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a b s t r a c t

Let E be a real Banach space with a uniformly Gâteaux differentiable norm and which
possesses uniform normal structure, K a nonempty bounded closed convex subset of E,
{Ti}Ni=1 a finite family of asymptotically nonexpansive self-mappings on K with common
sequence {kn}∞n=1 ⊂ [1, ∞), {tn}, {sn} be two sequences in (0, 1) such that sn + tn = 1
(n ≥ 1) and f be a contraction on K . Under suitable conditions on the sequences {sn}, {tn},
we show the existence of a sequence {xn} satisfying the relation xn = (1−

1
kn

)xn+ sn
kn
f (xn)+

tn
kn
T n
rnxn where n = lnN + rn for some unique integers ln ≥ 0 and 1 ≤ rn ≤ N . Further we

prove that {xn} converges strongly to a common fixed point of {Ti}Ni=1, which solves some
variational inequality, provided ‖xn − Tixn‖ → 0 as n → ∞ for i = 1, 2, . . . ,N . As an
application, we prove that the iterative process defined by z0 ∈ K , zn+1 = (1 −

1
kn

)zn +

sn
kn
f (zn) +

tn
kn
T n
rnzn, converges strongly to the same common fixed point of {Ti}Ni=1.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Throughout this paper, we assume that E is a real Banach space with dual E∗ and K a nonempty closed convex subset of
E. Let J : E → 2E∗

be the normalized duality mapping defined by
J(x) := {x∗

∈ E∗
: 〈x, x∗

〉 = ‖x‖2
= ‖x∗

‖
2
}, x ∈ E.

Amapping f : K → K is called a contraction if there exists a constantα ∈ [0, 1) such that ‖f (x)−f (y)‖ ≤ α‖x−y‖∀x, y ∈ K .
A mapping T : K → K is called nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖∀x, y ∈ K , and is called asymptotically nonexpansive if
there exists a sequence {kn} ⊂ [1, ∞)with limn→∞ kn = 1 such that ‖T nx−T ny‖ ≤ kn‖x−y‖ for all n ≥ 1 and all x, y ∈ K . It
is easy to see that every contraction is nonexpansive, and every nonexpansivemapping is asymptotically nonexpansive. The
converse is not valid. In 1972, Goebel and Kirk [1] proved that if the space E is assumed to be uniformly convex, then every
asymptotically nonexpansive self-mapping T on a bounded closed convex subset K ⊂ E has a fixed point. Subsequently, Lim
and Xu [2] also proved another existence result which is similar to the existence theorem in [1]. Moreover, Lim and Xu [2]
introduced an implicit iterative scheme as follows:

Suppose that K is a bounded closed convex subset of a Banach space E and T : K → K is an asymptotically nonexpansive
mapping. Fix a u in K and define for each n ≥ 1 the contraction Sn : K → K by

Sn(x) =

(
1 −

tn
kn

)
u +

tn
kn

T nx, (1)

∗ Corresponding author.
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where {tn} ⊂ [0, 1) is any sequence such that tn → 1 as n → ∞. Then the Banach Contraction Principle yields a unique
point xn fixed by Sn. Now the question gives rise to whether the sequence {xn} converges strongly to a fixed point of T . The
following is a partial answer.

Theorem 1.1 ([2]). Suppose E is uniformly smooth and {tn} is chosen so that

lim
n→∞

(kn − 1)/(kn − tn) = 0.

(Such a sequence {tn} always exists, for example, take tn = min{1 − (kn − 1)1/2, 1 − n−1
}.) Suppose in addition the condition

limn→∞ ‖xn − Txn‖ = 0 holds. Then the sequence {xn} converges strongly to a fixed point of T .

On the other hand, Moudafi [3] proposed a viscosity approximationmethod of selecting a particular fixed point of a given
nonexpansive mapping in Hilbert spaces. If H is a Hilbert space, T : K → K is a nonexpansive self-mapping of a nonempty
closed convex subset K of H , and f : K → K is a contraction, he proved the strong convergence of both the implicit and
explicit methods:

xn =
1

1 + εn
Txn +

εn

1 + εn
f (xn), (2)

and

xn+1 =
1

1 + εn
Txn +

εn

1 + εn
f (xn), (3)

where limn→∞ εn = 0. Motivated by Moudafi [3], Xu [4] studied the viscosity approximation methods for a nonexpansive
mapping in a uniformly smooth Banach space. For a contraction f on K and t ∈ (0, 1), let xt ∈ K be the unique fixed
point of the contraction x 7→ tf (x) + (1 − t)Tx. Consider also the iteration process {xn}, where x0 ∈ K is arbitrary and
xn+1 = αnf (xn) + (1 − αn)Txn for n ≥ 1, where {αn} ⊂ (0, 1). Xu [4] proved that {xt} and, under certain appropriate
conditions on {αn}, {xn} converge strongly to a fixed point of T which solves some variational inequality.

Very recently, the viscosity approximation methods are extended by Shahzad and Udomene [5] to develop new iterative
schemes for an asymptotically nonexpansive mapping. They proved the following theorems.

Theorem 1.2 ([5, Theorem 3.1]). Let E be a real Banach space with a uniformly Gâteaux differentiable norm possessing uniform
normal structure, K a nonempty closed convex and bounded subset of E, T : K → K an asymptotically nonexpansive mapping
with sequence {kn}n ⊂ [1, ∞) and f : K → K a contraction with constant α ∈ [0, 1). Let {tn}n ⊂ (0, (1−α)kn

kn−α
) be such that

limn→∞ tn = 1 and limn→∞
kn−1
kn−tn

= 0. Then,
(i) for each n ≥ 0, there is a unique xn ∈ K such that

xn =

(
1 −

tn
kn

)
f (xn) +

tn
kn

T nxn; (4)

and, if in addition, limn→∞ ‖xn − Txn‖ = 0, then,
(ii) the sequence {xn} converges strongly to the unique solution of the variational inequality:

p ∈ F(T ) such that 〈(I − f )p, j(p − x∗)〉 ≤ 0 ∀x∗
∈ F(T ).

Theorem 1.3 ([5, Theorem 3.3]). Let E be a real Banach space with a uniformly Gâteaux differentiable norm possessing uniform
normal structure, K be a nonempty closed convex and bounded subset of E, T : K → K be an asymptotically nonexpansive
mapping with sequence {kn}n ⊂ [1, ∞) and f : K → K be a contraction with constant α ∈ [0, 1). Let {tn}n ⊂ (0, ξn) be such
that limn→∞ tn = 1,

∑
∞

n=1 tn(1 − tn) = ∞ and limn→∞
kn−1
kn−tn

= 0, where ξn = min{
(1−α)kn
kn−α

, 1
kn

}. For an arbitrary z0 ∈ K let
the sequence {zn}n be iteratively defined by

zn+1 :=

(
1 −

tn
kn

)
f (zn) +

tn
kn

T nzn, n ≥ 1. (5)

Then,
(i) for each n ≥ 0, there is a unique xn ∈ K such that

xn =

(
1 −

tn
kn

)
f (xn) +

tn
kn

T nxn;

and, if in addition, limn→∞ ‖xn − Txn‖ = 0 and limn→∞ ‖zn − Tzn‖ = 0, then
(ii) the sequence {zn}n converges strongly to the unique solution of the variational inequality:

p ∈ F(T ) such that 〈(I − f )p, j(p − x∗)〉 ≤ 0 ∀x∗
∈ F(T ).
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Furthermore, Chang et al. [6] studied the weak and strong convergence of implicit iteration process

xn = αnxn−1 + (1 − αn)T ln+1
rn xn, n ≥ 1, (6)

for a finite family {Ti}Ni=1 of asymptotically nonexpansive self-mappings on a nonempty closed convex subsetK of a uniformly
convex Banach space satisfying Opial condition, where n = lnN + rn for some unique integers ln ≥ 0 and 1 ≤ rn ≤ N . In the
proof of the main results of Chang et al. [6], the following proposition is crucial.

Proposition 1.1 ([6, Proposition 1]). Let K be a nonempty subset of E, and {Ti}Ni=1 be N asymptotically nonexpansive self-
mappings on K . Then,

(i) there exists a sequence {kn} ⊂ [1, ∞) with kn → 1 such that

‖T n
i x − T n

i y‖ ≤ kn‖x − y‖ ∀n ≥ 1, x, y ∈ K , i = 1, 2, . . . ,N; (7)

(ii) {T n
i }

N
i=1 is uniformly Lipschitzian with a Lipschitzian constant L ≥ 1, i.e., there exists a constant L ≥ 1 such that

‖T n
i x − T n

i y‖ ≤ L‖x − y‖ ∀n ≥ 1, x, y ∈ K , i = 1, 2, . . . ,N. (8)

We call the sequence {kn}n a common sequence of a finite family {Ti}Ni=1 of asymptotically nonexpansive self-mappings.
Meantime, the authors [7] introduced and studied the implicit iteration schemewith perturbedmappings for common fixed
points of a finite family of nonexpansive mappings, as a special case of asymptotically nonexpansive mappings, in a Hilbert
space.

Themain aim of this paper is to obtain fixed point solutions of variational inequalities for a finite family of asymptotically
nonexpansive mappings defined on a real Banach space with uniformly Gâteaux differentiable norm possessing uniform
normal structure. We prove, under appropriate conditions on K , T and {sn}, {tn} ⊂ (0, 1), that the sequence {zn} defined
iteratively by: z0 ∈ K ,

zn+1 :=

(
1 −

1
kn

)
zn +

sn
kn

f (zn) +
tn
kn

T n
rnzn, (9)

where sn + tn = 1, and n = lnN + rn for some unique integers ln ≥ 0 and 1 ≤ rn ≤ N , converges strongly to the unique
solution of the above variational inequality.We remark that Shahzad and Udomene’s theorems [5] extend Theorems 4.1 and
4.2 of [4] to the more general class of asymptotically nonexpansive self-mappings and to the much more general class of
Banach spaces (see Theorems 1.1 and 1.2) and the corresponding results of [8] (hence of [9]) follow as immediate corollaries
of their theorems. Now, our results extend Theorems 3.1 and 3.3 of [5] to new viscosity iterative schemes and to the case of
a finite family of asymptotically nonexpansive self-mappings. Therefore our results are the improvements and extension of
the corresponding ones in [3–10].

2. Preliminaries

Let E be a Banach space. Let SE := {x ∈ E : ‖x‖ = 1} denote the unit sphere of E. Recall that E is said to have a Gâteaux
differentiable norm if for each x ∈ SE the limit

lim
t→0

(‖x + ty‖ − ‖x‖)/t (10)

exists for all y ∈ SE , and we call E smooth. In this case, it is known [11] that the normalized duality mapping J on E is single-
valued. E is said to have a uniform Gâteaux differentiable norm if for each y ∈ SE the limit (10) is attained uniformly for
x ∈ SE . Further, E is said to be uniformly smooth if the limit (10) exists uniformly for (x, y) ∈ SE ×SE . It is known [11] that if E
has a uniform Gâteaux differentiable norm then the normalized duality mapping J on E is single-valued and norm-to-weak∗

uniformly continuous on any bounded subset of E.
Let K be a nonempty closed convex and bounded subset of E and let the diameter of K be defined by d(K) := sup{‖x−y‖ :

x, y ∈ K}. For each x ∈ K , let r(x, K) := sup{‖x − y‖ : y ∈ K} and let r(K) := inf{r(x, K) : x ∈ K} denote the Chebyshev
radius of K relative to itself. The normal structure coefficient N(E) of E (cf. [12]) is defined by

N(E) := inf
{
d(K)

r(K)
: K is a closed convex and bounded subset of E with d(K) > 0

}
.

A space E such that N(E) > 1 is said to have uniform normal structure. It is known that every space with a uniform normal
structure is reflexive, and that all uniformly convex and uniformly smooth Banach spaces have uniformly normal structure
(see e.g., [2,13]).

Let LIM be a Banach limit. Recall that LIM ∈ (`∞)∗ such that ‖LIM‖ = 1, lim infn→∞ an ≤ LIMnan ≤ lim supn→∞ an, and
LIMnan = LIMnan+1 for all {an}n ∈ `∞.

The following lemmas will be needed in what follows. Lemma 2.1 is well known.
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Lemma 2.1. Let E be an arbitrary real Banach space. Then

‖x + y‖2
≤ ‖x‖2

+ 2〈y, j(x + y)〉 (11)

for all x, y ∈ E and all j(x + y) ∈ J(x + y).

Lemma 2.2 (Kim and Xu [4]). Let E be a Banach space with uniform normal structure, K a nonempty closed convex and bounded
subset of E, and T : K → K an asymptotically nonexpansive mapping. Then T has a fixed point.

Lemma 2.3 (Chidume et al. [8], Xu [4,9]). Let {an}n be a sequence of nonnegative real numbers such that

an+1 ≤ (1 − λn)an + λnγn, n = 0, 1, 2, . . . ,

where {λn}n is a sequence in (0, 1) and {γn}n is a sequence in R such that
(i)

∑
∞

n=1 λn = ∞;
(ii) lim supn→∞ γn ≤ 0 or

∑
∞

n=1 |λnγn| < ∞.
Then limn→∞ an = 0.

Lemma 2.4 (See Lim and Xu [2, Theorem 1]). Suppose that E is a Banach space with uniform normal structure, C is a nonempty
bounded subset of E, and T : C → C is an asymptotically nonexpansive mapping with {kn} ⊂ [1, ∞) such that limn→∞ kn = 1
and supn≥1 kn <

√
N(E). Suppose also that there exists a nonempty bounded closed convex subset D of C with the following

property (P):

x ∈ D ⇒ ωw(x) ⊂ D, (P)

where ωw(x) is the weak ω-limit set of T at x, i.e., the set

{y ∈ E : y = weak − lim
j→∞

T njx for some nj ↑ ∞}.

Then T has a fixed point in D.

3. Main results

Theorem 3.1. Let E be a real Banach space with a uniformly Gâteaux differentiable norm possessing uniform normal structure,
K be a nonempty closed convex and bounded subset of E, {T1, T2, . . . , TN} : K → K be N asymptotically nonexpansive mappings
with common sequence {kn}n ⊂ [1, ∞) such that supn≥1 kn <

√
N(E), and let f : K → K be a contraction with constant

α ∈ [0, 1). Let {sn}, {tn} be two sequences in (0, 1) such that (a) sn + tn = 1 for all n ≥ 1, and (b) {tn}n ⊂ (0, 1−α
kn−α

),
limn→∞ tn = 1 and limn→∞

kn−1
1−tn

= 0. Then
(i) for each n ≥ 1, there is a unique xn ∈ K such that

xn =

(
1 −

1
kn

)
xn +

sn
kn

f (xn) +
tn
kn

T n
rnxn (12)

where n = lnN + rn for some unique integers ln ≥ 0 and 1 ≤ rn ≤ N; and if in addition, limn→∞ ‖xn − Tixn‖ = 0, TiTj = TjTi
and F(Ti) is convex for 1 ≤ i, j ≤ N, then

(ii) the sequence {xn}n converges strongly to the unique solution of the variational inequality:

p ∈ F such that 〈(I − f )p, j(p − x∗)〉 ≤ 0 ∀x∗
∈ F , (13)

where F = ∩
N
i=1 F(Ti).

Proof. First, using Lemma 2.2 we know that each F(Ti) is nonempty, bounded, and closed for 1 ≤ i ≤ N . By the condition on
{tn}, for each n ≥ 1 the mapping Sn : K → K defined for each x ∈ K by Snx := (1 −

1
kn

)x +
sn
kn
f (x) +

tn
kn
T n
rnx is a contraction.

Indeed, observe that for all x, y ∈ K

‖Snx − Sny‖ ≤

(
1 −

1
kn

)
‖x − y‖ +

sn
kn

‖f (x) − f (y)‖ +
tn
kn

‖T n
rnx − T n

rny‖

≤

(
1 −

1
kn

)
‖x − y‖ +

snα
kn

‖x − y‖ +
tnkn
kn

‖x − y‖

=

{(
1 −

1
kn

)
+

snα
kn

+ tn

}
‖x − y‖

= θn‖x − y‖,



Author's personal copy

2316 L.-C. Ceng et al. / Computers and Mathematics with Applications 56 (2008) 2312–2322

where θn = (1 −
1
kn

) +
snα
kn

+ tn. Observe that

θn < 1 ⇔

(
1 −

1
kn

)
+

snα
kn

+ tn < 1

⇔ tn <
1 − α

kn − α
.

It follows that there exists a unique xn ∈ K such that Snxn = xn. Now we define φ : K → [0, ∞) by

φ(z) = LIMn‖xn − z‖2.

Since φ is continuous and convex, φ(z) → ∞ as ‖z‖ → ∞, and E is reflexive, φ attains its infimum over K . Hence, the set

D = {x ∈ K : φ(x) = min
z∈K

φ(z)}

is nonempty, closed and convex.
We claim that for any l ≥ 1,

⋂l
i=1 F(Ti)∩D 6= ∅ if limn→∞ ‖xn − Tixn‖ = 0, TiTj = TjTi and F(Ti) is convex for 1 ≤ i, j ≤ l.

Indeed, whenever l = 1, we set T1 = T for convenience. Then in terms of Lemma 2.2 we have F(T ) 6= ∅. We follow the
line of argument in Lim and Xu [2, Theorem 2]. Though D is not necessarily invariant under T , it does have the property (P).
In fact, if x is in D and y = w- limj→∞ Tmjx belongs to the weak ω-limit set ωw(x) of T at x, then from the w-l.s.c. of φ and
limn→∞ ‖xn − Txn‖ = 0, we deduce that

φ(y) ≤ lim inf
j→∞

φ(T njx) ≤ lim sup
m→∞

φ(Tmx)

= lim sup
m→∞

(LIMn‖xn − Tmx‖2)

= lim sup
m→∞

(LIMn‖Tmxn − Tmx‖2)

≤ lim sup
m→∞

k2mLIMn‖xn − x‖2
= LIMn‖xn − x‖2

= min
z∈K

φ(z).

This shows that y belongs to D and hence D satisfies the property (P). It follows from Lemma 2.4 that T has a fixed point in
D, i.e., F(T ) ∩ D 6= ∅.

For l ≥ 1, assume that
⋂l

i=1 F(Ti) ∩ D 6= ∅ whenever limn→∞ ‖xn − Tixn‖ = 0, TiTj = TjTi and F(Ti) is convex for
1 ≤ i, j ≤ l. Let us show that

⋂l+1
i=1 F(Ti)∩D 6= ∅ if limn→∞ ‖xn−Tixn‖ = 0, TiTj = TjTi and F(Ti) is convex for 1 ≤ i, j ≤ l+1.

In this case, it is clear that
⋂l

i=1 F(Ti) ∩ D is nonempty, bounded, closed and convex. Then define a subsetW of C as

W =

x ∈

l⋂
i=1

F(Ti) ∩ D : φ(x) = min
z∈

l⋂
i=1

F(Ti)∩D

φ(z)

 .

Since φ is continuous and convex, φ(z) → ∞ as ‖z‖ → ∞ and E is reflexive, φ attains its infimum over
⋂l

i=1 F(Ti) ∩ D.
Hence the subset W is nonempty, bounded, closed and convex. Now we prove that W has the property (P), i.e., x ∈ W ⇒

ωw(x) ⊂ W where

{y ∈ X : y = weak − lim
j→∞

T
nj
l+1x for some nj ↑ ∞}.

Observe that Tl+1(
⋂l

i=1 F(Ti)) ⊂
⋂l

i=1 F(Ti) since TiTl+1 = Tl+1Ti for each i = 1, 2, . . . , l, implies that for eachu ∈
⋂l

i=1 F(Ti)

Tl+1u = Tl+1Tiu = TiTl+1u, 1 ≤ i ≤ l,

that is, Tl+1u ∈
⋂l

i=1 F(Ti). Suppose that x is inW and y = w- limj→∞ T
mj
l+1x belongs to the weak ω-limit set ωw(x) of Tl+1 at

x. Then x ∈
⋂l

i=1 F(Ti) ∩ D and φ(x) = minz∈
⋂l

i=1 F(Ti)∩D φ(z). From x ∈
⋂l

i=1 F(Ti) and Tl+1 :
⋂l

i=1 F(Ti) →
⋂l

i=1 F(Ti), we

have {Tm
l+1x} ⊂

⋂l
i=1 F(Ti). Again from the closedness and convexity of

⋂l
i=1 F(Ti), we have y ∈

⋂l
i=1 F(Ti). Note that from

the w-l.s.c. of φ and limn→∞ ‖xn − Tl+1xn‖ = 0, we derive

φ(y) ≤ lim inf
j→∞

φ(T
mj
l+1x) ≤ lim sup

m→∞

φ(Tm
l+1x)

= lim sup
m→∞

(LIMn‖xn − Tm
l+1x‖

2)
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= lim sup
m→∞

(LIMn‖Tm
l+1xn − Tm

l+1x‖
2)

≤ lim sup
m→∞

k2mLIMn‖xn − x‖2
= LIMn‖xn − x‖2

= min
z∈K

φ(z)

due to x ∈ D. This shows that y belongs to D and hence y ∈
⋂l

i=1 F(Ti) ∩ D. Since x ∈ W , i.e., x ∈
⋂l

i=1 F(Ti) ∩ D and
φ(x) = minz∈

⋂l
i=1 F(Ti)∩D φ(z), from the last inequality it follows that

φ(y) ≤ LIMn‖xn − x‖2
= min

z∈
l⋂

i=1
F(Ti)∩D

φ(z).

Thus y ∈ W . This implies that W has the property (P) for Tl+1. Consequently, all conditions in Lemma 2.4 are fulfilled.
According to Lemma 2.4, Tl+1 has a fixed point inW , i.e., F(Tl+1)∩W 6= ∅. This shows that

⋂l+1
i=1 F(Ti)∩D 6= ∅. So D∩ F 6= ∅

where F :=
⋂N

i=1 F(Ti) 6= ∅.
According toD∩F 6= ∅, we take p ∈ D∩F and t ∈ (0, 1). Then (1−t)p+tx ∈ K for any x ∈ K . Thus,φ(p) ≤ φ((1−t)p+tx),

and using Lemma 2.1 we have that

0 ≤
φ((1 − t)p + tx) − φ(p)

t
=

LIMn‖xn − p + t(p − x)‖2
− LIMn‖xn − p‖2

t

≤
LIMn[‖xn − p‖2

+ 2t〈p − x, j(xn − p + t(p − x))〉] − LIMn‖xn − p‖2

t
= −2LIMn〈x − p, j(xn − p − t(x − p))〉.

This implies that

LIMn〈x − p, j(xn − p − t(x − p))〉 ≤ 0.

Since K is bounded and j is norm-to-weak∗ uniformly continuous on any bounded subset of E, letting t → 0 we have that

LIMn〈x − p, j(xn − p)〉 ≤ 0 ∀x ∈ K .

In particular,

LIMn〈f (p) − p, j(xn − p)〉 ≤ 0. (14)

Now, since {T1, T2, . . . , TN} : K → K be N asymptotically nonexpansive mappings with common sequence {kn}n ⊂ [1, ∞),
we conclude that for all x∗

∈ F :=
⋂N

i=1 F(Ti)

〈xn − T n
i xn, j(xn − x∗)〉 = 〈xn − x∗

− (T n
i xn − T n

i x
∗), j(xn − x∗)〉

≥ −(kn − 1)‖xn − x∗
‖
2. (15)

By the definition of the sequence {xn}n, we have that

xn =

(
1 −

1
kn

)
xn +

sn
kn

f (xn) +
tn
kn

T n
rnxn,

which implies that

xn − T n
rnxn = −

sn
tn

(xn − f (xn)) = −
1 − tn
tn

(xn − f (xn)).

Hence from (15) we obtain for all x∗
∈ F

〈xn − f (xn), j(xn − x∗)〉 = −
tn

1 − tn
〈xn − T n

rnxn, j(xn − x∗)〉

≤
tn(kn − 1)
1 − tn

‖xn − x∗
‖
2.

Since K is bounded, it follows that

lim sup
n→∞

〈xn − f (xn), j(xn − x∗)〉 ≤ 0 ∀x∗
∈ F . (16)

Observe that

(1 − α)‖xn − p‖2
≤ 〈xn − p, j(xn − p)〉 − 〈f (xn) − f (p), j(xn − p)〉
= 〈xn − f (xn), j(xn − p)〉 + 〈f (p) − p, j(xn − p)〉.
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Thus using (14) and (16) we derive LIMn‖xn − p‖ = 0. Consequently, there exists a subsequence {xnk} of {xn} such that
xnk → p as k → ∞. To fulfil the proof, suppose that there is another subsequence {xnl} of {xn} which converges strongly
to (say) q ∈ K . Then q is a common fixed point of {T1, T2, . . . , TN} by the hypothesis that limn→∞ ‖xn − Tixn‖ = 0 for each
i = 1, 2, . . . ,N . Noticing xnk → p and setting x∗

= q, we infer from (16) that

〈p − f (p), j(p − q)〉 ≤ 0. (17)

Also, noticing xnl → q and setting x∗
= p, we infer from (16) that

〈q − f (q), j(q − p)〉 ≤ 0. (18)

Combining (17) with (18) yields that

‖p − q‖2
≤ 〈f (p) − f (q), j(p − q)〉 ≤ α‖p − q‖2,

which implies that p = q due to α ∈ [0, 1). Therefore, xn → p as n → ∞ and p ∈ F is unique. Again, using (16), we can
readily see that

〈p − f (p), j(p − x∗)〉 ≤ 0 ∀x∗
∈ F . (19)

Thus p is the unique solution of the variational inequality (13). This completes the proof. �

Corollary 3.2. Let E be a real Banach space with a uniformly Gâteaux differentiable norm possessing uniform normal structure,
K be a nonempty closed convex and bounded subset of E, and {T1, T2, . . . , TN} : K → K be N asymptotically nonexpansive
mappings with common sequence {kn}n ⊂ [1, ∞) such that supn≥1 kn <

√
N(E). Let u ∈ K be fixed, {sn}, {tn} be two sequences

in (0, 1) such that (a) sn + tn = 1 for all n ≥ 1, and (b) {tn}n ⊂ (0, 1
kn

), limn→∞ tn = 1 and limn→∞
kn−1
1−tn

= 0. Then
(i) for each n ≥ 1, there is a unique xn ∈ K such that

xn =

(
1 −

1
kn

)
xn +

sn
kn

u +
tn
kn

T n
rnxn

where n = lnN + rn for some unique integers ln ≥ 0 and 1 ≤ rn ≤ N; and if in addition, limn→∞ ‖xn − Tixn‖ = 0, TiTj = TjTi
and F(Ti) is convex for 1 ≤ i, j ≤ N, then

(ii) the sequence {xn}n converges strongly to a common fixed point of {T1, T2, . . . , TN}.

Proof. In this case the map f : K → K defined by f (x) = u∀x ∈ K is a strict contraction with constant α = 0. The proof
follows immediately from Theorem 3.1. �

Remark 3.1. For the case ofN = 1, in the proof of Theorem 3.1we have proven F(T1)∩D 6= ∅where F(T1) is not necessarily
convex. Hence by the careful analysis of the proof of Theorem 3.1 we can see that the following consequence is valid.

Corollary 3.3. Let E be a real Banach space with a uniformly Gâteaux differentiable norm possessing uniform normal structure,
K be a nonempty closed convex and bounded subset of E, T : K → K be an asymptotically nonexpansive mapping with sequence
{kn}n ⊂ [1, ∞) such that supn≥1 kn <

√
N(E), and let f : K → K be a contraction with constant α ∈ [0, 1). Let {sn}, {tn} be

two sequences in (0, 1) such that (a) sn+ tn = 1 for all n ≥ 1, and (b) {tn}n ⊂ (0, 1−α
kn−α

), limn→∞ tn = 1 and limn→∞
kn−1
1−tn

= 0.
Then

(i) for each n ≥ 1, there is a unique xn ∈ K such that

xn =

(
1 −

1
kn

)
xn +

sn
kn

f (xn) +
tn
kn

T nxn;

and if in addition, limn→∞ ‖xn − Txn‖ = 0, then
(ii) the sequence {xn}n converges strongly to the unique solution of the variational inequality:

p ∈ F(T ) such that 〈(I − f )p, j(p − x∗)〉 ≤ 0 ∀x∗
∈ F(T ).

Theorem 3.4. Let E be a real Banach space with a uniformly Gâteaux differentiable norm possessing uniform normal structure,
K be a nonempty closed convex and bounded subset of E, {T1, T2, . . . , TN} : K → K be N asymptotically nonexpansive mappings
with common sequence {kn}n ⊂ [1, ∞) such that supn≥1 kn <

√
N(E), and let f : K → K be a contraction with constant

α ∈ [0, 1). Let {sn}, {tn} be two sequences in (0,1) such that (a) sn+tn = 1 for all n ≥ 1, and (b) {tn}n ⊂ (0, ξn), limn→∞ tn = 1,∑
∞

n=1(1 − tn) = ∞,
∑

∞

n=1(kn − 1) < ∞ and limn→∞
kn−1
1−tn

= 0, where ξn = min{
1−α
kn−α

, 1
kn

}. For an arbitrary z0 ∈ K let the
sequence {zn}n be iteratively defined by (9). Then

(i) for each n ≥ 1, there is a unique xn ∈ K such that

xn =

(
1 −

1
kn

)
xn +

sn
kn

f (xn) +
tn
kn

T n
rnxn
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where n = lnN + rn for some unique integers ln ≥ 0 and 1 ≤ rn ≤ N; and if in addition, limn→∞ ‖xn − Tixn‖ = 0,
limn→∞ ‖zn − Tizn‖ = 0, TiTj = TjTi and F(Ti) is convex for 1 ≤ i, j ≤ N, then

(ii) the sequence {zn}n converges strongly to the unique solution of the variational inequality:

p ∈ F such that 〈(I − f )p, j(p − x∗)〉 ≤ 0 ∀x∗
∈ F ,

where F = ∩
N
i=1 F(Ti).

Proof. Part (i) has already been proved in Theorem 3.1. Assume that limn→∞ ‖xn − Tixn‖ = 0 and limn→∞ ‖zn − Tizn‖ = 0
for each i = 1, 2, . . . ,N , and F 6= ∅. We proceed to prove part (ii). Let n > m. Then, from (12) we get

xm − zn =

(
1 −

1
km

)
(xm − zn) +

sm
km

(f (xm) − zn) +
tm
km

(Tm
rmxm − zn).

We follow the line of the argument in [8]. Applying inequality (11), we estimate as follows:

‖xm − zn‖2
≤

∥∥∥∥(
1 −

1
km

)
(xm − zn) +

tm
km

(Tm
rmxm − zn)

∥∥∥∥2

+ 2
sm
km

〈f (xm) − zn, j(xm − zn)〉

=

∥∥∥∥(
1 −

1
km

)
(xm − zn) +

tm
km

(Tm
rmxm − Tm

rmzn) +
tm
km

(Tm
rmzn − zn)

∥∥∥∥2

+ 2
sm
km

〈f (xm) − zn, j(xm − zn)〉

≤

[(
1 −

1
km

+ tm

)
‖xm − zn‖ +

tm
km

‖Tm
rmzn − zn‖

]2

+ 2
sm
km

〈f (xm) − zn, j(xm − zn)〉

=

(
1 −

1
km

+ tm

)2

‖xm − zn‖2
+ 2

(
1 −

1
km

+ tm

)
tm
km

‖xm − zn‖‖Tm
rmzn − zn‖

+
t2m
k2m

‖Tm
rmzn − zn‖2

+ 2
sm
km

[〈f (xm) − xm, j(xm − zn)〉 + ‖xm − zn‖2
]

≤

[
2
sm
km

+

(
1 −

1
km

+ tm

)2
]

‖xm − zn‖2
+ ‖Tm

rmzn − zn‖
{
2

(
1 −

1
km

+ tm

)
tm
km

‖xm − zn‖

+
t2m
k2m

‖Tm
rmzn − zn‖

}
+ 2

sm
km

〈f (xm) − xm, j(xm − zn)〉.

Since K is bounded, for some constantM > 0, it follows that

〈f (xm) − xm, j(zn − xm)〉 ≤

(
1 −

1
km

+ tm
)2

− (1 − 2 sm
km

)

2 sm
km

M +
M‖zn − Tm

rmzn‖

2 sm
km

.

Observe that

lim
m→∞

(
1 −

1
km

+ tm
)2

− (1 − 2 sm
km

)

2 sm
km

= lim
m→∞


(
1 −

1
km

+ tm
)2

−

(
1 −

sm
km

)2

2 sm
km

+
sm
2km


= lim

m→∞

{
km
2sm

(
2 −

1
km

−
sm
km

+ tm

) (
−

1
km

+ tm +
sm
km

)
+

sm
2km

}
= lim

m→∞

{
tm(km − 1)
2(1 − tm)

(
2 −

2 − tm
km

+ tm

)
+

1 − tm
2km

}
= 0,

and hence

lim sup
n→∞

〈f (xm) − xm, j(zn − xm)〉 ≤

(
1 −

1
km

+ tm
)2

−

(
1 − 2 sm

km

)
2 sm

km

M + lim sup
n→∞

M‖zn − Tm
rmzn‖

2 sm
km

=

(
1 −

1
km

+ tm
)2

−

(
1 − 2 sm

km

)
2 sm

km

M
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since limn→∞ ‖zn − Tizn‖ = 0 for each i = 1, 2, . . . ,N , implies that

lim
n→∞

‖zn − Tm
rmzn‖ ≤ lim

n→∞
{‖zn − Trmzn‖ + ‖Trmzn − T 2

rmzn‖ + · · · + ‖Tm−1
rm zn − Tm

rmzn‖} = 0.

In terms of Theorem 3.1, xm → p ∈ F , which solves the variational inequality (13). Since j is norm-to-weak∗ uniformly
continuous on any bounded subset of E, in the limit asm → ∞, we obtain that

lim sup
n→∞

〈f (p) − p, j(zn − p)〉 ≤ 0. (20)

Now from the iterative process (9) and Lemma 2.1, we estimate as follows:

‖zn+1 − p‖2
≤

∥∥∥∥(
1 −

1
kn

)
(zn − p) +

tn
kn

(T n
rnzn − p)

∥∥∥∥2

+ 2
sn
kn

〈f (zn) − p, j(zn+1 − p)〉

≤

[(
1 −

1
kn

)
‖zn − p‖ +

tn
kn

‖T n
rnzn − p‖

]2

+ 2
sn
kn

‖f (zn) − f (p)‖‖zn+1 − p‖

+ 2
sn
kn

〈f (p) − p, j(zn+1 − p)〉

≤

(
1 −

1
kn

+ tn

)2

‖zn − p‖2
+ 2

snα
kn

‖zn − p‖‖zn+1 − p‖ + 2
sn
kn

〈f (p) − p, j(zn+1 − p)〉

≤

(
1 −

1
kn

+ tn

)2

‖zn − p‖2
+

snα
kn

(‖zn − p‖2
+ ‖zn+1 − p‖2) + 2

sn
kn

〈f (p) − p, j(zn+1 − p)〉,

so that

‖zn+1 − p‖2
≤

(
1 −

1
kn

+ tn
)2

+
snα
kn

1 −
snα
kn

‖zn − p‖2
+ 2

sn
kn

1 −
snα
kn

〈f (p) − p, j(zn+1 − p)〉

=

1 −

1 − 2 snα
kn

−

(
1 −

1
kn

+ tn
)2

1 −
snα
kn

 ‖zn − p‖2
+ 2

sn
kn

1 −
snα
kn

〈f (p) − p, j(zn+1 − p)〉. (21)

Observe that

1 − 2 snα
kn

−

(
1 −

1
kn

+ tn
)2

1 −
snα
kn

=

(
1 −

snα
kn

)2
−

(
1 −

1
kn

+ tn
)2

−
s2nα

2

k2n

1 −
snα
kn

=

(− snα
kn

+
1
kn

− tn)
(
2 −

snα
kn

−
1
kn

+ tn
)

1 −
snα
kn

−

s2nα
2

k2n

1 −
snα
kn

=

(
sn
kn

(1 − α) −
tn(kn−1)

kn

) (
2 −

snα
kn

−
1
kn

+ tn
)

1 −
snα
kn

−

s2nα
2

k2n

1 −
snα
kn

and by (21) for some constantM > 0

‖zn+1 − p‖2
≤

1 −

(
sn
kn

(1 − α) −
tn(kn−1)

kn

) (
2 −

snα
kn

−
1
kn

+ tn
)

1 −
snα
kn

 ‖zn − p‖2
+

s2nα
2

k2n

1 −
snα
kn

‖zn − p‖2

+ 2
sn
kn

1 −
snα
kn

〈f (p) − p, j(zn+1 − p)〉

≤

1 −

(
sn
kn

(1 − α) −
tn(kn−1)

kn

) (
2 −

snα
kn

−
1
kn

+ tn
)

1 −
snα
kn

 ‖zn − p‖2
+

s2nα
2

kn(kn − snα)
M

+ 2
sn

kn − snα
〈f (p) − p, j(zn+1 − p)〉 (22)
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since K is bounded. Now putting

λn =

(
sn
kn

(1 − α) −
tn(kn−1)

kn

) (
2 −

snα
kn

−
1
kn

+ tn
)

1 −
snα
kn

,

and

γn =

(
sn
kn

(1 − α) −
tn(kn − 1)

kn

)−1 (
2 −

snα
kn

−
1
kn

+ tn

)−1 {
s2nα

2

k2n
M + 2

sn
kn

〈f (p) − p, j(zn+1 − p)〉
}

,

we rewrite (22) as follows:

‖zn+1 − p‖2
≤ (1 − λn)‖zn − p‖2

+ λnγn.

Since limn→∞ tn = 1,
∑

∞

n=1(1 − tn) = ∞,
∑

∞

n=1(kn − 1) < ∞ and limn→∞
kn−1
1−tn

= 0, we deduce that
∑

∞

n=1(
sn
kn

(1 − α) −

tn(kn−1)
kn

) = ∞ and hence
∑

∞

n=1 λn = ∞. Furthermore, it is easy to see that

lim
n→∞

sn

(
sn
kn

(1 − α) −
tn(kn − 1)

kn

)−1 (
2 −

snα
kn

−
1
kn

+ tn

)−1

=
1

2(1 − α)
,

and hence lim supn→∞ γn ≤ 0. Consequently, it follows from Lemma 2.3 that zn → p as n → ∞. This completes the
proof. �

Corollary 3.5. Let E be a real Banach space with a uniformly Gâteaux differentiable norm possessing uniform normal structure,
K be a nonempty closed convex and bounded subset of E, and {T1, T2, . . . , TN} : K → K be N asymptotically nonexpansive
mappings with common sequence {kn}n ⊂ [1, ∞) such that supn≥1 kn <

√
N(E). Let u ∈ K be fixed, {sn}, {tn} be two sequences

in (0, 1) such that (a) sn+tn = 1 for all n ≥ 1, and (b) limn→∞ tn = 1, {tn}n ⊂ (0, 1
kn

),
∑

∞

n=1(1−tn) = ∞,
∑

∞

n=1(kn−1) < ∞

and limn→∞
kn−1
1−tn

= 0. Define the sequence {zn}n iteratively by z0 ∈ K,

zn+1 =

(
1 −

1
kn

)
zn +

sn
kn

u +
tn
kn

T n
rnzn,

where n = lnN + rn for some unique integers ln ≥ 0 and 1 ≤ rn ≤ N. Then
(i) for each n ≥ 1, there is a unique xn ∈ K such that

xn =

(
1 −

1
kn

)
xn +

sn
kn

u +
tn
kn

T n
rnxn;

and, if in addition, limn→∞ ‖xn − Tixn‖ = 0, limn→∞ ‖zn − Tizn‖ = 0, TiTj = TjTi and F(Ti) is convex for 1 ≤ i, j ≤ N, then
(ii) {zn}n converges strongly to a common fixed point of {T1, T2, . . . , TN}.

If N = 1 then the following corollary follows immediately from Remark 3.1 and Theorem 3.4.

Corollary 3.6. Let E be a real Banach space with a uniformly Gâteaux differentiable norm possessing uniform normal structure,
K be a nonempty closed convex and bounded subset of E, T : K → K be an asymptotically nonexpansive mapping with sequence
{kn}n ⊂ [1, ∞) such that supn≥1 kn <

√
N(E), and let f : K → K be a contraction with constant α ∈ [0, 1). Let {sn}, {tn} be

two sequences in (0, 1) such that (a) sn + tn = 1 for all n ≥ 1, and (b) {tn}n ⊂ (0, ξn), limn→∞ tn = 1,
∑

∞

n=1(1 − tn) = ∞∑
∞

n=1(kn − 1) < ∞ and limn→∞
kn−1
1−tn

= 0, where ξn = min{
1−α
kn−α

, 1
kn

}. For an arbitrary z0 ∈ K let the sequence {zn}n be
iteratively defined by

zn+1 =

(
1 −

1
kn

)
zn +

sn
kn

f (zn) +
tn
kn

T nzn.

Then
(i) for each n ≥ 1, there is a unique xn ∈ K such that

xn =

(
1 −

1
kn

)
xn +

sn
kn

f (xn) +
tn
kn

T nxn;

and, if in addition, limn→∞ ‖xn − Txn‖ = 0 and limn→∞ ‖zn − Tzn‖ = 0, then
(ii) the sequence {zn}n converges strongly to the unique solution of the variational inequality:

p ∈ F(T ) such that 〈(I − f )p, j(p − x∗)〉 ≤ 0 ∀x∗
∈ F(T ).
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Remark 3.2. (i) Since every nonexpansive mapping is asymptotically nonexpansive, our Corollaries 3.3 and 3.6 hold for
the case when T is simply nonexpansive. In this case, kn = 1 ∀n ≥ 1, our viscosity iterative schemes coincide essentially
with Shahzad and Udomene’s viscosity iterative schemes in [5]. As pointed out in [5, p. 566, Remarks (B)], the boundedness
requirement on K can be removed from the above Corollaries 3.3 and 3.6 (see [4]); kn = 1 ∀n ≥ 1 and the conditions:
limn→∞ ‖xn − Txn‖ = 0 and limn→∞ ‖zn − Tzn‖ = 0 are satisfied. The choice of tn is as follows: tn = 1 −

1
n .

(ii) Since every uniformly smooth Banach space has a uniformly Gâteaux differentiable norm and possesses uniform
normal structure (see e.g., [2,10,11,14,15]), our Theorems 3.1 and 3.4, proved for the more general class of asymptotically
nonexpansive mappings and in the more general real Banach spaces considered here are significant improvements on the
results of [4], and hence of [3]. Meantime, our Theorems 3.1 and 3.4 extend Theorem 3.1 and 3.3 of [5] to new viscosity
iterative schemes and to the case of a finite family of asymptotically nonexpansive mappings.
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