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1. Introduction

Let T be a locally compact Hausdorff space, called base space. Suppose for each t

in T there is a (real or complex) Banach space Et. A vector field x is an element in

the product space
∏
t∈T Et, that is, x(t) ∈ Et, for all t ∈ T .

Definition 1.1 ([5, 3]). A continuous field E = (T, {Et},A) of Banach spaces over

a locally compact space T is a family {Et}t∈T of Banach spaces, with a set A of

vector fields, satisfying the following conditions.

(i) A is a vector subspace of
∏
t∈T Et.

(ii) For every t in T , the set of all x(t) with x in A is dense in Et.

(iii) For every x in A, the function t 7→ ‖x(t)‖ is continuous on T and vanishes at

infinity.
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(iv) Let x be a vector field. Suppose for every t in T and every ε > 0, there is a

neighborhood U of t and a y in A such that ‖x(s) − y(s)‖ < ε for all s in U .

Then x ∈ A.

Elements in A are called continuous vector fields.

When all Et equal to a fixed Banach space E, and A consists of all continuous

functions from T into E vanishing at infinity, we call E a constant field. In this case,

we write A = C0(T,E), or A = C(T,E) when T is compact, as usual.

It is not difficult to see that A becomes a Banach space under the norm ‖x‖ =

supt∈T ‖x(t)‖. If g is a bounded continuous scalar-valued function on T , and x ∈ A,

then t 7→ g(t)x(t) defines a continuous vector field gx on T . The set of all x(t) with

x in A coincides with Et for every t in T . Moreover, for any distinct points s, t in T

and any α in Es and β in Et, there is a continuous vector field x such that x(s) = α

and x(t) = β (see, e.g., [5, 12]).

A map θ : A → B is called a homomorphism between two continuous fields of

Banach spaces (X, {Ex}x,A) and (Y, {Fy},B) if there is a map ϕ : Y → X and a

linear map Hy : Eϕ(y) → Fy for each y in Y such that

θ(f)(y) = Hy(f(ϕ(y)), for all f ∈ A, for all y ∈ Y. (1.1)

A map θ is said to be separating (or strictly separating as in [1]) if

‖f(x)‖‖g(x)‖ = 0, for all x ∈ X, implies ‖θ(f)(y)‖‖θ(g)(y)‖ = 0, for all y ∈ Y.

The study of when a separating linear map is a homomorphism has been the

focus of much research in the past. For example, in [10], Jarosz gives a complete

description of an unbounded separating linear map θ : C(X) → C(Y ), where X,Y

are compact Hausdorff spaces, and this is extended to locally compact spaces in

[7, 11]. On the other hand, Jamison and Rajagopalan [9] show that every bounded

separating linear map θ : C(X,E) → C(Y, F ) between continuous vector valued

function spaces carries a standard form (1.1). Chan [2] extends this to bounded

separating linear maps between two function modules.

In this paper, we present a complete description of separating linear maps θ :

A → B between continuous fields of Banach spaces (X, {Ex}x,A) and (Y, {Fy},B)

on locally compact Hausdorff base spaces. Essentially, these maps carry the standard

form (1.1). In case θ is bijective, and both θ and θ−1 are separating, we shall see

that ϕ : Y → X is a homeomorphism. Moreover, θ, as well as the fiber linear maps

Hy, is automatically bounded in many situations. Our results unify and extend

those shown in [9, 10, 2, 7, 11, 1, 8].

Another example of continuous fields of Banach spaces comes from Banach bun-

dles. (The readers are referred to [4, 6] for the definitions.) For a Banach bundle

ξ = (p,E, T ), define Γ0(ξ) to be the set of all continuous cross sections of ξ which

vanishes at infinity. In this case, we write E = (T, {Et},Γ0(ξ)). It is not difficult to

see that Γ0(ξ) satisfies the conditions (i), (iii), (iv) in Definition 1.1. We refer to

Appendix C in [6] where it is shown that if T is locally compact, then for any point
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x in E there is a continuous cross section f such that f(p(x)) = x. Thus, condition

(ii) follows. Therefore, all results in this paper apply to Banach bundles. For further

development in this line, readers are referred to [13].

2. The results

For a locally compact Hausdorff space X , we write

X∞ = X ∪ {∞},

for its one-point compactification. If X is already compact, then the point ∞ at

infinity is an isolated point in X∞. Moreover, we identify

C0(X) = {f ∈ C(X∞) : f(∞) = 0},

and other similar spaces for those of continuous functions on X vanishing at infinity.

For a continuous field (X, {Ex}x,A) of Banach spaces, set for each x in X the sets

Ix = {f ∈ A : f vanishes in a neighborhood in X∞ of x},

Mx = {f ∈ A : f(x) = 0}.

Theorem 2.1. Let θ : A → B be a separating linear map between continuous fields

of Banach spaces (X, {Ex},A), (Y, {Fy},B) over locally compact Hausdorff spaces

X,Y , respectively. Set

Y0 =
⋂

{ker θ(f) : f ∈ A}.

Then, ∞ ∈ Y0 is compact and there is a continuous map ϕ : Y \ Y0 → X∞ such

that

θ(Iϕ(y)) ⊆ Iy, for all y ∈ Y \ Y0.

Set

Y1 = {y ∈ Y \ Y0 : θ(Mϕ(y)) ⊆My},

Y2 = {y ∈ Y \ Y0 : θ(Mϕ(y)) * My}.

Then there is a linear map Hy : Eϕ(y) → Fy for each y in Y1 such that

θ(f)(y) = Hy(f(ϕ(y)), for all y ∈ Y1.

The exceptional set Y2 is open in Y∞, and ϕ(Y2) consists of finitely many non-

isolated points in X∞.

Moreover, θ is bounded if and only if Y2 = ∅ and all Hy are bounded. In this

case,

‖θ‖ = sup
y∈Y

‖Hy‖.

We divide the proof into several lemmas as in [10, 11]. Clearly, Y0 is compact

and contains ∞. For each y in Y \ Y0, let

Zy = {x ∈ X∞ : θ(Ix) ⊆ Iy}.



September 8, 2009 16:25 WSPC/INSTRUCTION FILE 09˙ltw2

448 C.-W. Leung, C.-W. Tsai & N.-C. Wong

Lemma 2.1. Zy is a singleton, for all y in Y \ Y0.

Proof. Suppose on the contrary that Zy = ∅ for some y in Y \Y0. Then for each x

in X∞ there is an fx in Ix vanishing in a compact neighborhood Ux of x such that

θ(fx) /∈ Iy. By compactness,

X∞ = Ux0
∪ Ux1

∪ · · · ∪ Uxn

for some points x0 = ∞, x1, . . . , xn in X∞. Let

1 = h0 + h1 + · · · + hn

be a continuous partition of unity such that hi vanishes outside Uxi
for i =

0, 1, . . . , n. For any g in A, the separating property of θ implies that the product of

the norm functions of θ(hig) and θ(fxi
) is always zero, and then

θ(fxi
) /∈ Iy implies θ(hig)(y) = 0, i = 0, 1, . . . , n.

Hence, θ(g)(y) = 0 for all g ∈ A. This gives a contradiction that y ∈ Y0.

Next let x1, x2 be distinct points in Zy. In other words, θ(Ixi
) ⊆ Iy for i = 1, 2.

Choose compact neighborhoods V, U of x1 in X∞ such that V is contained in the

interior of U , and x2 /∈ U . Let g ∈ C(X∞) such that g = 1 on V and g = 0 outside

U . Then for all f in A, the facts (1− g)f ∈ Ix1
and gf ∈ Ix2

ensure that θ(f) ∈ Iy .

In particular, y ∈ Y0, a contradiction again.

Define a map ϕ : Y \ Y0 → X∞ by

Zy = {ϕ(y)}.

In other words, θ(Iϕ(y)) ⊆ Iy , or

f ∈ Iϕ(y) implies θ(f) ∈ Iy, for all y ∈ Y \ Y0. (2.1)

Lemma 2.2. ϕ : Y \ Y0 → X∞ is continuous.

Proof. Suppose yλ → y in Y \ Y0, but xλ = ϕ(yλ) → x 6= ϕ(y). By Lemma 2.1,

θ(Ix) * Iy. Let Ux, Uϕ(y) be disjoint compact neighborhoods of x, ϕ(y), respectively.

Let g ∈ C(X∞) such that g = 1 on Ux and g = 0 on Uϕ(y). Since xλ → x, for all f in

A, (1−g)f is eventually in Ixλ
. Thus, θ((1−g)f) ∈ Iyλ

eventually. By the continuity

of the norm function, θ((1 − g)f)(y) = 0. On the other hand, gf ∈ Iϕ(y) implies

θ(gf) ∈ Iy . Hence, θ(f)(y) = 0 for all f ∈ A. This gives y ∈ Y0, a contradiction.

Denote by δy the evaluation map at y in Y , i.e.,

δy(g) = g(y) ∈ Fy, for all g ∈ B.

Lemma 2.3. Let {yn} be a sequence in Y \ Y0 such that ϕ(yn) are distinct points

in X∞. Then

lim sup ‖δyn
◦ θ‖ < +∞.
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Proof. Suppose not, by passing to a subsequence if necessary, we can assume the

norm ‖δyn
◦ θ‖ > n4, and there is an fn in A such that ‖fn‖ ≤ 1 and ‖θ(fn)(yn)‖ >

n3, for n = 1, 2, . . .. Let xn = ϕ(yn) and Vn, Un be compact neighborhoods of xn in

X∞ such that Vn is contained in the interior of Un, and Un ∩ Um = ∅, for distinct

n,m = 1, 2, . . .. Let gn ∈ C(X∞) such that gn = 1 on Vn and gn = 0 outside Un for

n = 1, 2, . . .. Observe

θ(fn)(yn) = θ(gnfn)(yn) + θ((1 − gn)fn)(yn)

= θ(gnfn)(yn), as (1 − gn)fn ∈ Ixn
.

So we can assume fn is supported in Un, for n = 1, 2, . . .. Let

f =

∞∑

n=1

1

n2
fn ∈ A.

Since n2f − fn ∈ Ixn
, we have n2θ(f)(yn) = θ(fn)(yn) by (2.1), and thus

‖θ(f)(yn)‖ > n, for n = 1, 2, . . .. As θ(f) in B has a bounded norm, we arrive

at a contradiction.

Set

Y1 = {y ∈ Y \ Y0 : θ(Mϕ(y)) ⊆My},

Y2 = {y ∈ Y \ Y0 : θ(Mϕ(y)) * My}.

Lemma 2.4. ϕ(Y2) is a finite set consisting of non-isolated points in X∞.

Proof. Let x = ϕ(y) with y in Y2. Then by (2.1) we have

θ(Ix) ⊆ Iy but θ(Mx) * My.

Since, by Uryshons Lemma, Ix is dense in Mx, this implies the linear operator δy ◦θ

is unbounded. By Lemma 2.3, we can only have finitely many of such x’s. So ϕ(Y2)

is a finite set. Moreover, if x is an isolated point in X∞ then Ix = Mx, and thus

x /∈ ϕ(Y2).

Proof. [Proof of Theorem 2.1] Let y ∈ Y1, we have θ(Mϕ(y)) ⊆ My. Hence, there

is a linear operator Hy : Eϕ(y) → Fy such that

θ(f)(y) = Hy(f(ϕ(y))), for all f ∈ A. (2.2)

Next we want to see that Y2 is open, or equivalently, Y0 ∪Y1 is closed in Y∞. Let

yλ → y with yλ in Y0 ∪ Y1. We want to show that y ∈ Y0 ∪ Y1. Since Y0 is compact,

we might assume yλ ∈ Y1 for all λ.

In case there is any subnet of {ϕ(yλ)} consisting of only finitely many points,

we can assume ϕ(yλ) = ϕ(y) for all λ. Then for all f in A, f(ϕ(y)) = 0 implies
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f(ϕ(yλ)) = 0, and thus θ(f)(yλ) = 0 for all λ by (2.2). By continuity, θ(f)(y) = 0.

Consequently, θ(Mϕ(y)) ⊆My, and thus y ∈ Y0 ∪ Y1.

In the other case, every subnet of {ϕ(yλ)} contains infinitely many points.

Lemma 2.3 asserts that M = lim sup ‖Hyλ
‖ < +∞. This gives

‖θ(f)(y)‖ = lim ‖θ(f)(yλ)‖ = lim ‖Hyλ
(f(ϕ(yλ)))‖ ≤M‖f(ϕ(y))‖.

Thus, if f(ϕ(y)) = 0 we have θ(f)(y) = 0. Consequently, y ∈ Y0 ∪ Y1.

Observe that the boundedness of θ implies Y2 = ∅. Moreover,

‖θ‖ = sup{‖θ(f)‖ : f ∈ A with ‖f‖ = 1}

= sup{‖Hy(f(ϕ(y)))‖ : f ∈ A with ‖f‖ = 1, y ∈ Y1}

≤ sup{‖Hy‖ : y ∈ Y1}.

The reverse inequality is plain.

Finally, we suppose Y2 = ∅ and all Hy are bounded. We claim that sup ‖Hy‖ <

+∞. Otherwise, there is a sequence {yn} in Y1 such that limn→∞ ‖Hyn
‖ = +∞.

By Lemma 2.3, we can assume all ϕ(yn) = x in X . Let e ∈ Ex and f ∈ A such that

f(x) = e. Then

‖Hyn
(e)‖ = ‖θ(f)(yn)‖ ≤ ‖θ(f)‖, n = 1, 2, . . . .

It follows from the uniform boundedness principle that sup ‖Hyn
‖ < +∞, a contra-

diction. It is now obvious that θ is bounded.

The following extends the results for constant fields shown in [1, 8].

Theorem 2.2. Let (X, {Ex},A), (Y, {Fy},B) be continuous fields of Banach spaces

over locally compact Hausdorff spaces X,Y , respectively. Let θ : A → B be a bijective

linear map such that both θ and its inverse θ−1 are separating. Then there is a

homeomorphism ϕ from Y onto X, and a bijective linear operator Hy : Eϕ(y) → Fy
for each y in Y such that

θ(f)(y) = Hy(f(ϕ(y))), for all f ∈ A, for all y ∈ Y.

Moreover, at most finitely many Hy are unbounded, and this can happen only when

y is an isolated point in Y . In particular, if X (or Y ) contains no isolated point

then θ is automatically bounded.

Proof. Since θ is onto, we have Y0 = {∞}. Because both θ, θ−1 are separating,

there are continuous maps ϕ : Y → X∞ and ψ : X → Y∞ such that

θ(Iϕ(y)) ⊆ Iy and θ−1(Iψ(x)) ⊆ Ix, for all x ∈ X, y ∈ Y.

In case ψ(x) 6= ∞, this gives

θ(Iϕ(ψ(x))) ⊆ Iψ(x) ⊆ θ(Ix),

or

Iϕ(ψ(x)) ⊆ Ix.
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It follows ϕ(ψ(x)) = x for all x in X with ψ(x) 6= ∞. Similarly, we will have

ψ(ϕ(y)) = y for all y in Y with ϕ(y) 6= ∞. Set X3 = X \ ψ−1(∞) and Y3 =

Y \ ϕ−1(∞). It is then easy to see that ϕ = ψ−1 induces a homeomorphism from

Y3 onto X3. By the bijectivity of θ, the open sets X3 and Y3 contain X1 and Y1,

respectively.

Next, we want to see that Y2 = ∅ and Y1 = Y3 = Y . Indeed, by Theorem 2.1,

Y2∩Y3 is open, and a finite set (as ϕ(Y2) is). Hence Y2∩Y3 consists of isolated points

in Y , and so does ϕ(Y2 ∩Y3). It then follows from Lemma 2.4 that Y2 ∩Y3 is empty.

Consequently, Y1 = Y3 and ϕ(Y2) ⊆ {∞}. Similarly, X1 = X3 and ψ(X2) ⊆ {∞}. It

follows from (2.1) and the injectivity of θ that ϕ(Y ), and thus ϕ(Y1) = X1, is dense

in X . As X1 is closed in X , we see that X = X1 and thus X2 = ∅. Correspondingly,

Y = Y1 and Y2 = ∅. It turns out that ϕ is a homeomorphism from Y onto X with

inverse ψ.

Now Y = Y1 and X = X1 implies that both θ and θ−1 can be written as

homomorphisms of continuous fields of Banach spaces:

θ(f)(y) = Hy(f(ϕ(y))), for all f ∈ A, for all y ∈ Y,

θ−1(g)(x) = Tx(g(ψ(x))), for all g ∈ B, for all x ∈ X.

It is easy to see that the linear map Hy : Eϕ(y) 7→ Fy has an inverse Tϕ(y) for every

y in Y , and thus it is bijective.

By Lemma 2.3, at most finitely many Hy are unbounded. Let y be a non-isolated

point in Y . We will show that the linear map Hy is bounded. Suppose not, then

for each n = 1, 2, . . . there is an fn in A of norm one such that ‖θ(fn)(y)‖ =

‖Hy(fn(ϕ(y)))‖ > n4. By the continuity of the norm of θ(fn), there are all distinct

points yn of Y in a neighborhood of y such that ‖θ(fn)(yn)‖ > n3. Let xn = ϕ(yn)

in X for n = 1, 2, . . .. Since ϕ is a homeomorphism, we can also assume that all

xn are distinct with disjoint compact neighbourhoods Un. By multiplying with a

norm one continuous scalar function, we can assume each fn is supported in Un.

Let f =
∑

n
1
n2 fn in A. Since n2f − fn ∈ Ixn

, we have n2θ(f)(yn) = θ(fn)(yn) and

thus ‖θ(f)(yn)‖ > n for n = 1, 2, . . .. This contradiction tells us that Hy is bounded

for all non-isolated y in Y1.

The last assertion follows from Theorem 2.1, and we have ‖θ‖ = sup ‖Hy‖

< +∞.

Remark 2.1.

(1) Unlike the scalar case, if any fiber Ex of the continuous field of Banach spaces

(X, {Ex},A) is of infinite dimension, some Hy can be unbounded in Theorem

2.2. This happens even for the constant fields based on compact spaces. See

Example 2.4 in [8].

(2) There is a counterexample in ([8], Example 3.1) of a continuous bijective sepa-

rating linear map between constant fields based on nonhomeomorphic compact
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spaces, whose inverse is not separating. So the biseparating assumption in The-

orem 2.2 cannot be dropped.
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