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Abstract In this paper, we give a complete description of the structure of zero product and
orthogonality preserving linear maps between W*-algebras. In particular, two W*-algebras
are *-isomorphic if and only if there is a bijective linear map between them preserving their
zero product or orthogonality structure in two directions. It is also the case when they have
equivalent linear and left (right) ideal structures.
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1 Introduction

Recall that a W*-algebra M is a C*-algebra with a predual. So M carries many different
structures, including the geometric (i.e., norm) structure, the ∗-algebraic structure, and the
normal structure (i.e., weak* topology). As the norm of an element a in M is equal to the
square root of the spectral radius of a∗a, the geometric structure of M can be recovered
from its ∗-algebraic structure. It is further showed by Gardner [15] that two W*-algebras
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700 C.-W. Leung et al.

are ∗-algebraic isomorphic if and only if they are algebraic isomorphic, and all algebraic
isomorphisms between W*-algebras are norm and σ -weakly bi-continuous. Indeed, every
algebra isomorphism θ : M → N between W*-algebras carries the form θ(a) = π(hah−1)

for some invertible positive element h in M and some ∗-isomorphism π from M onto N
(See, e.g., Sakai [24, Section 4.1]). Therefore, W*-algebras are completely determined by
their linear and product structures. In this paper, we show that the linear and disjointness
structures also suffice.

In the context of operator algebras (on Hilbert spaces) there are at least three versions of
disjointness: zero product (ab = 0), range orthogonality (a∗b = 0), and domain orthogonal-
ity (ab∗ = 0). Of course, the latter two are symmetric. If the algebra is abelian, then all three
concepts coincide. In [14,17,18], it is shown that two abelian C*-algebras are *-isomorphic
if and only if there is a bijective linear map θ between them such that

ab = 0 implies θ(a)θ(b) = 0.

On the other hand, it is shown in [2,28] that every surjective linear map θ : A → B between
two standard operator algebras preserving zero products, or range/domain orthogonality in
two directions is basically an inner automorphism, and thus it is automatically bounded as
well. Recall that standard operator algebras are those containing all finite rank operators.

Bounded linear zero product and orthogonality preservers θ : A → B between general
C*-algebras were studied in [8,19,25,29,31]. Assume that θ is bijective and norm continu-
ous. Suppose θ sends self-adjoint elements with zero products to (not necessarily self-adjoint)
elements with zero products, i.e.,

ab = 0 implies θ(a)θ(b) = 0, ∀a, b ∈ Asa .

Then A and B are isomorphic as Jordan algebras. If θ preserves zero products of arbitrary
elements in A, then A and B are isomorphic as ∗-algebras [8,31].

Without assuming continuity, we cannot make use of any tools from functional calcu-
lus, which is used heavily in previous literature. Anyway, a few partial results follow. If the
C*-algebra A is linearly generated by idempotents (e.g., properly infinite unital C*-algebras
[22, Corollary 2.2]) and θ(1) = 1 then θ is again an algebra homomorphism [8]. Else, sup-
pose A and B are CCR C*-algebras with Hausdorff spectrum (for the definition, see, e.g. [12,
Section 4.2] or [13]). If θ : A → B is linear, bijective, and preserves zero products in two
directions, then θ gives rise to an algebra isomorphism, and thus A and B are *-isomorphic
by the result of Gardner [15]. In fact, we have

Proposition 1.1 ([21, Theorem 3.3]) Let A and B be CCR C*-algebras with Hausdorff
spectrum. Let θ : A → B be a bijective linear map such that

ab = 0 in A if and only if θ(a)θ(b) = 0 in B.

Then θ is automatically bounded. More precisely, θ = m� where m = θ∗∗(1) is an invertible
central multiplier of B and � is an algebra isomorphism from A onto B.

There is also a similar result for linear orthogonality preservers.

Proposition 1.2 [27, Theorem 3] Let A, B be two C*-algebras with continuous traces. Let
θ : A → B be a bijective linear map preserving orthogonality in two directions. Then θ is
automatically bounded. More precisely, we have the following implication table.
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Linear disjointness preservers of W*-algebras 701

The structures θ preserves implies the form θ assumes
Case 1: a∗b = 0 ⇔ θ(a)∗θ(b) = 0, �r;
Case 2: ab∗ = 0 ⇔ θ(a)θ(b)∗ = 0, l�;
Case 3: a∗b = 0 ⇔ θ(a)θ(b)∗ = 0, l�;
Case 4: ab∗ = 0 ⇔ θ(a)∗θ(b) = 0, �r .

Here,

r: invertible right multiplier of B,
l: invertible left multiplier of B,

�: ∗-algebra isomorphism from A onto B,
�: anti-∗-algebra isomorphism from A onto B.

In this paper, we obtain a complete characterization for linear zero product/orthogonality
preservers of general W*-algebras. Our main result states

Theorem 1.3 Let M, N be two W*-algebras. Let θ : M → N be a bijective linear map.
Then M, N are isomorphic as W*-algebras, provided that any of the following conditions
holds.

(A) θ preserves zero products in two directions, i.e.,

ab = 0 in M if and only if θ(a)θ(b) = 0 in N .

In this case, θ(1) is a central invertible element and θ(1)−1θ(·) is an algebra isomor-
phism.

(B) θ preserves range orthogonality in two directions, i.e.,

a∗b = 0 in M if and only if θ(a)∗θ(b) = 0 in N .

In this case, θ(1) is an invertible element and θ(·)θ(1)−1 is a ∗-algebra isomorphism.
(C) θ preserves domain orthogonality in two directions, i.e.,

ab∗ = 0 in M if and only if θ(a)θ(b)∗ = 0 in N .

In this case, θ(1) is an invertible element and θ(1)−1θ(·) is a ∗-algebra isomorphism.
(D) θ preserves reverse orthogonality in two directions, i.e.,

a∗b = 0 in M if and only if θ(a)θ(b)∗ = 0 in N .

In this case, θ(1) is an invertible element and θ(·)trθ(1)tr −1 is a ∗-algebra isomor-
phism. Here, T tr is the transpose of an operator T in N ⊆ B(H) with respect to an
arbitrary but fixed orthonormal basis of the underlying Hilbert space H of the universal
representation of the W*-algebra N.

It is clear that Cases (C) and (D) follow easily from Case (B) in Theorem 1.3. In the next
section, we will provide the proofs for Cases (A) and (B).

Finally, let us mention that some other kinds of disjointness in a W*-algebra can be
defined by doubly orthogonality (see, e.g., [5,6,31]), and by its left (or right) ideals (see,
e.g., [1,10,20,23]). We will also discuss them at the end of the paper. As a variance of
Theorem 1.3, for example, Theorem 2.5 ensures that if there is a linear bijective map θ

between two W*-algebras M, N preserving left (or right) ideals in both directions then M, N
are *-isomorphic, too. Indeed, Theorem 2.5 says that θ(·)θ(1)−1 is an algebra isomorphism.
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2 The results

We need the following result of Goldstein and Paszkiewicz.

Lemma 2.1 ([16, Theorem 3(3)]) A W*-algebra M is the linear span, with integer coeffi-
cients, of its projections if and only if it has no direct summand of finite type I. If this is the
case, any self-adjoint operator of norm not greater than one can be represented in the form

p1 + · · · + p12 − p13 − · · · − p24

for some projections p1, . . . , p24 in M.

We also need the following well-known fact. If M is a finite type I W*-algebra, then for
each n in N, there exist a hyperstonean space �n (could be empty) and a central projec-
tion wn in M such that {wn} are orthogonal to each another,

∑
n wn weak-*-converges to

1, and wn A ∼= C(�n) ⊗ Mn (see e.g. [24, Section 2.2]). Here we use the convention that
C(�n) = {0} if �n = ∅. In particular, M is a CCR C*-algebra with Hausdorff spectrum and
continuous trace.

Proof of Theorem 1.3(A) Let z be a central projection in M such that the ideal M1 = (1−z)M
is of finite type I, and the ideal M2 = zM contains no finite type I summand. Similarly, we
write N = N1 + N2.

As M1 M2 = M2 M1 = {0}, we have θ(M1)θ(M2) = θ(M2)θ(M1) = 0. Let Li , Ri be the
weak* closed left and right ideals of N generated by θ(Mi ), for i = 1, 2, respectively. It is
clear that L1 R2 = L2 R1 = {0}. As θ−1 also preserves zero products, we have θ−1(L1)M2 =
M1θ

−1(R2) = M2θ
−1(R1) = θ−1(L2)M1 = 0. Therefore, θ−1(Li ), θ

−1(Ri ) ⊆ Mi for
i = 1, 2, respectively. It follows that θ(Mi ) = Li = Ri is a weak* closed two-sided ideal of
N , for i = 1, 2. Since N = θ(M) = θ(M1) + θ(M2), there is a central projection q in N
such that θ(M1) = (1 − q)N and θ(M2) = q N .

Let b, e ∈ M2 with e2 = e. As (z − e)eb = e(z − e)b = 0, we have

0 = θ(z − e)θ(eb) = (θ(z) − θ(e))θ(eb),

and

0 = θ(e)θ(b − eb) = θ(e)(θ(b) − θ(eb)).

It follows

θ(z)θ(eb) = θ(e)θ(eb) = θ(e)θ(b).

By Lemma 2.1, every element a in M2 is a linear sum of at most 48 projections. As a result,
we have

θ(z)θ(ab) = θ(a)θ(b), ∀a, b ∈ M2. (2.1)

Putting b = z in (2.1) we have

θ(z)θ(a) = θ(a)θ(z), ∀a ∈ M2.

So θ(z) is a central element in the ideal q N , and thus in N . Let d ∈ M2 such that θ(d) = q .
Then (2.1) gives

θ(z)θ(d 2) = θ(d)2 = q.

It follows θ(z) is invertible in q N , and its inverse θ(d 2) is also a central element.
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Linear disjointness preservers of W*-algebras 703

Define π2 : M2 → q N by

π2(a) = θ(d 2)θ(a), ∀a ∈ M2.

Then π2 is linear and bijective. Moreover,

π2(z) = θ(d 2)θ(z) = q,

and

π2(ab) = θ(d 2)θ(z)θ(ab)θ(d 2) = θ(d 2)θ(a)θ(b)θ(d 2) = π2(a)π2(b), ∀a, b ∈ M2.

Therefore, π2 is an algebra isomorphism from M2 onto q N . It follows from a result of Grad-
ner [15] that M2 and q N are indeed isomorphic as W*-algebras. Inheriting from M2, the
W*-algebra q N contains no finite type I summand either. In particular, θ(M2) = q N ⊆ N2.
Applying the same arguments to θ−1, we see that θ−1(N2) ⊆ M2. Consequently, θ(M2) =
N2, and hence θ(M1) = N1.

We have already seen that π2 is an algebra isomorphism from M2 onto N2. On the other
hand, Proposition 1.1 says that θ(1 − z) is a central invertible element in N1, and there is an
algebra isomorphism π1 : M1 → N1 such that θ(a) = θ(1 − z)π1(a) for all a in M1. This
gives in turn that θ(1) is a central invertible element in N and the map π : M → N defined
by π(a) = θ(1)−1θ(a) is an algebra isomorphism. ��
Proof of Theorem 1.3(B) Let z be a central projection in M such that the ideal M1 = (1−z)M
is of finite type I, and the ideal M2 = zM contains no finite type I summand. Similarly, we
write N = N1 + N2 with N1 = (1 − z′)N and N2 = z′N .

As M∗
1 M2 = {0}, we have θ(M1)

∗θ(M2) = 0. Let R1, R2 be the weak* closed right ideals
of N generated by θ(M1), θ(M2), respectively. It is clear that R∗

1 R2 = {0}. Moreover, the
identity N = θ(M) = θ(M1) + θ(M2) forces R1 = θ(M1) and R2 = θ(M2), respectively.
Let q be the projection in N such that θ(M1) = (1 − q)N and θ(M2) = q N .

Consider an projection p in M2 = zM , and any arbitrary element b in M2. Since

(z − p)pb = p(z − p)b = 0,

we have

(θ(z)∗ − θ(p)∗)θ(pb) = θ(p)∗(θ(b) − θ(pb)) = 0.

It follows

θ(z)∗θ(pb) = θ(p)∗θ(pb) = θ(p)∗θ(b).

By Lemma 2.1, we have

θ(z)∗θ(a∗b) = θ(a)∗θ(b), ∀a, b ∈ M2. (2.2)

Let d ∈ M2 such that θ(d) = q . By (2.2), we have

θ(z)∗θ(d∗d) = θ(d)∗θ(d) = q. (2.3)

Setting b = z in (2.2), we have

θ(z)∗θ(a∗) = θ(a)∗θ(z), ∀a ∈ M2. (2.4)

In particular, as θ(z) = qθ(z) ∈ θ(M2) = q N , it follows

θ(z)∗N = θ(z)∗q N = Nqθ(z) = Nθ(z)
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is a two-sided self-adjoint ideal of N . Let w be the central projection in N such that wN is the
weak* closure of Nθ(z). Let sl(θ(z)) and sr (θ(z)) be the left and right support projections
of θ(z) in N , respectively. Putting a = d∗ in (2.4), we have

θ(z)∗ = θ(z)∗q = θ(d∗)∗θ(z).

Observe

θ(a)∗θ(z) = θ(a)∗θ(z)sr (θ(z)), ∀a ∈ M2.

Consequently,

w = wsr (θ(z)) ≤ sr (θ(z)). (2.5)

Since θ(z) = qθ(z) and q = θ(z)∗θ(d∗d) ∈ wN , we also have

sl(θ(z)) ≤ q ≤ w. (2.6)

Because sr (θ(z)) is equivalent to sl(θ(z)), they have the same central support. It then follows
from (2.5) and (2.6) that

w = sr (θ(z)) ≥ q ≥ sl(θ(z)).

Let q1 = (1 − z′)q ∈ N1 and w1 = (1 − z′)w ∈ N1. Since N1 is of finite type I, we
have q1 = w1 is a central projection in N . Note that the weak* closed two-sided ideal
q1 N ⊆ q N1 = θ(M2) ∩ N1, and q1θ(z) = θ(z)q1.

Argue similarly with � = θ−1 : N → M , we have

�(1)∗�(ry) = �(r)∗�(y)

for every projection r and for every element y in N . Putting y = θ(z), we get

�(1)∗�(rθ(z)) = �(r)∗z.

If r is a projection in N with r ≤ q then r ∈ q N = θ(M2), and thus

�(1)∗�(rθ(z)) = �(r)∗.

Since � is one-to-one, rθ(z) = 0 implies r = 0. Now, let x ∈ N such that xθ(z) = xqθ

(z) = 0. Then, θ(z)∗qx∗xqθ(z) = 0. This implies θ(z)∗rθ(z) = 0, and hence r = 0, for
every spectral projection r of qx∗xq . Thus, xq = 0. As a result, the right multiplication
operator Rθ(z) : q1 N → q1 N , sending xq1 to xq1θ(z), is one-to-one.

Moreover, q1 Nθ(z)= Nθ(z)q1 ⊇ Nθ(d∗d)∗θ(z)q1 = q1 N by (2.3). So Rθ(z) is a bounded
bijective linear map from q1 N onto itself. Consider also the right multiplication operator
Rθ(d∗d)∗ : q1 N → q1 N sending xq1 to xq1θ(d∗d)∗. The identity (2.3) says that

Rθ(z) Rθ(d∗d)∗ = Rq1 .

Here, Rq1 is the identity map from q1 N onto q1 N . Since Rθ(z) is bijective, we have

Rθ(d∗d)∗ Rθ(z) = Rq1 .

In particular,

q1θ(z)θ(d∗d)∗ = q1. (2.7)

Define π21 : M2 → q1 N by

π21(a) = q1θ(a)θ(d∗d)∗, ∀a ∈ M2.
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It is easy to see that π21 is onto, π2(z) = q1, the identity of the W*-algebra q1 N , and by
(2.7),

π21(a
∗b) = q1θ(a∗b)θ(d∗d)∗

= q1θ(d∗d)θ(z)∗θ(a∗b)θ(d∗d)∗

= q1θ(d∗d)θ(a)∗θ(b)θ(d∗d)∗

= π21(a)∗π21(b), ∀a, b ∈ M2.

In other words, π21 is a surjective ∗-homomorphism. It then follows from Lemma 2.1 that the
W*-algebra q1 N ⊆ N1 contains no finite type I summand, as M2 does not either. This forces
the finite and discrete central projection q1 = 0 and thus θ(M2) = q N ⊆ N2. Dealing with
� = θ−1, we see also that �(N2) ⊆ M2. It follows θ(M2) = N2, and thus θ(M1) = N1.

At this stage, one have already seen that q = z′ is a central projection in N . Repeating
some of the above arguments with q1 replaced by q , one can see that

θ(z)∗θ(d∗d) = θ(z)θ(d∗d)∗ = q.

Similarly, the map π2 : M2 → N2 sending a to θ(a)θ(d∗d)∗ is a *-isomorphism. On the
other hand, it follows from Proposition 1.2 that θ(1 − z) is invertible in N1 = (1 − q)N
and there is a ∗-isomorphism π1 : M1 → N1 such that θ(a) = π1(a)θ(1 − z),∀a ∈ M1. In
conclusion, θ(1) is invertible in N and the map π : M → N defined by π(a) = θ(a)θ(1)−1

is a ∗-isomorphism. ��
The following two results supplement Propositions 1.1 and 1.2, and Theorem 1.3(A,B).

Other similar variances of Theorem 1.3 can also be derived easily.

Proposition 2.2 Let M be a W*-algebras containing no finite type I summand. Let N be a
unital algebra. Let θ : M → N be a linear map satisfying the condition:

ab = 0 in M �⇒ θ(a)θ(b) = 0 in N . (2.8)

Consider the following conditions. We have (1) �⇒ (2) �⇒ (3).

(1) θ is surjective.
(2) θ(1) is a central invertible element in N.
(3) There exists an algebra homomorphism π from M into N such that

θ(a) = θ(1)π(a) = π(a)θ(1), ∀a ∈ M.

Proof Using some arguments in the proof for the Case (A) of Theorem 1.3, we will establish

θ(1)θ(ab) = θ(a)θ(b), ∀a, b ∈ M. (2.9)

If θ is surjective then we will also see that θ(1) is a central invertible element in N .
Now, suppose θ(1) is central and invertible. Define π : M → N by

π(a) = θ(1)−1θ(a), ∀a ∈ M.

It follows from (2.9) that π is an algebra homomorphism. ��
Proposition 2.3 Let M, N be two W*-algebras. Suppose M contains no finite type I sum-
mand. Let θ : M → N be a linear map satisfying the condition:

a∗b = 0 in M �⇒ θ(a)∗θ(b) = 0 in N . (2.10)

Consider the following conditions. We have (1) �⇒ (2) �⇒ (3).
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(1) θ is bijective, and the reverse implication in (2.10) also holds.
(2) θ(1) is invertible.
(3) There exists a ∗-homomorphism π from M into N such that

θ(a) = π(a)θ(1), ∀a ∈ M.

Proof Arguing as in the proof for the Case (B) of Theorem 1.3, we have

θ(1)∗θ(a∗b) = θ(a)∗θ(b), ∀a, b ∈ M.

Suppose first that θ is bijective and (2.10) is satisfied in two directions. Using again the proof
for the Case (B) of Theorem 1.3, without assuming that N has no finite type I summand
though, we see that there is a d in M such that θ(d) = 1 in N and θ(1)−1 = θ(d∗d)∗ exists
in N .

Now, we assume that θ(1) is invertible. Define a bijective linear map π : M → N by
π(a) = θ(a)θ(1)−1. It is then easy to see that π is a ∗-homomorphism. ��

There is yet another disjointness structure attracting attention from people. A linear map
θ : A → B between two C*-algebras is said to be doubly orthogonality preserving if
θ(a)∗θ(b) = θ(a)θ(b)∗ = 0 in B whenever a∗b = ab∗ = 0 in A. In [30], it is shown that
every bounded linear doubly orthogonality preserver θ between C*-algebra preserves the
triple products {a, b, c} := ab∗c + cb∗a whenever θ∗∗(1) is a partial isometry. It is further
investigated in [5,6] to extend this concept to JB*-algebras and JB*-triples. In [7], the fol-
lowing theorem is proved. We remark that it might be possible to get an alternative proof by
applying similar arguments as in the proof of Theorem 1.3 above and [27, Theorem 10], which
states that two CCR C*-algebras with Hausdorff spectrum are isomorphic as JB*-algebras if
and only if they carries equivalent linear and doubly orthogonality structures.

Theorem 2.4 (Burgos, Garcès and Peralta [7]) Every linear surjection between W*-algebras
preserving doubly orthogonality in two directions is automatically continuous. Consequently,
two W*-algebras are isomorphic as JB*-triples if and only if they carry equivalent linear
and doubly orthogonality structures.

Finally, we show that the linear and the left (or right) ideal structures of a W*-algebra M
also completely determine M . The following result supplements those in [10,11,20,23,26].

Theorem 2.5 Let θ : M → N be a linear bijection between W*-algebras. Suppose that
both θ and θ−1 send left (resp. right) ideals to left (resp. right) ideals. Then θ(1) is invertible
in N and π(·) = θ(·)θ(1)−1 is an algebra isomorphism from M onto N.

Consequently, two W*-algebras are *-isomorphic if and only if they carries equivalent
linear and left (resp. right) ideal structures.

Proof We assume θ preserves left ideals in two directions, and the case for linear right ideal
preserving maps is similar.

Observe that an element in M is not left invertible exactly when it is contained in a proper
left ideal of M . In other words, the set of all left invertible elements in M is the complement
to the union of all proper left ideals of M . As θ preserves left ideals in two directions, it
preserves left invertible elements in two directions as well. In particular, x = θ−1(1) has a
left inverse y in M . Thus,

M = Myx ⊆ Mx ⊆ M. (2.11)
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Linear disjointness preservers of W*-algebras 707

Let π : M → N be defined by π(a) = θ(ax). It follows from (2.11) that π is a linear
surjection such that π(1) = 1. For any proper left ideal J in N , we see that I = θ−1(J ) is
a proper left ideal in M , and thus π−1(J ) = {a ∈ M : ax ∈ I } is also a proper left ideal
in M . We claim that the unital linear surjection π is left spectrum compressing, and thus
does not increase the spectral radius. Indeed, suppose λ is in the left spectrum of π(a), i.e.,
π(a − λ) is not left invertible in B. Then Bπ(a − λ) is a proper left ideal of B, and hence,
π−1(Bπ(a − λ)) is a proper left ideal of A. In particular, a − λ is not left invertible in A,
i.e., λ is in the left spectrum of a. By [3, Theorem 5.5.2], we see that π is bounded, and by
[10, Lemma 2], π sends idempotent elements to idempotent elements.

Note that two idempotents e1, e2 are orthogonal, i.e., e1e2 = e2e1 = 0 exactly when e1+e2

is an idempotent. It follows that π sends orthogonal idempotents to orthogonal idempotents.
By spectral theory, every self-adjoint element a in M can be approximated in norm by finite
linear sums of orthogonal projections. Accordingly, π(a) can be approximated in norm by
finite linear sums of orthogonal idempotents. Taking squares, we see that π(a2) = π(a)2

for all self-adjoint, and thus all, elements a in M . As a consequence, π is a surjective
Jordan homomorphism. The kernel I = π−1(0) of π is a norm closed Jordan ideal, and thus
a two-sided ideal by [9], of M . Let p be the central projection in M such that the weak*
closure of I in Mp. It follows from π(I ) = θ(I x) = 0 that I x = 0, and thus Mpx = 0, or
xp = px = 0. As a result, p = yxp = 0. Therefore, π is a Jordan isomorphism.

By a result of Brešar ([4, Lemma 2.1 and Corollary 5.4]), there are central projections z
in M and z′ in N such that π |zM gives rise to an algebra isomorphism from zM onto z′N ,
and π |(1−z)M gives rise to an anti-algebra isomorphism from (1 − z)M onto (1 − z′)N . We
verify that (1 − z′)N is abelian, and thus π is an algebra isomorphism. To this end, let q be
a projection in (1 − z′)N . Since π |(1−z)M gives rise to an anti-algebra isomorphism from
(1 − z)M onto (1 − z′)N , the pre-image π−1(q N ) of the right ideal q N is a left ideal in M .
However, π sends left ideals to left ideals. Therefore, q N = π(π−1(q N )) is also a left, and
thus a two-sided, ideal in N . This forces q to be a central projection. Now we see that every
projection in (1 − z′)N is central. By spectral theory, every self-adjoint element in (1 − z′)N
is central, and thus (1 − z′)N is abelian, as asserted.

At this stage we have proved that π is a continuous algebra isomorphism from M onto N .
By a result of Gardner [15], we see that the W*-algebras M, N are *-isomorphic. Finally, we
check π(·) = θ(·)θ(1)−1. Observe that if a ∈ M such that ax = 0 then π(a) = θ(ax) = 0
forces a = 0. Now, the right multiplication Rx : M → M defined by Rx (a) = ax is a
bijective bounded linear operator on M with a right inverse Ry , the right multiplication by y.
By the open mapping theorem, Ry is the inverse of Rx . Since M is unital, we have xy =
Ry Rx (1) = 1. In other words, x = y−1, and thus π(x) = π(y)−1 = θ(yx)−1 = θ(1)−1. It
follows θ(a)θ(1)−1 = θ(ayx)θ(1)−1 = π(ay)π(x) = π(a)π(y)π(x) = π(a) for all a in
M . This completes the proof. ��

Note that a bijective linear map θ sending left ideals to left ideals might not send orthogo-
nal ones to orthogonal ones. In other words, if p is a projection in M then the images of Mp
and M(1− p) are left ideals L1 = θ(Mp), L2 = θ(M(1− p)) of N such that L1 ∩ L2 = {0}
and N = L1+L2, but L1L∗

2 might not be zero. For example, consider the right multiplication
θ(a) = ax of M by a non-central invertible element x in M . Then θ does not send orthogonal
left ideals to orthogonal left ideals, and hence it is not domain orthogonality preserving. From
this we see that Theorem 2.5 is not a direct consequence of Theorem 1.3.
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