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Abstract. In this paper, the concept of well-posedness for a minimization problem is
extended to develop the concept of well-posedness for a class of strongly mixed variational-
hemivariational inequalities with perturbations which includes as a special case the class of
variational-hemivariational inequalities with perturbations. We establish some metric charac-
terizations for the well-posed strongly mixed variational-hemivariational inequality and give
some conditions under which the strongly mixed variational-hemivariational inequality is
strongly well-posed in the generalized sense. On the other hand, it is also proven that under
some mild conditions there holds the equivalence between the well-posedness for a strongly
mixed variational-hemivariational inequality and the well-posedness for the corresponding in-
clusion problem.
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1. Introduction

It is well-known that the classical notion of well-posedness for the minimization problem
(MP) is due to Tykhonov [25], which has been known as the Tykhonov well-posedness. Let
V be a Banach space and f : V → R ∪ {+∞} be a real-valued functional on V . The
problem (MP), i.e., minx∈V f(x), is said to be well-posed if there exists a unique minimizer
and every minimizing sequence converges to the unique minimizer. Furthermore, the notion of
generalized Tykhonov well-posedness is also introduced for the problem (MP), which means
the existence of minimizers and the convergence of some subsequence of every minimizing
sequence toward a minimizer. Clearly, the concept of well-posedness is inspired by numerical
methods producing optimizing sequences for optimization problems and plays a crucial role in
the optimization theory. Therefore, various concepts of well-posedness have been introduced
and studied for optimization problems. For more details, we refer to [3,9,13,20,31, 37, 38] and
the references therein.

On the other hand, the concept of well-posedness has been extended to other related
problems, such as variational inequalities [4,8,10,11,16,20,33], saddle point problem [7], in-
clusion problems [8,10] and fixed point problems [8,10]. An initial notion of well-posedness
for variational inequalities is due to Lucchetti and Patrone [20]. They introduced the notion
of well-posedness for variational inequalities and proved some related results by means of
Ekeland’s variational principle. Since then, many authors have been devoted to generating
the concept of well-posedness from the minimization problem to various variational inequal-
ities. In [3], Crespi, Guerraggio and Rocca gave the notions of well-posedness for a vector
optimization problem and a vector variational inequality of the differential type, explored
their basic properties and investigated their links. Lignola [16] introduced two concepts of
well-posedness and L-well-posedness for quasivariational inequalities, and investigated some
equivalent characterizations of these two concepts. Recently, Fang, Huang and Yao [10] gener-
alized the concepts of well-posedness and α-well-posedness to a generalized mixed variational
inequality which includes as a special case the classical variational inequality, and discussed
its links with the well-posedness of corresponding inclusion problem and the well-posedness of
corresponding fixed point problem. They also derived some conditions under which the mixed
variational inequality is well-posed. For further results on the well-posedness for variational
inequalities and equilibrium problems, we refer to [1,10,16,17,19,20, 38] and the references
therein.

In 1983, in order to formulate variational principles involving energy functions with no con-
vexity and no smoothness, Panagiotopoulos [23] first introduced the hemivariational inequality
which is an important and useful generalization of variational inequality, and investigated it
by using the mathematical notion of the generalized gradient of Clarke for nonconvex and
nondifferentiable functions [2]. The hemivariational inequalities have been proved very effi-
cient to describe a variety of mechanical problems, for instance, unilateral contact problems
in nonlinear elasticity, problems describing the adhesive and frictional effects, and nonconvex
semipermeability problems (see, for instance, [21-23]). Therefore, in recent years all kinds of
hemivariational inequalities have been studied by many authors [5,6,15,18,21,26-28,33] and the
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study of hemivariational inequalities has emerged as a new and interesting branch of applied
mathematics. However, there are very few researchers extending the well-posedness to hemi-
variational inequalities. In 1995, Goeleven and Mentagui [33] first introduced the notion of
well-posedness for hemivariational inequalities and established some basic results concerning
the well-posed hemivariational inequality.

Very recently, Xiao and Huang [29] generalized the well-posedness of minimization prob-
lems to a class of variational-hemivariational inequalities with perturbations, which includes
as special cases the classical hemivariational inequalities and variational inequalities. Un-
der appropriate conditions, they derived some metric characterizations for the well-posed
variational-hemivariational inequality, presented some conditions under which the variational-
hemivariational inequality is strongly well-posed in the generalized sense. Meantime, they also
proved that the well-posedness for a variational-hemivariational inequality is equivalent to the
well-posedness for the corresponding inclusion problem.

In this paper, we extend the notion of well-posedness for minimization problems to a class of
strongly mixed variational-hemivariational inequalities with perturbations, which includes as
a special case the class of variational-hemivariational inequalities with perturbations in [29].
Under very mild conditions, we establish some metric characterizations for the well-posed
strongly mixed variational-hemivariational inequality, give some conditions under which the
strongly mixed variational-hemivariational inequality is strongly well-posed in the generalized
sense. On the other hand, it is also proven that the well-posedness for a strongly mixed
variational-hemivariational inequality is equivalent to the well-posedness for the corresponding
inclusion problem.

2. Preliminaries

Throughout this paper, unless stated otherwise, we always suppose that V is a real reflexive
Banach space, where its dual space is denoted by V ∗ and the generalized duality pairing
between V and V ∗ is denoted by 〈·, ·〉. We denote the norms of Banach spaces V and V ∗

by ‖ · ‖V and ‖ · ‖V ∗ , respectively. In what follows, let N : V ∗ × V ∗ → V ∗, A, T : V → V ∗

and g : V → V be four mappings, G : V → R ∪ {+∞} be a proper, convex and lower
semicontinuous functional, and f ∈ V ∗ be some given element. Denote by domG the efficient
domain of functional, that is,

domG := {u ∈ V : G(u) < +∞}.

Consider the following strongly mixed variational-hemivariational inequality: find u ∈ V
such that

SMVHVI : 〈N(Ag(u), Tu)− f, v− g(u)〉+ J◦(u, v − g(u)) + G(v)−G(g(u)) ≥ 0, ∀v ∈ V,
(2.1)

where J◦(u, v) denotes the generalized directional derivative in the sense of Clarke of a locally
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Lipschitz functional J : V → R at u in the direction v (see [2]) given by

J◦(u, v) := lim sup
w→u λ↓0

J(w + λv)− J(w)

λ
.

In particular, if N(u∗, v∗) = u∗ + v∗, ∀u∗, v∗ ∈ V ∗ and g = I the identity mapping of
V , then the problem (2.1) reduces to the following variational-hemivariational inequality of
finding u ∈ V such that

VHVI : 〈Au + Tu, v − u〉+ J◦(u, v − u) + G(v)−G(u) ≥ 〈f, v − u〉, ∀v ∈ V, (2.2)

where T is perturbation, which was first introduced and studied by Xiao and Huang [29].
Let Ω be an open bounded subset of R3 which is occupied by a linear elastic body, Γ be

the boundary of the Ω which is assumed to be appropriately regular (C0,1, i.e., a Lipschitzian
boundary, is sufficient). We denote by S = {Si} the stress vector on Γ , which can be de-
composed into a normal component SN and a tangential component ST with respect to Γ ,
i.e.,

SN = σijnjni and STi
= σijnj − (σijninj)ni,

where σ = {σij} is an appropriately defined stress tensor and n = {ni} is the outward
unit normal vector on Γ . Analogously, uN and uT denote the normal and the tangential
components of the displacement vector u with respect to Γ . As pointed out in [29], the
reaction-displacement law presents in compression ideal locking effect (the infinite branch
EF ), i.e., always uN ≤ a, whereas uN > a is impossible. Specifically,

if uN < a then − SN ∈ β̃(uN),

if uN = a then −∞ < −SN ≤ β̃(a),
if uN > a then SN = ∅,

(2.3)

where β̃ is a multivalued function defined as follows: Suppose that β : R → R is a function
such that β ∈ L∞loc(R), i.e., a function essentially bounded on any bounded interval of R. For

any ρ > 0 and ξ ∈ R, we define β̄ρ(ξ) = ess inf |ξ1−ξ|≤ρβ(ξ1) and ¯̄βρ(ξ) = ess sup|ξ1−ξ|≤ρβ(ξ1).

By the monotonicity of the functions β̄ρ and ¯̄βρ with respect to ρ, we infer that the limits as
ρ → 0+ exist, that is,

β̄(ξ) = lim
ρ→0+

β̄ρ(ξ) and ¯̄β(ξ) = lim
ρ→0+

¯̄βρ(ξ).

Then,
β̃(ξ) = [β̄(ξ), ¯̄β(ξ)].

Furthermore, a locally Lipschitz function jN can be determined up to an additive constant by

jN(ξ) =
∫ ξ

0
β(ξ1)dξ1
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such that ∂jN(ξ) = β̃(ξ) for each ξ ∈ R when the limits β(ξ±) exist, where ∂jN is the Clarke’s
generalized gradient of locally Lipschitz function jN which will be specified in the follows.

Now, let K = {uN |uN ≤ a}, NK be the normal cone to K at uN and IK be the indicator
of the set K. Then (2.3) can be written as

−SN ∈ β̃(uN) + NK(uN) = ∂jN(uN) + ∂IK(uN), (2.4)

where ∂IK is the subgradient of the convex functional IK in the sense of convex analysis, which
will also be specified in the follows. By the definitions of the Clarke’s generalized gradient of
locally Lipschitz function and the subgradient of the convex functional, (2.4) gives rise to the
following variational-hemivariational inequality

uN ∈ R : 〈SN , v − uN〉+ j◦N(uN , v − uN) + IK(v)− IK(uN) ≥ 0, ∀v ∈ R, (2.5)

which is a special case of the variational-hemivariational inequality VHVI. Beyond question,
the problem (2.5) is a special case of the strongly mixed variational-hemivariational inequality
SMVHVI as well. More special cases of the SMVHVI are stated as follows:

(i) If G = δK and J(u) =
∫
Ω j(x, u)dΩ , where δK denotes the indicator functional of a

nonempty, convex subset K of a function space V defined on Ω and j : Ω × R → R is a
locally Lipschitz continuous function, then the SMVHVI reduces to the following strongly
mixed variational-hemivariational inequality:

SMVHVI : 〈N(Ag(u), Tu)− f, v − g(u)〉+ J◦(u, v − g(u)) ≥ 0, ∀v ∈ K. (2.6)

Remark that, the SMVHVI (2.6) with N(Ag(u), Tu) = Ag(u) + Tu and g = I, is equivalent
to the VHVI which was considered by Goeleven and Mentagui in [33].

(ii) If G = 0, then the SMVHVI (2.1) with N(Ag(u), Tu) = Ag(u) + Tu reduces to the
strongly mixed hemivariational inequality of finding u ∈ V such that

SMHVI : 〈Ag(u) + Tu− f, v − g(u)〉+ J◦(u, v − g(u)) ≥ 0, ∀v ∈ V. (2.7)

Remark that, the SMHVI (2.7) with T = 0 and g = I, is equivalent to the hemivariational
inequality (HVI) studied intensively by many authors (see, e.g., [21,22]).

(iii) If J = 0, then the SMVHVI (2.1) with N(Ag(u), Tu) = Ag(u) + Tu reduces to the
strongly mixed variational inequality of finding u ∈ V such that

SMVI : 〈Ag(u) + Tu− f, v − g(u)〉+ G(v)−G(g(u)) ≥ 0, ∀v ∈ V. (2.8)

Remark that, the SMVI (2.8) with T = 0 and g = I, is equivalent to the mixed variational
inequality (see, e.g., [10,30]) and the references therein).

(iv) If T = 0, J = 0, g = I and G = δK , then the SMVHVI (2.1) with N(Ag(u), Tu) =
Ag(u) + Tu reduces to the classical variational inequality:

VI : 〈Au− f, v − u〉 ≥ 0, ∀v ∈ K.
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(v) If N = 0, J = 0, g = I and f = 0, then the SMVHVI (2.1) reduces to the global
minimization problem:

MP : min
u∈V

G(u).

Let ∂G(u) : V → 2V ∗ \ {∅} and ∂J(u) : V → 2V ∗ \ {∅} denote the subgradient of convex
functional G in the sense of convex analysis (see [24]) and the Clarke’s generalized gradient
of locally Lipschitz functional J (see [2]), respectively. That is,

∂G(u) = {u∗ ∈ V ∗ : G(v)−G(u) ≥ 〈u∗, v − u〉, ∀v ∈ V }

and
∂J(u) = {ω ∈ V ∗ : J◦(u, v) ≥ 〈ω, v〉, ∀v ∈ V }.

Remark 2.1 (see [34]). The Clarke’s generalized gradient of a locally Lipschitz functional
J : V → R at a point u is given by

∂J(u) = ∂(J◦(u, ·))(0).

About the subgradient in the sense of convex analysis, the Clarke’s generalized directional
derivative and the Clarke’s generalized gradient, we have the following basic properties (see,
e.g., [2,24,29,34]).

Proposition 2.1. Let V be a Banach space and G : V → R ∪ {+∞} be a convex and
proper functional. Then we have the following properties of ∂G:

(i) ∂G(u) is convex and weak∗-closed;
(ii) If G is continuous at u ∈ domG, then ∂G(u) is nonempty, convex, bounded, and

weak∗-compact;
(iii) If G is Gateaux differentiable at u ∈ domG, then ∂G(u) = {DG(u)}, where DG(u) is

the Gateaux derivative of G at u.

Proposition 2.2. Let V be a Banach space and G1, G2 : V → R ∪ {+∞} be two convex
functionals. If there is a point u0 ∈ domG1 ∩ domG2 at which G1 is continuous, then the
following equation holds:

∂(G1 + G2)(u) = ∂G1(u) + ∂G2(u), ∀u ∈ V.

Proposition 2.3. Let V be a Banach space, u, v ∈ V and J be a locally Lipschitz
functional defined on V . Then

(i) The function v 7→ J◦(u, v) is finite, positively homogeneous, subadditive and then
convex on V ;

(ii) J◦(u, v) is upper semicontinuous as a function of (u, v), as a function of v alone, is
Lipschitz continuous on V ;
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(iii) J◦(u− v) = (−J)◦(u, v);
(iv) ∂J(u) is a nonempty, convex, bounded, weak∗-compact subset of V ∗;
(v) For every v ∈ V , one has

J◦(u, v) = max{〈ξ, v〉 : ξ ∈ ∂J(u)}.

Now we recall some important definitions and useful results.

Definition 2.1 (see [32]). Let V be a real Banach space with its dual V ∗ and T be an
operator from V to its dual space V ∗. T is said to be monotone if

〈Tu− Tv, u− v〉 ≥ 0, ∀u, v ∈ V.

Definition 2.2 (see [32]). A mapping T : V → V ∗ is said to be hemicontinuous if for any
u, v ∈ V , the function t 7→ 〈T (u + t(v − u)), v − u〉 from [0, 1] into R is continuous at 0+.

It is clear that the continuity implies the hemicontinuity, but the converse is not true in
general.

Theorem 2.1 (see [12]). Let C ⊂ V be nonempty, closed and convex, C∗ ⊂ V ∗ be
nonempty, closed, convex and bounded, ϕ : V → R ∪ {+∞} be proper, convex and lower
semicontinuous and y ∈ C be arbitrary. Assume that, for each x ∈ C, there exists x∗(x) ∈ C∗

such that
〈x∗(x), x− y〉 ≥ ϕ(y)− ϕ(x).

Then, there exists y∗ ∈ C∗ such that

〈y∗, x− y〉 ≥ ϕ(y)− ϕ(x), ∀x ∈ C.

Definition 2.3 (see [35]). Let S be a nonempty subset of V . The measure, say µ, of
noncompactness for the set S is defined by

µ(S) := inf{ε > 0 : S ⊂
n⋃

i=1

Si, diamSi < ε, i = 1, 2, ..., n},

where diamSi means the diameter of set Si.

Definition 2.4 (see [35]). Let A, B be nonempty subsets of V . The Hausdorff metric
H(·, ·) between A and B is defined by

H(A, B) := max{e(A, B), e(B, A)},

where e(A, B) := supa∈A d(a, B) with d(a, B) := infb∈B ‖a− b‖V .
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Let {An} be a sequence of nonempty subsets of V . We say that An converges to A in the
sense of Hausdorff metric if H(An, A) → 0. It is easy to see that e(An, A) → 0 iff d(an, A) → 0
for all section an ∈ An. For more details on this topic, we refer the reader to [35].

3. Well-Posedness of the SMVHVI with Metric Characterizations

In this section, we generalize the concept of well-posedness to the strongly mixed variational-
hemivariational inequality SMVHVI with perturbations, establish its metric characterizations
and derive some conditions under which the strongly mixed variational-hemivariational in-
equality is strongly well-posed in the generalized sense in Euclidean space Rn.

Definition 3.1. A sequence {un} ⊂ V is said to be an approximating sequence for the
SMVHVI if there exists a nonnegative sequence {εn} with εn → 0 as n →∞ such that

〈N(Ag(un), Tun)−f, v−g(un)〉+J◦(un, v−g(un))+G(v)−G(g(un)) ≥ −εn‖v−g(un)‖V , ∀v ∈ V.
(3.1)

Definition 3.2. The SMVHVI is said to be strongly (resp. weakly) well-posed if the
SMVHVI has a unique solution in V and every approximating sequence converges strongly
(resp. weakly) to the unique solution.

Remark 3.1. Strong well-posedness implies weak well-posedness, but the converse is not
true in general.

Definition 3.3. The SMVHVI is said to be strongly (resp. weakly) well-posed in the
generalized sense if the SMVHVI has a nonempty solution set S in V and every approximating
sequence has a subsequence which converges strongly (resp. weakly) to some point of the
solution set S.

Remark 3.2. Strong well-posedness in the generalized sense implies weak well-posedness
in the generalized sense, but the converse is not true in general.

Definition 3.4. Let N : V ∗ × V ∗ → V ∗ and A : V → V ∗ be two mappings. Then
(i) A is said to be monotone with respect to the first argument of N if there holds

〈N(Au, w∗)−N(Av, w∗), u− v〉 ≥ 0, ∀u, v ∈ V, w∗ ∈ V ∗;

(ii) A is said to be continuous with respect to the first argument of N if for each w∗ ∈ V ∗

the mapping v 7→ N(Av, w∗) from V into V ∗ is continuous;
(iii) A is said to be hemicontinuous with respect to the first argument of N if for all

u, v ∈ V and w∗ ∈ V ∗, the function t 7→ 〈N(A(u + t(v − u)), w∗), v − u〉 from [0, 1] into R is
continuous at 0+.
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For any ε > 0, we define the following two sets:

Ω(ε) = {u ∈ V : 〈N(Ag(u), Tu)−f, v−g(u)〉+J◦(u, v−g(u))+G(v)−G(g(u)) ≥ −ε‖v−g(u)‖V , ∀v ∈ V }

and

Ψ(ε) = {u ∈ V : 〈N(Av, Tu)−f, v−g(u)〉+J◦(u, v−g(u))+G(v)−G(g(u)) ≥ −ε‖v−g(u)‖V , ∀v ∈ V }.

Lemma 3.1. Suppose that A : V → V ∗ is both monotone and hemicontinuous with
respect to the first argument of N , G : V → R ∪ {+∞} is a proper, convex and lower
semicontinuous functional. Then Ω(ε) = Ψ(ε) for all ε > 0.

Proof. Let u ∈ Ω(ε). Then, by the monotonicity of the mapping A with respect to the
first argument of N , we have for all v ∈ V

0 ≤ 〈N(Ag(u), Tu)− f, v − g(u)〉+ J◦(u, v − g(u)) + G(v)−G(g(u)) + ε‖v − g(u)‖V

≤ 〈N(Av, Tu)− f, v − g(u)〉+ J◦(u, v − g(u)) + G(v)−G(g(u)) + ε‖v − g(u)‖V .

This implies that u ∈ Ψ(ε). Thus, we get the inclusion Ω(ε) ⊂ Ψ(ε).
Next let us show that Ψ(ε) ⊂ Ω(ε). Indeed, for any u ∈ Ψ(ε), we have

〈N(Av, Tu)−f, v−g(u)〉+J◦(u, v−g(u))+G(v)−G(g(u)) ≥ −ε‖v−g(u)‖V , ∀v ∈ V. (3.2)

For any w ∈ V and t ∈ [0, 1], putting v = tw + (1− t)g(u) = g(u) + t(w − g(u)) in (3.2), we
obtain

−ε‖t(w − g(u))‖V ≤ 〈N(A(tw + (1− t)g(u)), Tu)− f, t(w − g(u))〉
+ J◦(u, t(w − g(u))) + G(tw + (1− t)g(u))−G(g(u)).

Since the Clarke’s generalized directional derivative J◦(u, v) is positively homogeneous with
respect to v and G is convex, it follows that

〈N(A(tw+(1−t)g(u)), Tu)−f, w−g(u)〉+J◦(u, w−g(u))+G(w)−G(g(u)) ≥ −ε‖w−g(u)‖V .
(3.3)

Taking the limit for (3.3) as t → 0+, we obtain from the hemicontinuity of the mapping A
with respect to the first argument of N that

〈N(Ag(u), Tu)− f, w − g(u)〉+ J◦(u, w − g(u)) + G(w)−G(g(u)) ≥ −ε‖w − g(u)‖V .

By the arbitrariness of w ∈ V , we conclude that u ∈ Ω(ε), which implies that Ψ(ε) ⊂ Ω(ε).
This completes the proof. 2

Lemma 3.2. Suppose that T : V → V ∗ is continuous with respect to the second argument
of N , g : V → V is continuous and G : V → R ∪ {+∞} is a proper, convex and lower
semicontinuous functional. Then Ψ(ε) is closed in V for all ε > 0.
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Proof. Let {un} ⊂ Ψ(ε) be a sequence such that un → u in V . Then

〈N(Av, Tun)−f, v−g(un)〉+J◦(un, v−g(un))+G(v)−G(g(un)) ≥ −ε‖v−g(un)‖V , ∀v ∈ V.
(3.4)

Since T : V → V ∗ is continuous with respect to the second argument of N , g : V → V
is continuous, G : V → R ∪ {+∞} is lower semicontinuous, and the Clarke’s generalized
directional derivative J◦(u, v) is upper semicontinuous with respect to (u, v), we deduce that
g(un) → g(u), N(Av, Tun) → N(Av, Tu), and

lim
n→∞

〈N(Av, Tun), v − g(un)〉 = 〈N(Av, Tu), v − g(u)〉,
lim sup

n→∞
J◦(un, v − g(un)) ≤ J◦(u, v − g(u)),

lim sup
n→∞

−G(g(un)) ≤ −G(g(u)).

(3.5)

Taking the lim sup for (3.4) as n →∞, we obtain from (3.5) that

〈N(Av, Tu)− f, v − g(u)〉+ J◦(u, v − g(u)) + G(v)−G(g(u)) ≥ −ε‖v − g(u)‖V , ∀v ∈ V,

which implies that u ∈ Ψ(ε). Therefore, Ψ(ε) is closed in V . This completes the proof. 2

Corollary 3.1. Suppose that A : V → V ∗ is both monotone and hemicontinuous with
respect to the first argument of N and T : V → V ∗ is continuous with respect to the second
argument of N . Let g : V → V be continuous and G : V → R ∪ {+∞} be a proper, convex
and lower semicontinuous functional. Then, for all ε > 0, Ω(ε) = Ψ(ε) is closed in V .

Theorem 3.1. Suppose that A : V → V ∗ is both monotone and hemicontinuous with
respect to the first argument of N and T : V → V ∗ is continuous with respect to the second
argument of N . Let g : V → V be continuous and G : V → R ∪ {+∞} be a proper, convex
and lower semicontinuous functional. Then, the SMVHVI is strongly well-posed if and only if

Ω(ε) 6= ∅, ∀ε > 0 and diamΩ(ε) → 0 as ε → 0. (3.6)

Proof. “Necessity”. Suppose that the SMVHVI is strongly well-posed. Then the SMVHVI
has a unique solution which lies in Ω(ε) and so Ω(ε) 6= ∅ for all ε > 0. If diamΩ(ε) 6→ 0 as
ε → 0, then there exist a constant l > 0, a nonnegative sequence {εn} with εn → 0 and
un, vn ∈ Ω(εn) such that

‖un − vn‖V > l, ∀n ≥ 1. (3.7)

Since un, vn ∈ Ω(εn), it is known that {un} and {vn} are both approximating sequences for
the SMVHVI. From the strong well-posedness of the SMVHVI, it follows that both {un} and
{vn} converge strongly to the unique solution of the SMVHVI, which is a contradiction to
(3.7).

“Sufficiency”. Let {un} ⊂ V be an approximating sequence for the SMVHVI. Then there
exists a nonnegative sequence {εn} with εn → 0 such that

〈N(Ag(un), Tun)−f, v−g(un)〉+J◦(un, v−g(un))+G(v)−G(g(un)) ≥ −εn‖v−g(un)‖V , ∀v ∈ V,
(3.8)
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which implies that un ∈ Ω(εn). By condition (3.6), {un} is a Cauchy sequence and so {un}
converges strongly to some point u ∈ V . Since the mapping A is monotone with respect to the
first argument of N , the mapping T is continuous with respect to the second argument of N , g
is continuous, the Clarke’s generalized directional derivative J◦(u, v) is upper semicontinuous
with respect to (u, v) and G is lower semicontinuous, it follows from (3.8) that

〈N(Av, Tu)− f, v − g(u)〉+ J◦(u, v − g(u)) + G(v)−G(g(u))
≥ lim sup

n→∞
(〈N(Av, Tun)− f, v − g(un)〉+ J◦(un, v − g(un)) + G(v)−G(g(un)))

≥ lim sup
n→∞

(〈N(Ag(un), Tun)− f, v − g(un)〉+ J◦(un, v − g(un)) + G(v)−G(g(un)))

≥ lim sup
n→∞

(−εn‖v − g(un)‖V )

= 0, ∀v ∈ V.
(3.9)

Furthermore, since A is also hemicontinuous with respect to the first argument of N and G is
convex, by the argument similar to that in Lemma 3.1 we can readily prove that

〈N(Ag(u), Tu)− f, v − g(u)〉+ J◦(u, v − g(u)) + G(v)−G(g(u)) ≥ 0, ∀v ∈ V,

which implies that u solves the SMVHVI.
To complete the proof of Theorem 3.1, we need only to prove the SMVHVI has a unique

solution. Assume by contradiction that the SMVHVI has two distinct solutions u1 and u2.
Then it is easy to see that u1, u2 ∈ Ω(ε) for all ε > 0 and

0 < ‖u1 − u2‖V ≤ diamΩ(ε) → 0,

which is a contradiction. Therefore, the SMVHVI has a unique solution. This completes the
proof. 2

Corollary 3.2 (see [29, Theorem 3.1]). Suppose that A : V → V ∗ is a monotone and
hemicontinuous mapping, T : V → V ∗ is a continuous mapping and G : V → R∪{+∞} be a
proper, convex and lower semicontinuous functional. Then, the VHVI is strongly well-posed
if and only if

Ω(ε) 6= ∅, ∀ε > 0 and diamΩ(ε) → 0 as ε → 0.

Proof. In Theorem 3.1, put N(u∗, v∗) = u∗ + v∗, ∀u∗, v∗ ∈ V ∗ and g = I the identity
mapping of V . Then from the monotonicity and hemicontinuity of A it follows that A : V →
V ∗ is both monotone and hemicontinuous with respect to the first argument of N . Moreover,
from the continuity of T it follows that T : V → V ∗ is continuous with respect to the second
argument of N . Thus, utilizing Theorem 3.1, we obtain the desired result. 2

Theorem 3.2. Suppose that A : V → V ∗ is both monotone and hemicontinuous with
respect to the first argument of N and T : V → V ∗ is continuous with respect to the second
argument of N . Let g : V → V be continuous and G : V → R∪{+∞} be a proper, convex and
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lower semicontinuous functional. Then, the SMVHVI is strongly well-posed in the generalized
sense if and only if

Ω(ε) 6= ∅, ∀ε > 0 and µ(Ω(ε)) → 0 as ε → 0. (3.10)

Proof. “Necessity”. Suppose that the SMVHVI is strongly well-posed in the generalized
sense. Then the solution set of the SMVHVI is nonempty and S ⊂ Ω(ε) for any ε > 0.
Furthermore, the solution set of the SMVHVI also is compact. In fact, for any sequence
{un} ⊂ S, it follows from S ⊂ Ω(ε) for any ε > 0 that {un} ⊂ S is an approximating sequence
for the SMVHVI. Since the SMVHVI is strongly well-posed in the generalized sense, {un}
has a subsequence which converges strongly to some point of the solution set S. Thus, the
solution set S of the SMVHVI is compact. Now let us show that µ(Ω(ε)) → 0 as ε → 0. From
S ⊂ Ω(ε) for any ε > 0, we get

H(Ω(ε), S) = max{e(Ω(ε), S), e(S,Ω(ε))} = e(Ω(ε), S). (3.11)

Taking into account the compactness of the solution set S, we obtain from (3.11) that

µ(Ω(ε)) ≤ 2H(Ω(ε), S) = 2e(Ω(ε), S).

In order to prove that µ(Ω(ε)) → 0 as ε → 0, it is sufficient to show that e(Ω(ε), S) → 0 as
ε → 0. Assume by contradiction that e(Ω(ε), S) 6→ 0 as ε → 0. Then there exist a constant
l > 0, a sequence {εn} ⊂ R+ with εn → 0 and un ∈ Ω(εn) such that

un 6∈ S + B(0, l), (3.12)

where B(0, l) is the closed ball centered at 0 with radius l. Since {un} is an approximating
sequence for the SMVHVI and the SMVHVI is strongly well-posed in the generalized sense,
there exists a subsequence {unk

} which converges strongly to some point u ∈ S which is a
contradiction to (3.12). Then µ(Ω(ε)) → 0 as ε → 0.

“Sufficiency”. Assume that condition (3.10) holds. By Corollary 3.1, we conclude that
Ω(ε) is nonempty and closed for all ε > 0. Observe that

S =
⋂
ε>0

Ω(ε).

Since µ(Ω(ε)) → 0 as ε → 0, by applying the theorem [35, p. 412], it can be easily found that
S is nonempty and compact with

e(Ω(ε), S) = H(Ω(ε), S) → 0 as ε → 0. (3.13)

Let {un} ⊂ V be an approximating sequence for the SMVHVI. Then there exists a nonnegative
sequence {εn} with εn → 0 such that

〈N(Ag(un), Tun)−f, v−g(un)〉+J◦(un, v−g(un))+G(v)−G(g(un)) ≥ −εn‖v−g(un)‖V , ∀v ∈ V
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and so un ∈ Ω(εn) by the definition of Ω(εn). It follows from (3.13) that

d(un, S) ≤ e(Ω(ε), S) → 0.

Since the solution set S is compact, there exists ūn ∈ S such that

‖un − ūn‖V = d(un, S) → 0. (3.14)

Again from the compactness of the solution set S, {ūn} has a subsequence {ūnk
} converging

strongly to some ū ∈ S. It follows from (3.14) that

‖unk
− ū‖V ≤ ‖unk

− ūnk
‖V + ‖ūnk

− ū‖V → 0,

which implies that {unk
} converges strongly to ū. Therefore, the SMVHVI is strongly well-

posed in the generalized sense. This completes the proof. 2

Corollary 3.3 (see [29, Theorem 3.2]). Suppose that A : V → V ∗ is a monotone and
hemicontinuous mapping, T : V → V ∗ is a continuous mapping and G : V → R∪{+∞} be a
proper, convex and lower semicontinuous functional. Then, the VHVI is strongly well-posed
in the generalized sense if and only if

Ω(ε) 6= ∅, ∀ε > 0 and µ(Ω(ε)) → 0 as ε → 0.

The following theorem gives some conditions under which the strongly mixed variational-
hemivariational inequality is strongly well-posed in the generalized sense in Euclidean space
Rn.

Theorem 3.3. Suppose that A : Rn → Rn is both monotone and hemicontinuous with
respect to the first argument of N and T : Rn → Rn is continuous with respect to the second
argument of N . Let g : Rn → Rn be continuous and G : Rn → R∪{+∞} be a proper, convex
and lower semicontinuous functional. If there exists some ε > 0 such that Ω(ε) is nonempty
and bounded. Then the strongly mixed variational-hemivariational inequality SMVHVI is
strongly well-posed in the generalized sense.

Proof. Suppose that {un} is an approximating sequence for the SMVHVI. Then there
exists a nonnegative sequence {εn} with εn → 0 as n →∞ such that

〈N(Ag(un), Tun)−f, v−g(un)〉+J◦(un, v−g(un))+G(v)−G(g(un)) ≥ −εn‖v−g(un)‖Rn , ∀v ∈ Rn.
(3.15)

Let ε0 > 0 be such that Ω(ε0) is nonempty and bounded. Then there exists n0 such that
un ∈ Ω(ε0) for all n > n0. This implies that {un} is bounded by the boundedness of Ω(ε0).
Thus, there exists a subsequence {unk

} such that unk
→ ū as k →∞. Since the mapping A is

monotone with respect to the first argument of N , the mapping T is continuous with respect
to the second argument of N , g is continuous, the Clarke’s generalized directional derivative
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J◦(u, v) is upper semicontinuous with respect to (u, v) and G is lower semicontinuous, it
follows from (3.15) that

〈N(Av, T ū)− f, v − g(ū)〉+ J◦(ū, v − g(ū)) + G(v)−G(g(ū))
≥ lim sup

k→∞
(〈N(Av, Tunk

)− f, v − g(unk
)〉+ J◦(unk

, v − g(unk
)) + G(v)−G(g(unk

)))

≥ lim sup
k→∞

(〈N(Ag(unk
), Tunk

)− f, v − g(unk
)〉+ J◦(unk

, v − g(unk
)) + G(v)−G(g(unk

)))

≥ lim sup
k→∞

(−εnk
‖v − g(unk

)‖Rn)

= 0, ∀v ∈ Rn.
(3.16)

Meantime, since A is also hemicontinuous with respect to the first argument of N and G is
convex, by the argument similar to that in Lemma 3.1 we can readily prove that

〈N(Ag(ū), T ū)− f, v − g(ū)〉+ J◦(ū, v − g(ū)) + G(v)−G(g(ū)) ≥ 0, ∀v ∈ Rn,

which implies that ū solves the SMVHVI. Therefore, the SMVHVI is strongly well-posed in
the generalized sense. This completes the proof. 2

Corollary 3.4 (see [29, Theorem 3.3]). Suppose that A : Rn → Rn is a monotone and
hemicontinuous mapping, T : Rn → Rn is a continuous mapping and G : Rn → R ∪ {+∞}
be a proper, convex and lower semicontinuous functional. If there exists some ε > 0 such
that Ω(ε) is nonempty and bounded. Then the variational-hemivariational inequality VHVI
is strongly well-posed in the generalized sense.

4. Well-Posedness of Inclusion Problem

In this section, we first recall the concept of well-posedness for inclusion problems and
then investigate the relations between the well-posedness for the strongly mixed variational-
hemivariational inequality and the well-posedness for the corresponding inclusion problem. In
what follows we always assume that F is a set-valued mapping from real reflexive Banach
space V to its dual space V ∗. The inclusion problem associated with mapping F is defined by

IP(F ) : find x ∈ V such that 0 ∈ F (x).

Definition 4.1 (see [19,36]). A sequence {un} ⊂ V is called an approximating sequence
for the inclusion problem IP(F ) if d(0, F (un)) → 0, or equivalently, there exists a sequence
wn ∈ F (un) such that ‖wn‖V ∗ → 0 as n →∞.

Definition 4.2 (see [19,36]). We say that the inclusion problem IP(F ) is strongly (resp.
weakly) well-posed if it has a unique solution and every approximating sequence converges
strongly (resp. weakly) to the unique solution of IP(F ).

15



Definition 4.3 (see [19,36]). We say that the inclusion problem IP(F ) is strongly (resp.
weakly) well-posed in the generalized sense if the solution set S of the IP(F ) is nonempty and
every approximating sequence has a subsequence which converges strongly (resp. weakly) to
some point of the solution set S for the IP(F ).

The following two theorems establish the relations between the strong (resp. weak) well-
posedness for the strongly mixed variational-hemivariational inequality and the strong (resp.
weak) well-posedness for the corresponding inclusion problem.

Theorem 4.1. Let N : V ∗× V ∗ → V ∗, A, T : V → V ∗ and g : V → V be four mappings,
J : V → R be a locally Lipschitz functional and G : V → R ∪ {+∞} be a proper, convex
and lower semicontinuous functional. Then the strongly mixed variational-hemivariational
inequality SMVHVI is strongly (resp. weakly) well-posed if and only if the corresponding
inclusion problem IP(N(A(g), T )− f + ∂J + ∂G(g)) is strongly (resp. weakly) well-posed.

Theorem 4.2. Let N : V ∗× V ∗ → V ∗, A, T : V → V ∗ and g : V → V be four mappings,
J : V → R be a locally Lipschitz functional and G : V → R ∪ {+∞} be a proper, convex
and lower semicontinuous functional. Then the strongly mixed variational-hemivariational
inequality SMVHVI is strongly (resp. weakly) well-posed in the generalized sense if and only
if the corresponding inclusion problem IP(N(A(g), T ) − f + ∂J + ∂G(g)) is strongly (resp.
weakly) well-posed in the generalized sense.

Lemma 4.1. Let N : V ∗ × V ∗ → V ∗, A, T : V → V ∗ and g : V → V be four mappings,
J : V → R be a locally Lipschitz functional and G : V → R∪{+∞} be a proper, convex and
lower semicontinuous functional. Then u ∈ V is a solution of the SMVHVI if and only if u is
a solution of the corresponding inclusion problem IP(N(A(g), T )− f +∂J +∂G(g)) of finding
u ∈ V such that

0 ∈ N(A(g(u)), Tu)− f + ∂J(u) + ∂G(g(u)).

Proof. “Sufficiency”. Assume that u is a solution of the inclusion problem IP(N(A(g), T )−
f + ∂J + ∂G(g)). Then there exist w1 ∈ ∂J(u) and w2 ∈ ∂G(g(u)) such that

N(A(g(u)), Tu)− f + w1 + w2 = 0. (4.1)

By multiplying v−g(u) at both sides of the above equation (4.1), we obtain from the definitions
of the Clarke’s generalized gradient for locally Lipschitz functional and the subgradient for
convex functional that

0 = 〈N(A(g(u)), Tu)− f + w1 + w2, v − g(u)〉
≤ 〈N(A(g(u)), Tu)− f, v − g(u)〉+ J◦(u, v − g(u)) + G(v)−G(g(u)), ∀v ∈ V,

which implies that u is a solution of the SMVHVI.
“Necessity”. Suppose that u is a solution of the SMVHVI. Then,

〈N(A(g(u)), Tu)− f, v − g(u)〉+ J◦(u, v − g(u)) + G(v)−G(g(u)) ≥ 0, ∀v ∈ V.
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From the fact that

J◦(u, v − g(u)) = max{〈w, v − g(u)〉 : w ∈ ∂J(u)},

we deduce that there exists a w(u, v) ∈ ∂J(u) such that

〈N(A(g(u)), Tu)−f, v− g(u)〉+ 〈w(g(u), v), v− g(u)〉+G(v)−G(g(u)) ≥ 0, ∀v ∈ V. (4.2)

In terms of Proposition 2.3 (4), ∂J(u) is a nonempty, convex, bounded, weak∗-compact subset
of V ∗. Note that V is a real reflexive Banach space. Hence, ∂J(u) is a nonempty, convex,
bounded, weak-compact subset in V ∗. Thus ∂J(u) is a nonempty, closed, convex and bounded
subset in V ∗ which implies that {N(A(g(u)), Tu)− f + w : w ∈ ∂J(u)} is nonempty, closed,
convex and bounded in V ∗. Since G : V → R ∪ {+∞} is a proper, convex and lower
semicontinuous functional, it follows from Theorem 2.1 with ϕ(u) = G(u) and (4.2) that there
exists w(u) ∈ ∂J(u) such that

〈N(A(g(u)), Tu)− f, v − g(u)〉+ 〈w(u), v − g(u)〉+ G(v)−G(g(u)) ≥ 0, ∀v ∈ V. (4.3)

For the sake of simplicity we write w = w(u), and hence from (4.3) we have

G(v)−G(g(u)) ≥ 〈−N(A(g(u)), Tu) + f − w, v − g(u)〉, ∀v ∈ V,

which implies that −N(A(g(u)), Tu) + f − w ∈ ∂G(g(u)). Consequently, it follows from
w ∈ ∂J(u) that

0 ∈ N(A(g(u)), Tu)− f + ∂J(u) + ∂G(g(u)),

which implies that u is a solution of the inclusion problem IP(N(A(g), T )− f + ∂J + ∂G(g)).
This completes the proof. 2

Proof of Theorem 4.1. “Necessity”. Assume that the SMVHVI is strongly (resp.
weakly) well-posed. Then there is a unique solution u∗ for the SMVHVI. By Lemma 4.1, u∗

also is the unique solution for the inclusion problem IP(N(A(g), T ) − f + ∂J + ∂G(g)). Let
{un} be an approximating sequence for the IP(N(A(g), T ) − f + ∂J + ∂G(g)). Then there
exists a sequence wn ∈ N(A(g(un)), Tun)− f + ∂J(un) + ∂G(g(un)) such that ‖wn‖V ∗ → 0 as
n →∞. And so there exist ξn ∈ ∂J(un) and ηn ∈ ∂G(g(un)) such that

wn = N(A(g(un)), Tun)− f + ξn + ηn. (4.4)

From the definitions of the Clarke’s generalized gradient for locally Lipschitz functional and
the subgradient for convex functional, we obtain by multiplying v− g(un) at both sides of the
above equation (4.4) that

〈N(A(g(un)), Tun)− f, v − g(un)〉+ J◦(un, v − g(un)) + G(v)−G(g(un))
≥ 〈N(A(g(un)), Tun)− f, v − g(un)〉+ 〈ξn, v − g(un)〉+ 〈ηn, v − g(un)〉
= 〈wn, v − g(un)〉
≥ −‖wn‖V ∗‖v − g(un)‖V , ∀v ∈ V.

(4.5)
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Letting εn = ‖wn‖V ∗ , we obtain that {un} is an approximating sequence for the SMVHVI
from (4.5) with ‖wn‖V ∗ → 0 as n → ∞. Therefore, it follows from the strong (resp. weak)
well-posedness of the SMVHVI that {un} converges strongly (resp. weakly) to the unique
solution u∗. Thus, the inclusion problem IP(N(A(g), T )− f + ∂J + ∂G(g)) is strongly (resp.
weakly) well-posed.

“Sufficiency”. Suppose that the inclusion problem IP(N(A(g), T ) − f + ∂J + ∂G(g)) is
strongly (resp. weakly) well-posed. Then the IP(N(A(g), T )− f + ∂J + ∂G(g)) has a unique
solution u∗, which implies that u∗ is the unique solution for the SMVHVI by Lemma 4.1. Let
{un} be an approximating sequence for the SMVHVI. Then there exists a sequence {εn} with
εn → 0 as n →∞ such that

〈N(A(g(un)), Tun)−f, v−g(un)〉+J◦(un, v−g(un))+G(v)−G(g(un)) ≥ −εn‖v−g(un)‖V , ∀v ∈ V.

By the same argument as in the proof of Lemma 4.1, there exists a w(un, v) ∈ ∂J(un) such
that

〈N(A(g(un)), Tun)−f, v−g(un)〉+〈w(g(un), v), v−g(un)〉+G(v)−G(g(un)) ≥ −εn‖v−g(un)‖V , ∀v ∈ V,
(4.6)

and {N(A(g(un)), Tun) − f + w : w ∈ ∂J(un)} is nonempty, closed, convex and bounded in
V ∗. Then, it follows from (4.6) and Theorem 2.1 with ϕ(u) = G(u) + εn‖u− g(un)‖V , which
is proper, convex and lower semicontinuous, that there exists w(un) ∈ ∂J(un) such that

〈N(A(g(un)), Tun)−f, v−g(un)〉+〈w(un), v−g(un)〉+G(v)−G(g(un)) ≥ −εn‖v−g(un)‖V , ∀v ∈ V.
(4.7)

For the sake of simplicity we write wn = w(un), and hence from (4.7) we have

G(g(un)) ≤ G(v) + 〈N(A(g(un)), Tun)− f + wn, v − g(un)〉+ εn‖v − g(un)‖V , ∀v ∈ V.

Define functional Gn : V → R ∪ {+∞} as follows:

Gn(v) = G(v) + Pn(v) + εnQn(v),

where Pn(v) and Qn(v) are two functionals on V defined by

Pn(v) = 〈N(A(g(un)), Tun)− f + wn, v − g(un)〉 and Qn(v) = ‖v − g(un)‖V .

Clearly, Gn is proper, convex and lower semicontinuous and v = g(un) is a global minimizer
of Gn on V . Thus, 0 ∈ ∂Gn(g(un)). Since the functionals Pn and Qn are continuous on V and
G is proper, convex and lower semicontinuous, it follows from Proposition 2.2 that

∂Gn(v) = ∂G(v) + N(A(g(un)), Tun)− f + wn + εn∂Qn(v).

It is easy to calculate that

∂Qn(v) = {v∗ ∈ V ∗ : ‖v∗‖V ∗ = 1, 〈v∗, v − g(un)〉 = ‖v − g(un)‖V }
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and so there exists a ξn ∈ ∂Qn(g(un)) with ‖ξn‖V ∗ = 1 such that

0 ∈ ∂G(g(un)) + N(A(g(un)), Tun)− f + wn + εnξn. (4.8)

Letting u∗n = −εnξn, we have ‖u∗n‖V ∗ → 0 as εn → 0. Moreover, since wn ∈ ∂J(un), it follows
from (4.8) that

u∗n ∈ N(A(g(un)), Tun)− f + ∂J(un) + ∂G(g(un)),

which implies that {un} is an approximating sequence for the IP(N(A(g), T )−f+∂J+∂G(g)).
Since the inclusion problem IP(N(A(g), T )− f + ∂J + ∂G(g)) is strongly (resp. weakly) well-
posed, {un} converges strongly (resp. weakly) to the unique solution u∗. Therefore, the
strongly mixed variational-hemivariational inequality SMVHVI is strongly (resp. weakly)
well-posed. This completes the proof. 2

Proof of Theorem 4.2. The proof is similar to that in Theorem 4.1 and so we omit it
here.

Corollary 4.1 (see [29, Theorem 4.1]). Let A and T be two mappings from Banach space
V to its dual V ∗, J : V → R be a locally Lipschitz functional and G : V → R ∪ {+∞} be
a proper, convex and lower semicontinuous functional. Then the variational-hemivariational
inequality VHVI is strongly (resp. weakly) well-posed if and only if the corresponding inclusion
problem IP(A + T − f + ∂J + ∂G) is strongly (resp. weakly) well-posed.

Proof. In Theorem 4.1, put g = I the identity mapping of V and N(u∗, v∗) = u∗ +
v∗, ∀u∗, v∗ ∈ V ∗. Then, in terms of Theorem 4.1 we derive the desired result. 2

Corollary 4.2 ([29, Theorem 4.2]). Let A and T be two mappings from Banach space
V to its dual V ∗, J : V → R be a locally Lipschitz functional and G : V → R ∪ {+∞} be
a proper, convex and lower semicontinuous functional. Then the variational-hemivariational
inequality VHVI is strongly (resp. weakly) well-posed in the generalized sense if and only
if the corresponding inclusion problem IP(A + T − f + ∂J + ∂G) is strongly (resp. weakly)
well-posed in the generalized sense.

5. Concluding Remarks

In this paper, we introduce some concepts of well-posedness for a class of strongly mixed
variational-hemivariational inequalities with perturbations, which includes as a special case the
class of variational-hemivariational inequalities in [29]. We establish some metric characteri-
zations for the well-posed strongly mixed variational-hemivariational inequality and give some
conditions under which the strongly mixed variational-hemivariational inequality is strongly
well-posed in the generalized sense in Rn. On the other hand, we first recall the concept of
well-posedness for inclusion problems and then investigate the relations between the strong
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(resp. weak) well-posedness for a strongly mixed variational-hemivariational inequality and
the strong (resp. weak) well-posedness for the corresponding inclusion problem.

It is well known that there are many other concepts of well-posedness for optimization
problems, variational inequalities and Nash equilibrium problems, such as α-well-posedness
[17], well-posedness by perturbations [11] and Levitin-Polyak well-posedness [14], etc. How-
ever, we wonder whether the concepts mentioned as above can be extended to the strongly
mixed variational-hemivariational inequality. Beyond question, this is an interesting problem.
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