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Abstract. Let X be a compact Hausdorff space and C(X) the space of continu-

ous functions defined on X. There are three versions of the Banach-Stone theorem.

They assert that the Banach space geometry, the ring structure, and the lattice

structure of C(X) determine the topological structure of X, respectively. In par-

ticular, the lattice version states that every disjointness preserving linear bijection

T from C(X) onto C(Y ) is a weighted composition operator Tf = h · f ◦ ϕ which

provides a homeomorphism ϕ from Y onto X. In this note, we manage to use

basically algebraic arguments to give this lattice version a short new proof. In this

way, all three versions of the Banach-Stone theorem are unified in an algebraic

framework such that different isomorphisms preserve different ideal structures of

C(X).

Let X be a compact Hausdorff space and C(X) the vector space of continuous
(real or complex) functions on X. It is a common interest to see how the topological
structure of X can be recovered from C(X). If we look at C(X) as a Banach space
then the classical Banach-Stone theorem states that whenever there is a surjective
linear isometry T between C(X) and C(Y ) for some other compact Hausdorff space
Y , T induces a homeomorphism between X and Y (see e.g. [3, p.172]). Here is a
sketch of the proof. The dual map T ∗ of T preserves extreme points of the dual balls,
which are exactly those linear functionals in the form of λδx for some unimodular
scalar λ and point mass δx at some point x ∈ X. Thus T ∗δy = h(y)δϕ(y) defines a
scalar-valued function h on Y and a map ϕ : Y → X. In other words,

Tf(y) = h(y)f(ϕ(y)), ∀y ∈ Y,∀f ∈ C(X).(1)

It is then a routine work to verify that h is continuous and ϕ is a homeomorphism.
Operators in the form of (1) are called weighted composition operators.

We are interested in the algebraic character of the Banach-Stone Theorem. The
above argument merely shows that a surjective isometry T between the rings C(X)
and C(Y ) of continuous functions preserves maximal ideals. In fact, all maximal
ideals of C(X) are in the form of Mx = {f ∈ C(X) : f(x) = 0}. Thus, TMx = My

where x = ϕ(y). This is, of course, a well-known idea. In another situation, when
T is a ring isomorphism from C(X) onto C(Y ), T also induces a homeomorphism ϕ
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from Y onto X (see e.g. [5, p.57]). In this case, T preserves all ideals of the rings
and Tf = f ◦ ϕ,∀f ∈ C(X).

A (not necessarily continuous) linear bijection T : C(X) −→ C(Y ) is said to be
separating, or disjointness preserving, if TfTg = 0 whenever fg = 0. If T is onto,
then the inverse of T also preserves disjointness (see e.g. [1, Theorem 1] and also
[2]). In this case, T induces a homeomorphism between X and Y (see e.g. [6, 4, 7]).
Readers are referred to [2] for more information of disjointness preserving operators.

For each x in X, let

Ix = {f ∈ C(X) : f vanishes in a neighborhood of x}.
Note that the ideal Ix is neither closed, prime nor maximal. But it is contained in a
unique maximal ideal Mx. Moreover, it is somehow ‘prime’ in the sense that f ∈ Ix

whenever fg = 0 and g(x) 6= 0. In fact, |g(y)| > 0 for all y in a neighborhood V of
x and thus forces f vanishes in V . On the other hand, if I is any proper prime ideal
of C(X) then I must contains a unique Ix. In fact, x is the unique common point
in the kernels of all functions in I. Let Px be the family of all prime ideals which
contains Ix. Then, Mx is the union and Ix is the intersection of all prime ideals in
Px. Note also that

⋃
x∈X Px consists of all proper prime ideals of C(X).

We do not give new results in this note. Instead, we demonstrate with new proofs
that the above three Banach-Stone Theorems can be unified in an algebraic setting.
In fact, T inherits algebraic properties from C(X) to C(Y ) of different strength in
different cases. When T is a ring isomorphism, it preserves all ideals. When T is an
isometry, it preserves maximal ideals; namely, TMx = My. When T is separating,
we will see that it preserves all those ideals Ix; namely, TIx = Iy. As consequences of
these ideal preserving properties, T can be written as a weighted composition operator
Tf = h · f ◦ϕ in all three cases. Here, ϕ : Y −→ X is always a homeomorphism, but
the property of the continuous weight function h differs. It is the constant function
h(y) ≡ 1 if T is a ring isomorphism. It is unimodular, i.e., |h(y)| ≡ 1, if T is an
isometry. And h is just non-vanishing when T is separating. In this sense, these
three Banach-Stone type theorems are unified.

We would like to thank K. I. Beidar for helpful discussions. Some of the new
algebraic idea utilized in the following proofs originate in a series of algebra seminars
co-organized by him.

Lemma 1. Let T : C(X) −→ C(Y ) be a separating linear bijection. Then for each
x in X there is a unique y in Y such that

TIx = Iy.

Moreover, this defines a bijection ϕ from Y onto X by ϕ(y) = x.

Proof. For each x in X, denote by kerT (Ix) the set
⋂

f∈Ix

(Tf)−1(0). We first claim

that kerT (Ix) is non-empty. Suppose on contrary that for each y in Y , there were an
fy in Ix with Tfy(y) 6= 0. Thus, an open neighborhood Uy of y exists such that Tfy

is nonvanishing in Uy. Since Y = ∪y∈Y Uy and Y is compact, Y = Uy1∪Uy2∪· · ·∪Uyn
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for some y1, y2, · · · , yn in Y . Let V be an open neighborhood of x such that fyi |V = 0
for all i = 1, 2, · · · , n. Let g ∈ C(X) such that g(x) = 1 and g vanishes outside
V . Then fyig = 0, and thus TfyiTg = 0 since T preserves disjointness. This forces
Tg|Ui = 0 for all i = 1, 2, · · · , n. Therefore, Tg = 0 and hence g = 0 by the injectivity
of T , a contradiction! We thus prove that kerT (Ix) 6= ∅.

Let y ∈ kerT (Ix). For each f ∈ Ix, we want to show that Tf ∈ Iy. If there
exists a g in C(X) such that Tg(y) 6= 0 and fg = 0, then we are done by the
disjointness preserving property of T . Suppose there were no such g; that is, for
any g in C(X) vanishing outside V = f−1(0), we have Tg(y) = 0. Let W ⊂ V

be a compact neighborhood of x and k ∈ C(X) such that k|W = 1 and k vanishes
outside V . Then for any g in C(X), g = kg + (1 − k)g. Since (1 − k)|W = 0,
(1− k)g ∈ Ix. This implies T ((1− k)g)(y) = 0 as y ∈ kerT (Ix). On the other hand,
kg vanishes outside V . Hence T (kg)(y) = 0 by the above assumption. It follows
that Tg(y) = Tkg(y) + T (1 − k)g(y) = 0 for all g in C(X). This conflicts with the
surjectivity of T . Therefore, TIx ⊆ Iy. Similarly, T−1(Iy) ⊆ Ix′ for some x′ in X

since T−1 is also separating. It follows that Ix ⊆ T−1(Iy) ⊆ Ix′ . Consequently, x = x′

and T (Ix) = Iy. The bijectivity of ϕ is also clear now.

Theorem 2. Two compact Hausdorff spaces X and Y are homeomorphic whenever
there is a separating linear bijection T from C(X) onto C(Y ).

Proof. We show that the bijection ϕ given in Lemma 1 is a homeomorphism. It
suffices to verify the continuity of ϕ since Y is compact and X is Hausdorff. Suppose
on contrary that there exists a net {yλ} in Y converging to y but ϕ(yλ) → x 6= ϕ(y).
Let Ux and Uϕ(y) be disjoint open neighborhoods of x and ϕ(y), respectively. Now
for any f in C(X) vanishing outside Uϕ(y), we shall show that Tf(y) = 0. In fact,
ϕ(yλ) belongs to Ux for large λ. Since f |Ux = 0 and Ux is also a neighborhood of
ϕ(yλ), we have f ∈ Iϕ(yλ). By Lemma 1, Tf ∈ Iyλ

and in particular Tf(yλ) = 0 for
large λ. This implies Tf(y) = 0 by the continuity of Tf . Let k ∈ C(X) such that
k|V = 1 and k vanishes outside Uϕ(y), where V ⊂ Uϕ(y) is a compact neighborhood
of ϕ(y). Then g = kg + (1 − k)g for every g in C(X). Since kg vanishes outside
Uϕ(y), we have T (kg)(y) = 0. On the other hand, we have (1 − k)g ∈ Iϕ(y) since
(1− k)|V = 0. By Lemma 1, T ((1− k)g) ∈ Iy and thus T ((1− k)g)(y) = 0. It follows
that Tg(y) = T (kg)(y) + T ((1− k)g)(y) = 0. This is a contradiction since T is onto.
Hence ϕ is a homeomorphism.

Theorem 3. Let X and Y be compact Hausdorff spaces. Then every separating
linear bijection T : C(X) −→ C(Y ) is a weighted composition operator

Tf(y) = h(y)f(ϕ(y)), ∀f ∈ C(X), ∀y ∈ Y.

Here ϕ is a homeomorphism from Y onto X and h is a nonvanishing continuous
scalar function on Y . In particular, T is automatically continuous.

Proof. By Theorem 2, we have a homeomorphism ϕ from Y onto X such that T (Ix) =
Iy where ϕ(y) = x. We claim that TMx ⊆ My. If this is true then ker δx ⊆ ker δy ◦T .
Consequently, there is a scalar h(y) such that δy ◦T = h(y)δx. Equivalently, Tf(y) =
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h(y)f(ϕ(y)) for all f in C(X) and y in Y . Since h = T1 and T is onto, h is continuous
and non-vanishing.

To verify the claim, suppose on contrary f ∈ Mx but Tf(y) 6= 0. If x belongs to
the interior of f−1(0), then f ∈ Ix and thus Tf(y) = 0. Therefore, we may assume
there is a net {xλ} in X converging to x and f(xλ) is never zero. Let yλ in Y such
that ϕ(yλ) = xλ. Clearly, yλ converges to y and we may assume there is a constant
ε such that |Tf(yλ)| ≥ ε > 0 for all λ. For n = 1, 2, . . . , set

Vn = {z ∈ X :
1

2n + 1
≤ |f(z)| ≤ 1

2n
}

and

Wn = {z ∈ X :
1
2n

≤ |f(z)| ≤ 1
2n− 1

}.
Then at least one of the unions V =

⋃∞
n=1 Vn and W =

⋃∞
n=1 Wn contains a subnet

of {xλ}. Without loss of generality, we assume that all xλ belong to V . Let V ′
n be

an open set containing Vn such that V ′
n ∩ V ′

m = ∅ if n 6= m. Let gn in C(X) be of
norm at most 1/2n such that gn agrees with f on Vn and vanishes outside V ′

n for
each n. Then gngm = 0 for all m 6= n. Let g =

∑∞
n=1 2ngn ∈ C(X). Note that g

agrees with 2nf on each Vn. Moreover, each xλ belongs to a unique Vn and n → ∞
as λ → ∞. Therefore, g − 2nf ∈ Ixλ

. This implies T (g − 2nf) ∈ Iyλ
and thus

Tg(yλ) = 2nTf(yλ) →∞ as λ →∞. But the limit should be Tg(y), a contradiction.
This completes the proof.
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