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Introduction

Let X and V be Banach spaces. We consider the following control system

x(t) = x∗(t) +
t∫

0

�(t, s)[ f (s, x(s)) + Bu(s)]ds, t ∈ [0, T ], (1.1)

where the state function x takes values in X , the control u takes values in V , f : [0, T ] ×
X → X is a nonlinear map and B : V → X is a bounded linear operator. Here also
x∗ ∈ C([0, T ]; X) is a given function and �(t, s) is a bounded linear operator in X for each
t, s ∈ [0, T ], t ≥ s.

It is well-known that system (1.1) arises from many classes of Cauchy problems for differ-
ential equations, in which � usually stands for a semigroup or an evolution process. In many
papers the exact controllability for nonlinear systems was considered with the suggestion
that the linear controllability operator Wu = ∫ T

0 �(T, s)Bu(s)ds is pseudo-invertible, i.e.,
W must be surjective. See, e.g., [2,23] and other related works. However, as it was pointed
out in [25,26], this assumption on W can not be satisfied in the cases when X is an infi-
nite-dimensional space and � (or B) is a compact operator. Therefore, the concept of exact
controllability is too strong and in these cases, the notion of approximate controllability is
more useful.

In [24] the controllability problem for system (1.1) was treated by proving that the reach-
ability set is invariant under nonlinear perturbations. By using this approach, a number of
works were carried out for a wide class of semilinear control systems, see [16–18] and ref-
erences therein. It should be noted however that in these works the authors assumed the
uniqueness of a solution and, as the consequence, they obtained the fact that the solution map
W u := x(·) is a single-valued and compact map. The uniqueness can be provided by the
assumption that the nonlinearity f is a Lipschitz function. In order to fulfill the compactness
supposition, the compactness of � or some restricting hypotheses on f were imposed. We
refer the readers to [24] for details.

In the present work, by using the concept of a measure of non-compactness (MNC), we
deal with a more general class of nonlinearities f which does not guarantee the uniqueness of
a solution for Eq. 1.1. However, by using the fixed point approach for multivalued maps, we
can apply the similar arguments as in [24] to show that the reachability set for control system
(1.1) is the same as that of the corresponding linear problem (when f = 0). The lack of
uniqueness prevents us from using the well-known tools such as Banach and Schauder fixed
point theorems to show the invariance of reachable set for (1.1) as in [24]. This difficulty
leads us to study the structure of the solution set for (1.1), before applying a fixed point theory
for non-convex valued multimaps. It is worth noting that in our problem, �(t, s) does not
need to be a semigroup neither an evolution operator, so we can impose general conditions
on � and provide the applications of abstract results to various problems, examples of which
are presented in the last section.

This article is organized in the following way. In the next section, we prove the existence
result for (1.1) under suitable assumptions on � and f . In particular, it is assumed that the
nonlinearity f satisfies a regularity condition expressed in terms of a MNC. This allows us to
employ the technique of the fixed point theory for condensing maps to solve the problem. It
should be noted that such an approach was developed in [12] and its application to a control-
lability problem can be found in [20]. In “Topological Structure of the Solution Set” section,
we prove some properties related to the topological structure of the solution set, which allows
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to deduce a fixed point result in “Invariance of the Reachability Set” section and opens the
possibility to prove the invariance of reachability set for our problem under nonlinear per-
turbations. In the last section we consider the applications to approximate controllability for
two classes of controlled problems: the first problem relates to a fractional order differential
equation and the second one concerns a first order evolution equation with multiple delays.

Existence Result

Let us recall some definitions and results which will be used in the sequel.

Definition 2.1 Let E be a Banach space, P(E) denote the collection of all nonempty subsets
of E , and (A, �) a partially ordered set. A function β : P(E) → A is called a MNC in E if

β(co �) = β(�) for every � ∈ P(E),

where co � is the closure of convex hull of �. A MNC β is called

(i) monotone, if for each �0,�1 ∈ P(E) such that �0 ⊂ �1, we have
β(�0) � β(�1);

(ii) nonsingular, if β({a} ∪ �) = β(�) for any a ∈ E,� ∈ P(E);
(iii) invariant with respect to the union with a compact set, if β(K ∪ �) = β(�) for every

relatively compact set K ⊂ E and � ∈ P(E);
If A is a cone in a normed space, we say that β is

(iv) algebraically semi-additive, if β(�0 +�1) � β(�0)+β(�1) for any �0,�1 ∈ P(E);
(v) regular, if β(�) = 0 is equivalent to the relative compactness of �.

An important example of MNC, satisfying all above properties, is the Hausdorff MNC:

χ(�) = inf{ε : � has a finite ε-net}.
Another examples of MNCs on the space C([0, T ]; X) of continuous functions on interval
[0, T ] taking values in a Banach space X are the following:

(i) the damped modulus of fiber non-compactness

γ (�) = sup
t∈[0,T ]

e−Ltχ(�(t)) (2.1)

where L is a nonnegative constant, χ is the Hausdorff MNC on X and �(t) = {y(t) :
y ∈ �};

(ii) the modulus of equicontinuity

modC (�) = lim
δ→0

sup
y∈�

max|t1−t2|<δ
‖y(t1) − y(t2)‖. (2.2)

As it was indicated in [12], these MNCs satisfy all the above mentioned properties except
the regularity.

Definition 2.2 A continuous map F : X ⊂ E → E is said to be condensing with respect to
a MNC β (β-condensing) if for every bounded set � ⊂ X that is not relatively compact, we
have

β(F(�)) 	� β(�).
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The application of the topological degree theory for condensing maps (see [12]) implies
the following fixed point principle.

Theorem 2.1 Let V ⊂ E be a bounded open neighborhood of zero and F : V → E a
β-condensing map with respect to a monotone nonsingular MNC β in E . If F satisfies the
boundary condition

x 	= λF(x)

for all x ∈ ∂V and 0 < λ � 1 then the fixed point set Fi x(F) = {x : x = F(x)} is nonempty
and compact.

Now we will describe conditions which will be imposed on maps in (1.1).
Let X be a Banach space, p � 1 be given and q the conjugate of p (i.e., 1

p + 1
q = 1 and

q = +∞ if p = 1). We assume that

(�1) there exists a function ρ ∈ Lq(0, T ) such that ‖�(t, s)‖X→X � ρ(t − s) for all
t, s ∈ [0, T ], t ≥ s;

(�2) ‖�(t, s) − �(r, s)‖X→X � ε for 0 � s � r − ε, r < t = r + h � T with
ε = ε(h) → 0 as h → 0.

We now suppose that the nonlinearity f satisfies the following conditions:

(F1) the map f : [0, T ] × X → X is continuous;
(F2) there exists a function μ ∈ L p(0, T ) such that

‖ f (t, η)‖X � μ(t)(1 + ||η||X )

for all t ∈ [0, T ] and η ∈ X;
(F3) there exists a function k : [0, T ] × [0, T ] → R

+ such that k(t, ·) ∈ L1(0, t) for each
t ∈ [0, T ] and

χ(�(t, s) f (s,�)) � k(t, s)χ(�)

for a.e. s ∈ [0, t] and for all bounded set � ⊂ X, where χ is the Hausdorff MNC in
X.

Remark 2.1 1. If X is a finite-dimensional space, one can exclude the hypothesis (F3) since
it can be deduced from (F2).

2. It is known that (see e.g., [12]) condition (F3) is fulfilled if

f (s, η) = f1(s, η) + f2(s, η)

where f1 is Lipschitzian with respect to the second argument:

‖ f1(s, ξ) − f1(s, η)‖X � h(s)‖ξ − η‖X

for some h ∈ L p(0, T ) and f2 is compact in second argument, i.e., for each s ∈ [0, T ]
and bounded � ⊂ X , the set f2(s,�) is relatively compact in X . In this case, one can
take k(t, s) = ρ(t − s)h(s).

Denote by S : L p(0, T ; X) → C([0, T ]; E) the operator given by

(Sg)(t) :=
t∫

0

�(t, s)g(s)ds. (2.3)

The following result was proved in [24, Lemma 1].
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Lemma 2.2 ([24]) Assume that � satisfies (�1)–(�2). Then the operator S defined in (2.3)
sends each bounded set to equicontinuous one.

Consider an abstract operator L : L1(0, T ; X) → C([0, T ]; X) satisfying the following
conditions:

(L1) there exists a constant C > 0 such that

||L( f )(t) − L(g)(t)||X ≤ C

t∫

0

|| f (s) − g(s)||X ds,

for all f, g ∈ L1([0, T ]; X), t ∈ [0, T ];
(L2) for each compact set K ⊂ X and sequence { fn} ⊂ L1([0, T ]; X) such that { fn(t)}

⊂ K for a.e. t ∈ [0, T ], the weak convergence fn ⇀ f0 implies L( fn) → L( f0)

strongly in C([0, T ]; X).

As it was mentioned in [12, Remark 4.2.3], the Cauchy operator

GI ( f )(t) =
t∫

0

f (s)ds, (2.4)

satisfies (L1)–(L2) with C = 1.
Notice the following assertion providing us with a basic MNC-estimate.

Lemma 2.3 ([12]) Let L satisfy (L1)–(L2) and a sequence {ξn} ⊂ L1([0, T ]; X) be integ-
rably bounded, i.e.,

‖ξn(t)‖ ≤ ν(t) for a.e. t ∈ [0, T ],
where ν ∈ L1(0, T ). Assume that there exists q ∈ L1([0, T ]) such that

χ({ξn(t)}) ≤ q(t) for a.e. t ∈ [0, T ].
Then

χ({L(ξn)(t)}) ≤ 2C

t∫

0

q(s)ds

for each t ∈ [0, T ].
For a given u ∈ L p(0, T ; V ), consider the operator

Fu : C([0, T ]; X) → C([0, T ]; X),

Fu(x)(t) = x∗(t) +
t∫

0

�(t, s)[ f (s, x(s)) + Bu(s)]ds. (2.5)

It is easy to check that Fu is continuous. Moreover, a function x ∈ C([0, T ]; X) is a solution
of problem (1.1) if and only if x is a fixed point of Fu .

Consider now the function

ν : P(C([0, T ]; X)) → R
2
+,

ν(�) = max
D∈�(�)

(γ (D), modC (D)), (2.6)
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where R+ = R+ ∪{+∞}, the MNCs γ and modC are defined in (2.1) and (2.2) respectively,
�(�) is the collection of all countable subsets of � and the maximum is taken in the sense
of the partial order in the cone R

2
+. By the same arguments as in [12], one can see that ν

is well defined. That is, the maximum is archieved in �(�) and ν is a MNC in the space
C([0, T ]; X), which satisfies all properties in Definition 2.1 (see [12, Example 2.1.3] for
details).

Let us now choose L > 0 in the definition of γ such that

� = sup
t∈[0,T ]

2

t∫

0

e−L(t−s)k(t, s)ds < 1, (2.7)

where k is the function from condition (F3).

Theorem 2.4 Let � satisfy (�1)–(�2) and f have properties (F1)–(F3). Then for each
u ∈ L p(0, T ; V ), Fu is ν-condensing.

Proof Let � ⊂ C([0, T ]; X) be a bounded set such that

ν(Fu(�)) � ν(�). (2.8)

We will show that � is relatively compact in C([0, T ]; X). By the definition of ν, there exists
a sequence {zn} ⊂ Fu(�) such that

ν(Fu(�)) = (γ ({zn}), modC ({zn})).
Following the construction of Fu , one can take a sequence {xn} ⊂ � and the sequence
{ fn} ⊂ L p(0, T ; X) such that

fn(t) = f (t, xn(t)) + Bu(t) (2.9)

and

zn = x∗ + S fn, (2.10)

i.e.,

zn(t) = x∗(t) +
t∫

0

�(t, s) fn(s)ds.

Using assumption (F3), we have

χ({�(t, s) fn(s)}) = χ(�(t, s) f (s, {xn(s)}))
� k(t, s)χ({xn(s)})
� k(t, s)eLs sup

s∈[0,T ]
e−Lsχ({xn(s)}) = k(t, s)eLsγ ({xn}), (2.11)

for all t ∈ [0, T ], s � t . Then applying Lemma 2.3 with L = GI , we obtain

χ({S fn(t)}) = χ

⎛
⎝

⎧⎨
⎩

t∫

0

�(t, s) fn(s)ds

⎫⎬
⎭

⎞
⎠ � 2

⎛
⎝

t∫

0

eLsk(t, s)ds

⎞
⎠ γ ({xn}). (2.12)
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This implies

e−Ltχ({S fn(t)}) � 2

⎛
⎝

t∫

0

e−L(t−s)k(t, s)ds

⎞
⎠ γ ({xn}).

Taking (2.7) and (2.10) into account, we arrive at

γ ({zn}) � �γ ({xn}). (2.13)

Combining the last inequality with (2.8), we have

γ ({xn}) � �γ ({xn})
and therefore

γ ({xn}) = 0

by choosing � in (2.7). Hence by (2.13) we get

γ ({zn}) = 0.

In addition, from (F2) and (2.9) we conclude that { fn} is a bounded sequence in L p(0, T ; X).
Then Lemma 2.2 ensures that {S fn} is equicontinuous in C([0, T ]; X). Thus, modC ({zn}) =
modC ({S fn}) = 0. Finally,

ν(�) = (0, 0)

and therefore, by the regularity of ν, the set � is relatively compact. �

In the sequel we will need the following version of the Gronwall–Bellman Inequality (see,

e.g., [22]).

Lemma 2.5 Assume that f (t), g(t) and y(t) are non-negative integrable functions in [0, T ]
satisfying the integral inequality

y(t) � g(t) +
t∫

0

f (s)y(s)ds, t ∈ [0, T ].

Then we have

y(t) � g(t) +
t∫

0

exp

⎧⎨
⎩

t∫

s

f (θ)dθ

⎫⎬
⎭ f (s)g(s)ds, t ∈ [0, T ].

Now we are in position to present the main result of this section.

Theorem 2.6 Suppose that (�1)–(�2) hold and f satisfies (F1)–(F3). Then for each u ∈
L p(0, T ; V ), problem (1.1) has at least one solution in C([0, T ]; X).

Proof In order to apply Theorem 2.1, we will prove that if x = λFu(x) for some 0 < λ � 1
then x must belong to a priori bounded set in C([0, T ]; X). Indeed, let x = λFu(x), i.e.,

x(t) = λ

⎛
⎝x∗(t) +

t∫

0

�(t, s)( f (s, x(s)) + Bu(s))ds

⎞
⎠ .
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Then the application of the Hölder inequality and property (F2) yields the following estimates

‖x(t)‖X � C0 + C�

⎛
⎝

t∫

0

‖ f (s, x(s))‖p
X

⎞
⎠

1
p

+ C�‖Bu‖L p(0,T ;X)

� C0 + 2C�

⎛
⎝

t∫

0

|μ(s)|p(1 + ‖x(s)‖p
X )

⎞
⎠

1
p

+ C�‖Bu‖L p(0,T ;X),

where C0 = ‖x∗‖C([0,T ];X) and

C� =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎝

T∫

0

|ρ(s)|qds

⎞
⎠

1
q

, if q < +∞,

sup
t∈[0,T ]

ρ(t), if q = +∞.

This implies

‖x(t)‖p
X � 2p−1

⎛
⎝C p

0 + 2pC p
�C p

μ + C p
�‖Bu‖p

L p(0,T ;X)
+

t∫

0

|μ(s)|p‖x(s)‖p
X ds

⎞
⎠

where Cμ = ‖μ‖L p(0,T ). Now applying the Bellman–Gronwall inequality given in
Lemma 2.5 we get

‖x(t)‖p
X � g0

(
1 + 2p−1C p

μe2p−1C p
μ

)

where g0 = 2p−1
(

C p
0 + 2pC p

�C p
μ + C p

�‖Bu‖p
L p(0,T ;X)

)
. Then we can take the ball BR

centered at origin with radius R > g
1
p

0

(
1 + 2p−1C p

μe2p−1C p
μ

) 1
p

and apply Theorem 2.1 to

the restriction of Fu onto BR . �


Topological Structure of the Solution Set

Let Y and Z be metric spaces. A multi-valued map (multimap) G : Y → P(Z) is said to be:
(i) upper semi-continuous (u.s.c.) if the set

G−1+ (V ) = {y ∈ Y : G(y) ⊂ V }
is open for any open set V ⊂ Z; (ii) closed if its graph �G ⊂ Y × Z ,

�G = {(y, z) : z ∈ G(y)}
is a closed subset of Y × Z .

The multimap G is called quasi-compact if its restriction to any compact set is compact.
The following statement gives a sufficient condition for upper semi-continuity.

Lemma 3.1 ([12]) Let Y and Z be metric spaces and G : Y → P(Z) a closed quasi-compact
multimap with compact values. Then G is u.s.c.
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Consider the solution multimap

W : L p(0, T ; V ) → P(C([0, T ]; X))

W (u) = {x : x = Fu(x)}. (3.1)

We need an additional assumption on �:

(�3) �(t, s) is compact for all t > s.

Lemma 3.2 Under assumptions (�1)–(�3) and (F1)–(F2), the solution multimap W defined
by (3.1) is completely continuous, i.e., it is u.s.c. and sends each bounded set to a relatively
compact one.

Proof Let Q ⊂ L p(0, T ; V ) be a bounded set. We prove that W (Q) is relatively compact in
C([0, T ]; X). Suppose that {xn} ⊂ W (Q). Then there exists a sequence {un} ⊂ Q such that

xn(t) = x∗(t) +
t∫

0

�(t, s)[ f (s, xn(s)) + Bun(s)]ds. (3.2)

Equivalently, we can write

xn = x∗ + S( fn + Bun), (3.3)

where fn(t) = f (t, xn(t)). We observe that {Bun} is a bounded set in L p(0, T ; X) since B
is a bounded linear operator. This implies, by property (�3), that {S(Bun)(t)} is compact in
X for each t ∈ [0, T ] and we obtain from (3.3) that

χ({xn(t)}) = χ({S fn(t)}) = 0 (3.4)

for all t ∈ [0, T ]. On the other hand, by using similar arguments as in the proof of Theo-
rem 2.6, we can obtain that {xn} is a bounded sequence in C([0, T ]; X). This implies that
{ fn} is also bounded in L p(0, T ; X) and Lemma 2.2 ensures that {S( fn + Bun)} is equicon-
tinuous. In view of (3.3), we conclude that {xn} is also equicontinuous. Therefore {xn} is
relatively compact by the Arzela–Ascoli theorem.

In order to prove that W is u.s.c., it remains to show, according to Lemma 3.1, that W is
closed graph. Let un → u in L p(0, T ; V ) and xn ∈ W (un), xn → x in C([0, T ]; X). We
claim that x ∈ W (u). Indeed, one has

xn(t) = x∗(t) +
t∫

0

�(t, s)[ f (s, xn(s)) + Bun(s)]ds. (3.5)

Since f is a continuous function, we have f (s, xn(s)) → f (s, x(s)) for a.e. s ∈ [0, T ]. Due
to the fact that { f (·, xn(·))} is L p-integrably bounded, the Lebesgue dominated convergence
theorem implies

f (·, xn(·)) − f (·, x(·)) → 0 in L p(0, T ; X).

In addition, since B is bounded, one can assert that

Bun(·) − Bu(·) → 0 in L p(0, T ; X).
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Therefore, taking (3.5) into account, we arrive at

x(t) = x∗(t) +
t∫

0

�(t, s)[ f (s, x(s)) + Bu(s)]ds.

The proof is completed. �

Let us recall some notions which we will need in the sequel.

Definition 3.1 A subset B of a metric space Y is said to be contractible in Y if the inclu-
sion map iB : B → Y is null-homotopic, i.e., there exists y0 ∈ Y and a continuous map
h : B × [0, 1] → Y such that h(y, 0) = y and h(y, 1) = y0 for every y ∈ B.

Definition 3.2 A subset B of a metric space Y is called an Rδ-set if B can be represented as
the intersection of decreasing sequence of compact contractible sets.

A multimap G : X → P(Y ) is said to be an Rδ-map if G is u.s.c. and for each x ∈ X ,
G(x) is an Rδ-set in Y . Every single-valued continuous map can be seen as Rδ-map.

The following lemma gives us a convenient condition for a set of being Rδ .

Lemma 3.3 ([6]) Let X be a metric space, E a Banach space and g : X → E a proper map,
i.e., g is continuous and g−1(K ) is compact for each compact set K ⊂ E. If there exists a
sequence {gn} of mappings from X into E such that

(1) gn is proper and {gn} converges to g uniformly on X;
(2) for a given point y0 ∈ E and for all y in a neighborhood N (y0) of y0 in E, there exists

exactly one solution xn of the equation gn(x) = y.

Then g−1(y0) is an Rδ-set.

In order to use this Lemma, we need the following result, which is called the Lasota–Yorke
Approximation Theorem (see e.g., [9]).

Lemma 3.4 Let E be a normed space and f : X → E a continuous map. Then for each
ε > 0, there is a locally Lipschitz map fε : X → E such that:

‖ fε(x) − f (x)‖E < ε

for each x ∈ X.

The following theorem is the main result in this section.

Theorem 3.5 Assume the hypotheses of Theorem 2.6. Then for each u ∈ L p(0, T ; V ), W (u)

is an Rδ-set.

Proof Since the nonlinearity f in our problem is continuous, according to Lemma 3.4, one
can take a sequence { fn} of continuous, locally Lipschitz functions such that

‖ fn(t, x) − f (t, x)‖X < εn for all t ∈ [0, T ] and x ∈ X,

where εn → 0 as n → ∞. Without loss of generality, we can assume that

|| fn(t, x)||X ≤ μ(t)(1 + ||x ||X ) + 1,

for all n.
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Consider the equation

x(t) = y∗(t) +
t∫

0

�(t, s)[ fn(s, x(s)) + Bu(s)]ds. (3.6)

Using the same arguments as in the previous section, one obtains the existence result for
(3.6). In addition, since fn is locally Lipschitz, the solution of (3.6) is unique.

Let

G(x) = (I − Fu)(x),

Fu
n (x) = x∗(t) +

t∫

0

�(t, s)[ fn(s, x(s)) + Bu(s)]ds,

Gn(x) = (I − Fu
n )(x).

The maps G and Gn are proper. Indeed, we will prove this assertion, e.g., for G. Let us show
that G−1(K ) is a compact set for each compact set K ⊂ C([0, T ]; X). Assume that

(I − Fu)(D) = K

and {xn} ⊂ D is any sequence. Then there exists a sequence {yn} ⊂ K such that

xn − Fu(xn) = yn .

That is,

xn = x∗ + yn + S( fn + Bu), (3.7)

where fn(t) = f (t, xn(t)).
Using (F2) and the fact that {yn} is bounded in C([0, T ]; X), we see that {xn} is also

bounded in C([0, T ]; X). Then, in turn, { fn} is bounded in L p(0, T ; X). Thus {S( fn))} is
equicontinuous according to Lemma 2.2 yielding the equicontinuity of the sequence {xn}.

Further, taking into account (3.7) and using the fact that {yn(t)} is compact for all t ∈
[0, T ], we get

χ({xn(t)}) ≤ χ({yn(t)}) + χ({S( fn + Bu)(t)}) = 0.

Thus {xn} is relatively compact and therefore D is a compact set.
On the other hand, {Gn} converges to G uniformly in C([0, T ]; X) and equation

Gn(x) = y

has a unique solution for each y ∈ C([0, T ]; X) as well as Eq. 3.6. Therefore, applying
Lemma 3.3 we conclude that

W (u) = G−1(0)

is an Rδ-set. The proof is completed. �


Invariance of the Reachability Set

Recall some notions and facts which will be needed in the sequel.

Definition 4.1 (see, e.g., [5]). Let Y be a metric space.
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(1) Y is called an absolute retract (AR-space) if for any metric space X and any closed
A ⊂ X , every continuous function f : A → Y can be extended to a continuous
function f̃ : X → Y .

(2) Y is called an absolute neighborhood retract (ANR-space) if for any metric space X ,
any closed A ⊂ X and continuous function f : A → Y , there exists a neighborhood
U ⊃ A and a continuous extension f̃ : U → Y of f .

Obviously, if Y is AR-space then Y is ANR-space.

Proposition 4.1 ([7]) Let C be a convex set in a locally convex linear space Y . Then C is
an AR-space.

In particular, the last proposition yields that every Banach space is an AR-space.
The following theorem is the main tool for this section. For related results on fixed point

theory for ANR-spaces, we refer the reader to [9,11,14].

Theorem 4.2 ([10, Corollary 4.3]) Let Y be an AR-space. Assume that φ : Y → P(Y ) can
be factorized as

φ = φN ◦ φN−1 ◦ . . . ◦ φ1

where

φi : Yi−1 → P(Yi ), i = 1, .., N

are Rδ-maps and Yi , i = 1, .., N − 1 are ANR-spaces, Y0 = YN = Y are AR-spaces. If there
is a compact set K such that φ(Y ) ⊂ K ⊂ Y then φ has a fixed point.

We are in a position to give some hypotheses for the controllability results. The following
hypothesis was introduced in [24].

(S) for each g ∈ L p(0, T ; X), there exists v ∈ L p(0, T ; V ) such that

ST Bv = ST g,

where

ST g := (Sg)(T ).

It is obvious that condition (S) is fulfilled if B is surjective. The following lemma was stated
in [24, Lemma 2]:

Lemma 4.3 Let condition (S) hold. Then there exists a continuous map C : L p(0, T ; X)

→ L p(0, T ; V ) such that for any g ∈ L p(0, T ; X),

ST BCg + ST g = 0,

‖Cg‖L p(0,T ;V ) � α‖g‖L p(0,T ;X)

where α is a positive number.

Let us denote by N f , the Nemytskii operator corresponding to the nonlinearity f :

N f : C([0, T ]; X) → L p(0, T ; X),

N f (x)(t)∗ = f (t, x(t))
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for each t ∈ [0, T ]. Obviously, N f is continuous. Consider the map

G : L p(0, T ; V ) → P(L p(0, T ; V )),

G(u) = C N f W (u0 + u) (4.1)

where W is the solution multimap and C is the operator in Lemma 4.3, u0 ∈ L p(0, T ; V ) is
given. The following result is the key point in this section.

Lemma 4.4 Under assumptions (�1)–(�3), (F1)–(F2) and (S), there exists r∗ > 0 such
that G has a fixed point in L p(0, T ; V ) provided ‖B‖ < r∗.

Proof We first prove that there is a number R > 0 such that G(BR) ⊂ BR , where BR is
the closed ball in L p(0, T ; V ) centered at origin with radius R. Let u ∈ L p(0, T ; V ) and
v ∈ G(u) = C N f W (u0 + u). Then we have

‖v‖L p(0,T ;V ) � α‖N f (ω)‖L p(0,T ;X)

for some ω ∈ W (u0 + u), where α is the constant given in Lemma 4.3. Hence from the
definition of N f and assumption (F2), we deduce that

‖v‖L p(0,T ;V ) � α
( T∫

0

|μ(s)|p(1 + ‖ω(s)‖)pds
) 1

p
.

Now using the similar estimates as in Theorem 2.6, one gets

‖v‖L p(0,T ;V ) � αCμ

(
1 + ‖ω‖C([0,T ];X)

)

� αCμ

[
1 + 2

p−1
p

(
C p

0 + 2pC p
�C p

μ + C p
�‖B(u0 + u)‖p

L p(0,T ;X)

) 1
p

(
1 + 2p−1C p

μ exp(2p−1C p
μ)

) 1
p
]

� αCμ

[
1 + 2

p−1
p

(
C0 + 2C�Cμ + C�‖B(u0 + u)‖L p(0,T ;X)

)
(

1 + 2
p−1

p Cμ exp
( 1

p
2p−1C p

μ

))]

� R0 + R1‖B‖
(
‖u0‖L p(0,T ;V ) + ‖u‖L p(0,T ;V )

)
,

where

R0 = αCμ

[
1 + 2

p−1
p (C0 + 2C�Cμ)

(
1 + 2

p−1
p Cμ exp

( 1

p
2p−1C p

μ

))]
,

R1 = 2
p−1

p αCμC�

[
1 + 2

p−1
p Cμ exp

( 1

p
2p−1C p

μ

)]
.

The last inequality tells us that if ‖B‖ < 1
R1

then there is a number R > R0 + R1‖B‖
‖u0‖L p(0,T ;V ) such that

‖v‖L p(0,T ;V ) � R

provided ‖u‖L p(0,T ;V ) � R, implying G(BR) ⊂ BR .
Finally, by the compactness of W (u0 + BR), the existence of a fixed point for G follows

from Theorem 4.2 due to the fact that
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K := G(BR) = C N f W (u0 + BR) ⊂ BR

is a compact set. The proof is completed. �

Consider the set

K f := {x(T ; u) : u ∈ L p(0, T ; V )},
where x(·; u) is a solution of (1.1) corresponding to the control u. This set is called the
reachability set of controlled problem (1.1). Similarly, we denote by K0 the reachability set
for the corresponding linear problem ( f = 0). For the basic notions and facts of control
problems, the readers are referred to [3,4,8].

Definition 4.2 Problem (1.1) is said to be exactly controllable if K f = X . It is called
approximately controllable if K f = X .

We have the following assertion:

Theorem 4.5 Under the hypotheses of Lemma 4.4, we have

K f = K0.

Proof We use the similar arguments as those in [24, Theorem 1]. Let ξ ∈ K0. Then there
exists u0 ∈ L p(0, T ; V ) such that

ξ = x∗(T ) + ST Bu0.

Taking a fixed point û of G(·) = C N f W (u0 + ·), we set

u := u0 + û.

Let x̂(·; u) ∈ W (u) be a solution of (1.1) corresponding to the control u such that

û = C N f (x̂).

Then

x̂(T ; u) = x∗(T ) + ST (N f (x̂) + Bu)

= x∗(T ) + ST Bu0 + ST N f (x̂) + ST Bû

= ξ + ST N f (x̂) + ST BC N f (x̂)

= ξ

according to the definition of the operator C . Thus K0 ⊂ K f .
Conversely, suppose that η ∈ K f . Then there exists u ∈ L p(0, T ; V ) and

x̂ ∈ C([0, T ]; X) such that

η = x̂(T ; u) = x∗(T ) + ST N f (x̂) + ST Bu.

Denoting

u0 = u − C N f (x̂),

we see that

x0(T ) = x∗(T ) + ST Bu0

= x∗(T ) + ST Bu − ST BC N f (x̂)
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= x∗(T ) + ST N f (x̂) + ST Bu −
(

ST N f (x̂) + ST BC N f (x̂)
)

= x∗(T ) + ST N f (x̂) + ST Bu

= η.

Since x0(T ) ∈ K0, one gets that K f ⊂ K0. So we have the desired conclusion. �


Applications to Approximate Controllability

In this section we present two examples illustrating our result.

Fractional Order Differential Control Problem

We will consider a control system governed by a semilinear differential equation of a frac-
tional order in a Banach space. It should be mentioned that at the present time the differential
equations with fractional order have been proved to be valuable tools in the investigation of
many phenomena in various fields of physics and engineering (viscoelasticity, electrochem-
istry, electromagnetism, etc.) and they attract the attention of many researchers (see, e.g., [1,
13,15,19,21] and references therein). We recall some concepts from the fractional calculus.

Let X be a Banach space.

Definition 5.1 The Riemann–Liouville fractional primitive of order α > 0 of a function
f ∈ L1(0, T ; X) is defined by

I α
0 f (t) = 1

�(α)

t∫

0

(t − s)α−1 f (s)ds,

where � is the Gamma function.

Definition 5.2 Let f ∈ C([0, T ]; X). The Riemann–Liouville fractional derivative of order
α ∈ (0, 1) of f is defined by

Dα
0 f (t) = 1

�(1 − α)

d

dt

t∫

0

(t − s)−α f (s)ds.

Consider the problem

Dα
0 x(t) = Ax(t) + f (t, x(t)) + λu(t), t ∈ [0, T ], (5.1)

x(0) = 0 (5.2)

where A is closed linear operator generating a compact strongly continuous semigroup et A

in X , u takes its values in X and λ is a real parameter. The mild solution for (5.1)–(5.2) (see,
e.g., [1,19]) is a function x ∈ C([0, T ]; X) satisfying

x(t) = 1

�(α)

t∫

0

(t − s)α−1e(t−s)A[ f (s, x(s)) + λu(s)]ds. (5.3)

In this case

�(t, s) := (t − s)α−1et A

satisfies (�1)–(�3) with q < 1
1−α

(accordingly, p > 1
α

).
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Let

Bu :=
T∫

0

�(T, s)u(s)ds

and B∗ be the adjoint operator of B. We have the following controllability result:

Theorem 5.1 Suppose that f satisfies (F1)–(F2) for p > 1
α

and λ > 0 is sufficiently small.
If the implication

B∗z = 0 for z ∈ X∗ ⇒ z = 0 (5.4)

holds, then problem (5.1)–(5.2) is approximately controllable.

Proof As indicated above, if p > 1
α

then � satisfies (�1)–(�3). In addition, since B = λI :
V = X → X is surjective, the condition (S) is fulfilled. Thus the hypotheses of Theorem 4.5
are satisfied and then

K f = K0.

The remaining arguments follow from [8, Theorem 8.8]. If (5.4) holds, we get K0 = X . �

First Order Differential Control Problem with Multiple Delays

As a second example, we consider the following problem in a Banach space X :

x ′(t) = Ax(t) +
N∑

i=1

Ai x(t − hi ) + f (t, x(t)) + Bu(t), t ∈ [0, T ], (5.5)

x(θ) = ϕ(θ), θ ∈ [−h, 0], (5.6)

where hi ∈ [0, h] for all i = 1, 2, . . . , N , A is the infinitesimal generator of a compact
strongly continuous semigroup et A in X , the operators Ai : X → X are bounded linear and
ϕ ∈ C([−h, 0]; X). For the linear problem

x ′(t) = Ax(t) +
N∑

i=1

Ai x(t − hi ), t ∈ [0, T ], (5.7)

x(θ) = ϕ(θ), θ ∈ [−h, 0], (5.8)

we recall the definition of the fundamental solution from [27]:

Definition 5.3 The operator-valued function S(t), t ∈ [0, T ] is called the fundamental solu-
tion of (5.7)–(5.8) if it satisfies

S(t) = et A +
t∫

0

e(t−s)A

[
N∑

i=1

AiS(s − hi )

]
ds, t ∈ [0, T ],

S(t) = 0, −h � t < 0, S(0) = I.

Following [27, Lemma 2.1], we see that S(t) is bounded and compact on [0, T ]. Based
on the notion of the fundamental solution, the mild solution of (5.5)–(5.6) is defined as

x(t) = S(t)ϕ(0) +
t∫

0

S(t − s)[ f (s, x(s)) + Bu(s)]ds, t ∈ [0, T ],

x(θ) = ϕ(θ), t ∈ [−h, 0].

123

Author's personal copy



Differ Equ Dyn Syst

Obviously, in this example

�(t, s) := S(t − s)

satisfies (�1)–(�3) with all 1 � q � +∞.
Denote

C =
T∫

0

S(T − s)B B∗S∗(T − s)ds,

Rλ = (λI + C)−1.

We have the following assertion:

Theorem 5.2 Assume that X and V are Hilbert spaces. Let f satisfy (F1)–(F2) with p = 2;
B be a surjective map with a sufficiently small norm ‖B‖. If λRλ → 0 as λ → 0 in strong
operator topology then problem (5.7)–(5.8) is approximately controllable.

Proof Obviously, the hypotheses of Theorem 4.5 are fulfilled. So we have K f = K0. There-
fore the conclusion is ensured by [3, Theorem 2]. �


Conclusions

We study the controllability problem for a system governed by a nonlinear Volterra type
equation, to which the solution is not unique. Our system is derived from a wide class of
evolution equations, some of which are presented in the previous section. We prove that
the reachability set of our controlled problem remains invariant comparing with that of cor-
responding linear problem. While the existence result is ensured by the fixed point theory
for condensing maps, the invariance of reachability set is proved by applying a fixed point
theorem for non-convex valued multimaps, which can be factorized as a number of Rδ-maps.
This result implies that the nonlinear problem is approximately controllable, provided that
the corresponding linear problem is.
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