x∗‖2,

‖f(x∗)− x∗‖2

(1− α)2

})
+(1 + γn+1)(2M2λ2

n+1 + νn+1cn+1)

≤

(
n+1∏
j=1

(1 + γj)

)(
n∑

i=1
(2M2λ2

i + νici) + max
{
‖x1 − x∗‖2,

‖f(x∗)− x∗‖2

(1− α)2

})
+

(
n+1∏
j=1

(1 + γj)

)(
2M2λ2

n+1 + νn+1cn+1

)
=

n+1∏
j=1

(1 + γj)

(n+1∑
i=1

(2M2λ2
i + νici) + max

{
‖x1 − x∗‖2,

‖f(x∗)− x∗‖2

(1− α)2

})
.

This shows that (3.8) holds for the case of n + 1. By induction, we know that (3.8) holds for all

n ≥ 1. Since
∑∞

n=1 γn < ∞,
∑∞

n=1 λ2
n < ∞ and

∑∞
n=1 νncn < ∞, from (3.8) we deduce that for
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all n ≥ 1

‖xn+1 − x∗‖2 ≤

 n∏
j=1

(1 + γj)

( n∑
i=1

(
2M2λ2

i + νici

)
+ max

{
‖x1 − x∗‖2,

‖f(x∗)− x∗‖2

(1− α)2

})

≤ exp

 n∑
j=1

γj

( n∑
i=1

(2M2λ2
i + νici) + max

{
‖x1 − x∗‖2,

‖f(x∗)− x∗‖2

(1− α)2

})

≤ exp

 ∞∑
j=1

γj

( ∞∑
i=1

(2M2λ2
i + νici) + max

{
‖x1 − x∗‖2,

‖f(x∗)− x∗‖2

(1− α)2

})
.

This implies that {xn} is bounded.

Step 2. We claim that limn→∞ ‖xn+1 − xn‖ = 0. Indeed, observe that

(3.9)

‖tn+1 − tn‖ = ‖PC(xn+1 − λn+1Ayn+1)− PC(xn − λnAyn)‖

≤ ‖(xn+1 − λn+1Ayn+1)− (xn − λnAyn)‖

≤ ‖xn+1 − xn‖+ λn+1‖Ayn+1‖+ λn‖Ayn‖

≤ ‖xn+1 − xn‖+ (λn + λn+1)M

and

(3.10)

‖yn+1 − yn‖ = ‖(1− µn+1)xn+1 + µn+1PC(xn+1 − λn+1Axn+1)

−(1− µn)xn − µnPC(xn − λnAxn)‖

= ‖(1− µn+1)(xn+1 − xn)− (µn+1 − µn)xn

+µn+1(PC(xn+1 − λn+1Axn+1)− PC(xn − λnAxn))

+(µn+1 − µn)PC(xn − λnAxn)‖

= ‖(1− µn+1)(xn+1 − xn) + (µn+1 − µn)(PC(xn − λnAxn)− xn)

+µn+1(PC(xn+1 − λn+1Axn+1)− PC(xn − λnAxn))‖

≤ (1− µn+1)‖xn+1 − xn‖+ |µn+1 − µn|λn‖Axn‖

+µn+1[‖xn+1 − xn‖+ λn+1‖Axn+1‖+ λn‖Axn‖]

≤ ‖xn+1 − xn‖+ λn‖Axn‖+ λn+1‖Axn+1‖+ λn‖Axn‖

≤ ‖xn+1 − xn‖+ (2λn + λn+1)M.

Define a sequence {zn} by

xn+1 = %nxn + (1− %n)zn, ∀n ≥ 1,
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where %n = 1− αn − βn − νn, ∀n ≥ 1. Then we have

(3.11)

zn+1 − zn =
xn+2 − %n+1xn+1

1− %n+1
− xn+1 − %nxn

1− %n

=
αn+1f(yn+1) + βn+1tn+1 + νn+1S

n+1tn+1

1− %n+1
− αnf(yn) + βntn + νnSntn

1− %n

=
αn+1

1− %n+1
f(yn+1)−

αn

1− %n
f(yn) +

βn+1

1− %n+1
(tn+1 − tn)

+
(

αn + νn

1− %n
− αn+1 + νn+1

1− %n+1

)
tn +

νn+1

1− %n+1
Sn+1tn+1 −

νn

1− %n
Sntn

=
αn+1

1− %n+1
(f(yn+1)− f(yn)) +

(
αn+1

1− %n+1
− αn

1− %n

)
f(yn) +

βn+1

1− %n+1
(tn+1 − tn)

+
(

αn + νn

1− %n
− αn+1 + νn+1

1− %n+1

)
tn +

νn+1

1− %n+1
Sn+1tn+1 −

νn

1− %n
Sntn.

From (3.9)–(3.11), we get

(3.12)

‖zn+1 − zn‖ ≤ αn+1

1− %n+1
‖f(yn+1)− f(yn)‖+ | αn+1

1− %n+1
− αn

1− %n
|‖f(yn)‖+

βn+1

1− %n+1
‖tn+1 − tn‖

+|αn + νn

1− %n
− αn+1 + νn+1

1− %n+1
|‖tn‖+

νn+1

1− %n+1
‖Sn+1tn+1‖+

νn

1− %n
‖Sntn‖

≤ ααn+1

1− %n+1
‖yn+1 − yn‖+

(
αn+1 + νn+1

1− %n+1
+

αn + νn

1− %n

)
(‖f(yn)‖+ ‖tn‖)

+
βn+1

1− %n+1
‖tn+1 − tn‖+

νn+1

1− %n+1
‖Sn+1tn+1‖+

νn

1− %n
‖Sntn‖

≤ ααn+1

1− %n+1
[‖xn+1 − xn‖+ (2λn + λn+1)M ] +

(
αn+1 + νn+1

1− %n+1
+

αn + νn

1− %n

)
(‖f(yn)‖+ ‖tn‖)

+
βn+1

1− %n+1
[‖xn+1 − xn‖+ (λn + λn+1)M ] +

νn+1

1− %n+1
‖Sn+1tn+1‖+

νn

1− %n
‖Sntn‖

≤ ‖xn+1 − xn‖+ (2λn + λn+1)M +
(

αn+1 + νn+1

1− %n+1
+

αn + νn

1− %n

)
(‖f(yn)‖+ ‖tn‖)

+
νn+1

1− %n+1
‖Sn+1tn+1‖+

νn

1− %n
‖Sntn‖,

which implies that

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤ (2λn + λn+1)M +
(

αn+1 + νn+1

1− %n+1
+

αn + νn

1− %n

)
(‖f(yn)‖+ ‖tn‖)

+
νn+1

1− %n+1
‖Sn+1tn+1‖+

νn

1− %n
‖Sntn‖.

Note that the boundedness of {xn} implies that {f(xn)} is also bounded. Since

(3.13) ‖yn − xn‖ = µn‖PC(xn − λnAxn)− PCxn‖ ≤ λn‖Axn‖ ≤ λnM → 0,
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we know that {yn} is bounded and so is {f(yn)}. Moreover, {tn} is bounded by (3.5). Now,

utilizing Lemma 2.3, we obtain that

‖Sntn − x∗‖ ≤ 1
1− κ

(κ‖tn − x∗‖+
√

(1 + (1− κ)γn)‖tn − x∗‖2 + (1− κ)cn).

Thus, from the boundedness of {tn}, it follows that {Sntn} is bounded. Also, note that conditions

(ii), (iii) imply

lim sup
n→∞

αn

1− %n
= lim sup

n→∞

αn

αn + βn + νn
≤ lim sup

n→∞

αn

βn
= 0,

and conditions (iii), (iv) lead to

lim sup
n→∞

νn

1− %n
= lim sup

n→∞

νn

αn + βn + νn
≤ lim sup

n→∞

νn

βn
= 0.

Thus, we deduce from (3.12) that

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Since %n = 1− αn − βn − νn, we know from conditions (ii), (iii), (iv) that

0 < lim inf
n→∞

%n ≤ lim sup
n→∞

%n < 1.

Thus, in terms of Lemma 2.7, we get limn→∞ ‖zn − xn‖ = 0. Consequently,

(3.14) lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(1− %n)‖zn − xn‖ = 0.

Step 3. We claim that limn→∞ ‖Sxn − xn‖ = limn→∞ ‖Stn − tn‖ = 0. Indeed, observe that

‖yn − tn‖ = ‖(1− µn)(PCxn − PC(xn − λnAyn)) + µn(PC(xn − λnAxn)− PC(xn − λnAyn))‖

≤ (1− µn)‖PCxn − PC(xn − λnAyn)‖+ µn‖PC(xn − λnAxn)− PC(xn − λnAyn)‖

≤ λn‖Ayn‖+ λn‖Axn −Ayn‖ → 0,

and hence

‖tn − xn‖ ≤ ‖tn − yn‖+ ‖yn − xn‖ → 0.
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Note that the following condition holds:

(3.15) lim
n→∞

‖Snxn − xn‖ = 0.

Also, observe that

(3.16) ‖Sntn − tn‖ ≤ ‖Sntn − Snxn‖+ ‖Snxn − xn‖+ ‖xn − tn‖.

Utilizing Lemma 2.3 and tn − xn → 0, we have

(3.17) ‖Sntn − Snxn‖ ≤
1

1− κ

(
κ‖tn − xn‖+

√
(1 + (1− κ)γn)‖tn − xn‖2 + (1− κ)cn

)
→ 0.

Thus from (3.15)–(3.17), we obtain

(3.18) lim
n→∞

‖Sntn − tn‖ = 0.

In addition, from (3.9) and xn+1 − xn → 0, it follows that tn+1 − tn → 0. Therefore, utiliz-

ing the uniform continuity of S and Lemma 2.4, we know that limn→∞ ‖Sxn − xn‖ = 0 and

limn→∞ ‖Stn − tn‖ = 0.

Step 4. We claim that lim supn→∞〈f(q)− q, xn − q〉 ≤ 0. Indeed, we pick a subsequence {xni}

of {xn} so that

(3.19) lim sup
n→∞

〈f(q)− q, xn − q〉 = lim
i→∞

〈f(q)− q, xni − q〉.

Without loss of generality, let xni ⇀ x̂ ∈ C. Then, (3.19) reduces to

lim sup
n→∞

〈f(q)− q, xn − q〉 = 〈f(q)− q, x̂− q〉.

In order to show 〈f(q)−q, x̂−q〉 ≤ 0, it suffices to show that x̂ ∈ F (S)∩Ω. Since S is uniformly

continuous and ‖xn − Sxn‖ → 0, we see that ‖xn − Smxn‖ → 0 for all m ≥ 1. By Proposition
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2.1, we obtain x̂ ∈ F (S). Now let us show that x̂ ∈ Ω . Let

Tv =


Av + NCv if v ∈ C,

∅ if v 6∈ C.

Then, T is maximal monotone and 0 ∈ Tv if and only if v ∈ Ω; see [33]. Let (v, w) ∈ G(T ). Then,

we have w ∈ Tv = Av + NCv and hence w−Av ∈ NCv. Therefore, we have 〈v−u, w−Av〉 ≥ 0

for all u ∈ C. In particular, taking u = xni , we get

〈v − x̂, w〉 = lim inf
i→∞

〈v − xni , w〉 ≥ lim inf
i→∞

〈v − xni , Av〉

= lim inf
i→∞

[〈v − xni , Av −Axni〉+ 〈v − xni , Axni〉]

≥ lim inf
i→∞

〈v − xni , Axni〉 ≥ lim inf
n→∞

〈v − xn, Axn〉 ≥ 0

and so 〈v − x̂, w〉 ≥ 0. Since T is maximal monotone, we have x̂ ∈ T−10 and hence x̂ ∈ Ω .

This shows that x̂ ∈ F (S) ∩ Ω . Therefore by the property of the metric projection, we derive

〈f(q)− q, x̂− q〉 ≤ 0.

Step 5. We claim that limn→∞ ‖xn − q‖ = 0 where q = PF (S)∩Ωf(q). Indeed, since {Axn},

{Ayn}, {Sntn} are bounded, we may assume that there exists a constant M ≥ sup{‖Axn‖ +
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‖Ayn‖+ ‖Aq‖+ ‖Sntn − q‖ : n ≥ 1}. Then from (3.1), (3.5) and Lemma 2.8, we get

‖xn+1 − q‖2

= ‖(1− αn − βn − νn)(xn − q) + αn(f(yn)− q) + βn(tn − q) + νn(Sntn − q)‖2

≤ ‖(1− αn − βn − νn)(xn − q) + βn(tn − q) + νn(Sntn − q)‖2 + 2αn〈f(yn)− q, xn+1 − q〉

≤ [(1− αn − βn − νn)‖xn − q‖+ βn‖tn − q‖+ νn‖Sntn − q‖]2 + 2αn〈f(yn)− q, xn+1 − q〉

≤ [(1− αn − βn − νn)‖xn − q‖+ βn(‖xn − q‖+ λnM) + νnM ]2 + 2αn〈f(yn)− q, xn+1 − q〉

= [(1− αn − νn)‖xn − q‖+ (βnλn + νn)M ]2 + 2αn〈f(yn)− q, xn+1 − q〉

≤ [(1− αn)‖xn − q‖+ (λn + νn)M ]2 + 2αn〈f(yn)− q, xn+1 − q〉

= [(1− αn)‖xn − q‖+ (λn + νn)M ]2 + 2αn[〈f(yn)− f(xn), xn+1 − q〉

+〈f(xn)− f(q), xn+1 − q〉+ 〈f(q)− q, xn+1 − q〉]

≤ (1− αn)2‖xn − q‖2 + (λn + νn)M [2(1− αn)‖xn − q‖+ (λn + νn)M ]

+2αn[α‖yn − xn‖‖xn+1 − q‖+ α‖xn − q‖‖xn+1 − q‖+ 〈f(q)− q, xn+1 − q〉]

≤ (1− αn)2‖xn − q‖2 + ααn[‖xn − q‖2 + ‖xn+1 − q‖2] + 2αn[α‖yn − xn‖‖xn+1 − q‖

+〈f(q)− q, xn+1 − q〉] + (λn + νn)M [2‖xn − q‖+ (λn + νn)M ],

which implies that

(3.20)

‖xn+1 − q‖2 ≤ (1− αn)2 + ααn

1− ααn
‖xn − q‖2 +

2αn

1− ααn
[α‖yn − xn‖‖xn+1 − q‖+ 〈f(q)− q, xn+1 − q〉]

+
1

1− ααn
(λn + νn)M [2‖xn − q‖+ (λn + νn)M ]

≤
(

1− 2(1− α)αn +
α2

n

1− ααn

)
‖xn − q‖2 +

2αn

1− ααn
[α‖yn − xn‖‖xn+1 − q‖

+〈f(q)− q, xn+1 − q〉] +
1

1− ααn
(λn + νn)M [2‖xn − q‖+ (λn + νn)M ]

= (1− 2(1− α)αn)‖xn − q‖2 + 2(1− α)αn

· 1
(1− α)(1− ααn)

[αn

2
‖xn − q‖2 + α‖yn − xn‖‖xn+1 − q‖+ 〈f(q)− q, xn+1 − q〉

]
+

1
1− ααn

(λn + νn)M [2‖xn − q‖+ (λn + νn)M ].
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Note that limn→∞ αn = 0 and
∑∞

n=1
2(1−α)αn = ∞. Since lim supn→∞〈f(q)−q, xn+1−q〉 ≤ 0,

limn→∞ ‖yn − xn‖ = 0 and {xn − q} is bounded, we know that

lim sup
n→∞

1
(1− α)(1− ααn)

[αn

2
‖xn − q‖2 + α‖yn − xn‖‖xn+1 − q‖+ 〈f(q)− q, xn+1 − q〉

]
≤ 0.

Also, since
∑∞

n=1
λn < ∞ and

∑∞

n=1
νn < ∞, it is easy to see that

∞∑
n=1

1
1− ααn

(λn + νn)M [2‖xn − q‖+ (λn + νn)M ] < ∞.

Therefore, according to Lemma 2.6, we deduce that from (3.20) that ‖xn − q‖ → 0. Further

from ‖yn − xn‖ → 0, we obtain ‖yn − q‖ → 0. This completes the proof. �

In Theorem 3.1, if we put νn = 0 (∀n ≥ 1) and S = I the identity mapping. Then, the

iterative scheme (3.1) reduces to the following scheme:

(3.21)


x1 = x ∈ C chosen arbitrary,

yn = (1− µn)xn + µnPC(xn − λnAxn),

xn+1 = (1− αn − βn)xn + αnf(yn) + βnPC(xn − λnAyn), ∀n ≥ 1.

Moreover, it is easy to see that
∑∞

n=1 νn < ∞ and ‖(I − Sn)xn‖ → 0. Thus, we have following

corollary.

Corollary 3.1. Let A : C → H be a monotone, L-Lipschitz continuous mapping, and f : C → C

be a contraction with contractive constant α ∈ (0, 1). Let Ω 6= ∅. Let {xn}, {yn} be the sequences

generated by (3.21), where {λn} is a sequence in (0, 1) with
∑∞

n=1 λn < ∞, and {αn}, {βn} and

{µn} are three sequences in [0, 1] satisfying the conditions:

(B1) αn + βn ≤ 1 for all n ≥ 1;

(B2) limn→∞ αn = 0,
∑∞

n=1
αn = ∞;

(B3) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
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Then, the sequences {xn}, {yn} converge strongly to the same point q = PΩf(q) if and only if

{Axn} is bounded and lim infn→∞〈Axn, y − xn〉 ≥ 0 for all y ∈ C.

If A−10 = Ω and PH = I, the identity mapping of H, then the iterative scheme (3.1) reduces

to the following iterative scheme:

(3.22)



x1 = x ∈ H chosen arbitrary,

yn = (1− µn)xn + µn(xn − λnAxn),

tn = xn − λnAyn,

xn+1 = (1− αn − βn − νn)xn + αnf(yn) + βntn + νnSntn, ∀n ≥ 1.

The following corollary can be easily derived from Theorem 3.1.

Corollary 3.2. Let f : H → H be a contractive mapping with constant α ∈ (0, 1), A : H → H

be a monotone, L-Lipschitz continuous mapping and S : H → H be a uniformly continuous

asymptotically κ-strict pseudocontractive mapping in the intermediate sense with sequence {γn}

such that F (S) ∩ A−10 6= ∅ and
∑∞

n=1 γn < ∞. Let {xn}, {yn} be the sequences generated

by (3.22), where {λn} is a sequence in (0, 1) with
∑∞

n=1 λn < ∞, and {αn}, {βn}, {µn} and

{νn} are four sequences in [0, 1] satisfying the conditions (A1)–(A4). Then, the sequences {xn},

{yn} converge strongly to the same point q = PF (S)∩A−10f(q) if and only if {Axn} is bounded,

‖(I − Sn)xn‖ → 0 and lim infn→∞〈Axn, y − xn〉 ≥ 0 for all y ∈ H.

Let B : H → 2H be a maximal monotone mapping. Then, for any x ∈ H and r > 0, consider

JB
r x = {z ∈ H : z + rBz 3 x}. Such JB

r x is called the resolvent of B and is denoted by

JB
r = (I + rB)−1.
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If we put S = JB
r and PH = I, then the iterative scheme (3.1) reduces to the following

scheme:

(3.23)



x1 = x ∈ H chosen arbitrary,

yn = (1− µn)xn + µn(xn − λnAxn),

tn = xn − λnAyn,

xn+1 = (1− αn − βn − νn)xn + αnf(yn) + βntn + νn(JB
r )ntn, ∀n ≥ 1.

It is easy to see that κ = 0, γn = 0 and cn = 0 for all n ≥ 1. Moreover, we have A−10 = Ω and

F (JB
r ) = B−10. Thus, utilizing Theorem 3.1, we obtain the following corollary.

Corollary 3.3. Let f : H → H be a contractive mapping with constant α ∈ (0, 1), A : H → H be

a monotone, L-Lipschitz continuous mapping and B : H → 2H be a maximal monotone mapping

such that A−10∩B−10 6= ∅. Let JB
r be the resolvent of B for each r > 0. Let {xn}, {yn} be the

sequences generated by (3.23), where {λn} is a sequence in (0, 1) with
∑∞

n=1 λn < ∞, and {αn},

{βn}, {µn} and {νn} are four sequences in [0, 1] satisfying the conditions (A1)–(A4). Then,

the sequences {xn}, {yn} converge strongly to the same point q = PA−10∩B−10f(q) if and only if

{Axn} is bounded, ‖(I − (JB
r )n)xn‖ → 0 and lim infn→∞〈Axn, y − xn〉 ≥ 0 for all y ∈ H.

Corollary 3.4. Let f : H → H be a contractive mapping with constant α ∈ (0, 1) and A : H →

H be a monotone, L-Lipschitz continuous mapping such that A−10 6= ∅. Let {xn}, {yn} be the

sequences generated by

(3.24)


x1 = x ∈ H chosen arbitrary,

yn = (1− µn)xn + µn(xn − λnAxn),

xn+1 = (1− αn − βn)xn + αnf(yn) + βn(xn − λnAyn), ∀n ≥ 1,

where {λn} is a sequence in (0, 1) with
∑∞

n=1 λn < ∞, and {αn}, {βn} and {µn} are three

sequences in [0, 1] satisfying the conditions (B1)–(B3). Then, the sequences {xn}, {yn} converge
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strongly to the same point q = PA−10f(q) if and only if {Axn} is bounded and lim infn→∞〈Axn, y−

xn〉 ≥ 0 for all y ∈ C.

Proof. In Theorem 3.1, put C = H, νn = 0 (∀n ≥ 1) and S = I the identity mapping of H.

Then, we know that κ = 0, γn = 0 and cn = 0 for all n ≥ 1. Moreover, we have A−10 = Ω and

PH = I. In this case, it is easy to see that
∑∞

n=1
νn < ∞ and ‖(I −Sn)xn‖ → 0. Therefore, by

Theorem 3.1, we obtain the desired conclusion. �

We also know one more definition of a pseudocontractive mapping, which is equivalent to

the definition given in the preliminaries. A mapping S : C → C is called pseudocontractive [26]

if

〈Sx− Sy, x− y〉 ≤ ‖x− y‖2, ∀x, y ∈ C.

Obviously, the class of pseudocontractive mappings is more general than the class of nonexpan-

sive mappings. For the class of pseudocontractive mappings, there are some nontrivial examples;

see, e.g., [24, p. 1239] for further details. In the following theorem, we introduce an iterative

process that converges strongly to a common fixed point of two mappings, one of which is an

asymptotically κ-strict pseudocontractive mapping in the intermediate sense with sequence {γn}

and the other Lipschitz continuous and pseudocontractive.

Theorem 3.2. Let f : C → C be a contractive mapping with constant α ∈ (0, 1), T : C → C be

a pseudocontractive, m-Lipschitz continuous mapping and S : C → C be a uniformly continuous

asymptotically κ-strict pseudocontractive mapping in the intermediate sense with sequence {γn}
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such that F (S) ∩ F (T ) 6= ∅ and
∑∞

n=1 γn < ∞. Let {xn}, {yn} be the sequences generated by

(3.25)



x1 = x ∈ C chosen arbitrary,

yn = (1− µn)xn + µnPC(xn − λnAxn),

tn = PC(xn − λnAyn),

xn+1 = (1− αn − βn − νn)xn + αnf(yn) + βntn + νnSntn, ∀n ≥ 1,

where A = I − T , {λn} is a sequence in (0, 1) with
∑∞

n=1
λn < ∞, and {αn}, {βn}, {µn}

and {νn} are sequences in [0, 1] satisfying the conditions (A1)–(A4). Then, the sequences {xn},

{yn} converge strongly to the same point q = PF (S)∩F (T )f(q) if and only if {Axn} is bounded,

‖(I − Sn)xn‖ → 0 and lim infn→∞〈Axn, y − xn〉 ≥ 0 for all y ∈ C.

Proof. Let A = I − T . Let us show that the mapping A is monotone and (m + 1)-Lipschitz

continuous. Indeed, observe that

〈Ax−Ay, x− y〉 = ‖x− y‖2 − 〈Tx− Ty, x− y〉 ≥ 0

and

‖Ax−Ay‖ = ‖x− y − (Tx− Ty)‖ ≤ ‖x− y‖+ ‖Tx− Ty‖ ≤ (m + 1)‖x− y‖.

Now, let us show that F (T ) = Ω . Indeed, we have, for fixed λ0 ∈ (0, 1),

Tu = u ⇔ u = u− λ0Au = PC(u− λ0Au) ⇔ 〈Au, y − u〉 ≥ 0, ∀y ∈ C.

By Theorem 3.1, we obtain the desired conclusion. �

Theorem 3.3. Let f : C → C be a contractive mapping with constant α ∈ (0, 1), T : C → C

be a pseudocontractive, m-Lipschitz continuous mapping and S : C → C be a nonexpansive
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mapping such that F (S) ∩ F (T ) 6= ∅. Let {xn}, {yn} be the sequences generated by

(3.26)



x1 = x ∈ C chosen arbitrary,

yn = (1− µn)xn + µnPC(xn − λnAxn),

tn = PC(xn − λnAyn),

xn+1 = (1− αn − βn − νn)xn + αnf(yn) + βntn + νnSntn, ∀n ≥ 1,

where A = I − T , {λn} is a sequence in (0, 1) with
∑∞

n=1
λn < ∞, and {αn}, {βn}, {µn}

and {νn} are sequences in [0, 1] satisfying the conditions (A1)–(A4). Then, the sequences {xn},

{yn} converge strongly to the same point q = PF (S)∩F (T )f(q) if and only if {Axn} is bounded,

‖(I − Sn)xn‖ → 0 and lim infn→∞〈Axn, y − xn〉 ≥ 0 for all y ∈ C.

Proof. Let A = I−T . In terms of the proof of Theorem 3.2, we know that A is a monotone and

(m+1)-Lipschitz continuous mapping such that F (T ) = Ω. Since S is a nonexpansive mapping,

we know that κ = 0, γn = 0 and cn = 0 for all n ≥ 1. By Theorem 3.1, we obtain the desired

conclusion. �
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