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Abstract. In this paper we introduce a hybrid relaxed-extragradient method for finding a
common element of the set of common fixed points of /N nonexpansive mappings and the set of
solutions of the variational inequality problem for a monotone, Lipschitz-continuous mapping.
The hybrid relaxed-extragradient method is based on two well-known methods: hybrid and
extragradient. We derive a strong convergence theorem for three sequences generated by this
method. Based on this theorem, we also construct an iterative process for finding a common
fixed point of N 41 mappings, such that one of these mappings is taken from the more general
class of Lipschitz pseudocontractive mappings and the rest N mappings are nonexpansive.
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1. Introduction

Let H be a real Hilbert space with inner product (-,-) and norm || - ||, respectively. Let C'
be a nonempty closed convex subset of H and let Pz be the metric projection from H onto C'.
When {z,} is a sequence in H, then z,, — z (resp. x,, — x) will denote strong (resp. weak)
convergence of the sequence {z,} to x. Let A be a mapping of C into H. Then A is called
monotone if for all u,v € C'
(Au — Av,u —v) > 0.

A is called a-inverse-strongly-monotone (see [6,17]) if there exists a positive constant v such
that for all u,v € C
(Au — Av,u —v) > ol Au — Avl|?.

A is called (-strongly-monotone if there exists a positive constant 3 such that for all u,v € C
(Au — Av,u —v) > Bllu — vl
A is called k-Lipschitz-continuous if there exists a positive constant k such that for all u,v € C'
[Au — Av|| < kfju —o]|.

Obviously, it is easy to see that every a-inverse-strongly-monotone mapping A is monotone
and Lipschitz-continuous. Let S be a mapping of C' into itself. Then S is called nonexpansive
if for all u,v € C

[Su = Sv|| < [lu— .

We denote by F(S) the set of fixed points of S, i.e., F(S) ={u € C: Su = u}.

Let A be a mapping of C' into H. The variational inequality problem is to find a u € C'
such that
(Au,v —u) > 0 Vv € C.

The set of solutions of the variational inequality problem is denoted by VI(C, A). The vari-
ational inequality problem was first discussed by Lions [16]. Since then, this problem has
been being studied widely. It is well known that, if A is a strongly monotone and Lipschitz-
continuous mapping on C, then the variational inequality problem has a unique solution. How
to actually find a solution of the variational inequality problem is one of the best important
topics in the study of the variational inequality problem. Indeed, there are a lot of different
approaches towards solving this problem in finite-dimensional and infinite-dimensional spaces,
and the research is intensively continued. A great deal of effort has gone into this problem;
see [1,2,5,7-15,17,19-28].

Recently, Antipin considered a finite-dimensional variant of the variational inequality prob-
lem, where the solution should satisfy some related constraint in inequality form [1] or some
systems of constraints in inequality and equality form [2]. Yamada [8] considered an infinite-
dimensional variant of the solution of the variational inequality problem on the set of fixed
points of some mapping. Takahashi and Toyoda [9] also formulated an infinite-dimensional
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variant of the problem of finding a common point of the set of the variational inequality
solutions and the set of fixed points of some mapping.

For finding an element of F(S) N VI(C,A) under the assumption that a set C C H is
closed and convex, a mapping S of C' into itself is nonexpansive, and a mapping A of C' into
H is a-inverse-strongly-monotone, Takahashi and Toyoda [9] introduced the following iterative
scheme:

To =T € C, (1 1)
Tpt1 = Ty + (1 — ay,)SPe(x, — \yAzy,) ’

for all n > 0, where {a,,} is a sequence in (0, 1) and {\,} is a sequence in (0, 2«). They proved
that if F'(S)NVI(C,A) # 0, then the sequence {z,} generated by (1.1) converges weakly to
some z € F(S)NVI(C,A).

For finding an element of F(S) N VI(C,A) liduka and Takahashi [12] introduced the
following iterative scheme by a hybrid method:

r9g=1x € C,
Yn = QpTp + (1 - CVn)SPC’<$n - )\nAxn>a
Co={2€C:|lyn — 2|l < [lzn — 2|}, (1.2)

Qn={z€C:(x,—z,x—x,) >0},
Tnt1 = Pcannx

for all n > 0, where 0 < a,, < c < land 0 < a < A\, < b < 2a. They showed that if
F(S)NVI(C,A) # 0, then the sequence {x,}, generated by this iterative process, converges
strongly to Pr(s)nvi(c,a)T.

Generally speaking, the algorithm suggested by Takahashi and Toyoda [9] is based on two
well-known types of methods, namely, on the projection-type methods for solving variational
inequality problems and so-called hybrid or outer-approximation methods for solving fixed
point problem. The idea of “hybrid” or “outer-approximation” types of methods was originally
introduced by Haugazeau in 1968; see [5] for more details.

In 1976, for finding a solution of the nonconstrained variational inequality problem in the
finite-dimensional Euclidean space R"™ under the assumption that a set C' C R" is closed and
convex and a mapping A of C' into R" is monotone and k-Lipschitz-continuous, Korpelevich
[15] introduced the following so-called extragradient method:

xo=1x € C,
T, = Po(z, — Mx,), (1.3)
P e PC<'TTL — )\A,’fn)

for all n > 0, where A € (0,1/k). He proved that if VI(C, A) is nonempty, then the sequences
{z,} and {Z,}, generated by (1.3), converge to the same point z € VI(C, A).

Recently, motivated by the idea of Korpelevich’s extragradient method [15], Nadezhkina
and Takahashi [28] introduced the following iterative scheme for finding an element of F'(S)N
VI(C,A) and proved the following weak convergence result.



Theorem 1.1 [28, Theorem 3.1]. Let C be a closed convex subset of a real Hilbert
space H. Let A be a monotone and k-Lipschitz-continuous mapping of C into H and S be a
nonexpansive mapping of C' into itself such that F(S)NVI(C, A) # 0. Let {x,}, {yn} be the
sequences generated by

rog=x € C,
Tnt1 = Oy + (1 — ) SPo(z, — NAyy)

for alln > 0, where {\,,} C [a,b] for some a,b € (0,1/k) and {a,,} C [c, d] for some ¢, d € (0, 1).
Then the sequences {x, }, {y,} converge weakly to the same point z € F(S)NVI(C, A) where
z = limy, oo Pr(s)nvi(c,a)Tn-

At the same time, the idea of the extragradient method introduced by Korpelevich was
successively generalized and extended not only in Euclidean but also in Hilbert and Banach
spaces; see e.g., the recent papers of He, Yang and Yuan [11], Solodov and Svaiter [26], Solodov
[24], and Ceng and Yao [22,23,27].

Very recently, utilizing the combination of hybrid-type method and extragradient-type
method Nadezhkina and Takahashi [21] introduced the following iterative method for finding
an element of F'(S)NVI(C,A) and established the following strong convergence theorem.

Theorem 1.2 [21, Theorem 3.1]. Let C' be a closed convex subset of a real Hilbert space
H. Let A be a monotone and k-Lipschitz-continuous mapping of C' into H and let S be a
nonexpansive mapping of C' into itself such that F(S)NVI(C, A) # 0. Let {z,}, {y.} and
{z,} be sequences generated by

x9g=1x € C,

Yn = Po(z, — M\ Axy,),

Zn = apxy + (1 — ay)SPo(x, — A\ Ayn),
Cn={2€C: |z, — 2| < |lw, — 2||},
Qn={z€C:(z,— 2z, —x,) >0},
Tnt1 = Po,ng,7,

(1.5)

for every n > 0, where {\,} C [a,b] for some a,b € (0,1/k) and {«a,} C [0,c] for some
c €10,1). Then the sequences {z,}, {y,} and {z,} converge strongly to the same element of
Pr(s)nvic,a)T.

Let {S;}Y, be N nonexpansive mappings of C into itself, and A be a monotone, Lipschitz-
continuous mapping of C' into H. In the present paper, for finding an element of ﬂi]\il F(S;)n
VI(C,A), by the combination of extragradient and hybrid methods we introduce a hybrid



relaxed-extragradient method

x9g=1x € C,

Yn = Po(rn — ApinAzn — A (1 — p) Ayn),

tn = Po(xn — MAyn — Mo (1 — ) Aty),

Zn = Ty + (1 — ) Spty, (1.6)
Co={2€C: |z, — 2| < |lwn — 2|},
Qn={z€C:{(x,—z,x—x,) >0},

Tp1 = Po,nQ.e

for every n =0, 1, ..., where S,, = S,moan, and the following hold:

(1) {pn} € (0,1] and limy, o0 ptr, = 1;

(i) {\.} C [a,b] for some a,b € (0,1/k);

(iii) {ay,} C [0, ] for some ¢ € [0,1).
Moreover, it is shown that the sequences {x,}, {y,} and {z,} generated by the hybrid relaxed-
extragradient method converge strongly to ¢ = Pﬂfv: CFS)VICA) Utilizing this theorem, we
derive some strong convergence results in a real Hilbert space. Based on our main result, we
construct an iterative process for finding a common fixed point of N+1 mappings, one of which
is taken from the more general class of Lipschitz pseudocontractive mappings and the rest N
mappings are nonexpansive. We remark that, in the case when N =1 and p,, = 1 Vn > 0, the
iterative scheme (1.6) reduces to the one (1.5). Thus, our results are the improvements and
extension of many known results in the earlier and recent literature; see e.g., [9,12,13,18,21,28|.

2. Preliminaries

Let H be a real Hilbert space with inner product (-,-) and norm || - ||, respectively. Let
C be a nonempty closed convex subset of H. For every point x € H there exists a unique
nearest point in C', denoted by Pz, such that ||z — Pex|| < ||z —yl| for all y € C. Pc is called
the metric projection of H onto C. It is known that Py is a nonexpansive mapping from H
onto C'. It is also known that Pox € C and

(x — Pox,Pox —y) >0 (2.1)
for all z € H, y € C; see [7] for more details. It is easy to see that (2.1) is equivalent to
lz = ylI* > ||z — Pex|® + [ly — Pex| (2.2)

forallz € H, y e C.
Let A be a monotone mapping of C' into H. In the context of the variational inequality
problem the characterization of projection (2.1) implies

uweVI(C,A) & u= Po(u— Au) YA > 0.



It is also known that H satisfies Opial’s condition [7], i.e., for any sequence {z,} with z,, — =
the inequality
liminf ||z, — z| < liminf ||z, — y||
n—oo n—oo

holds for every y € H with y # x.
The following results will be used in the rest of this paper.

Lemma 2.1. Let H be a real Hilbert space. If {z,} is a sequence in H such that
z, — ¢ € H and ||x,|| — ||Z]|, then z,, — Z.

Proof. Observe that
1z — 21" = lzal® — 2{@n, 2) + [12].
Since x, — = € H and ||z,| — ||Z||, we have

lim [lz, — 2| = lim ([lza]* = 2(za, 2) + |2]%)

= [12]* — 2(2,2) + [|2]|* = 0.

|

Lemma 2.2 Demiclosedness Principle [7]. Assume that S is a nonexpansive self-mapping
of a closed convex subset C' of a Hilbert space H. If S has a fixed point, then I — S is
demiclosed; that is, whenever {z,} is a sequence in C' converging weakly to some x € C' and
the sequence {(I — S)z,} converges strongly to some y € H, it follows that (I — S)z = y.
Here I is the identity operator of H.

A mapping T : C' — C is called pseudocontractive if for all =,y € C
1Tz — Tyl* < |l = ylI* + |(1 = T)x — (I = T)y|*.

We remark that, if a mapping 7' : C' — C' is pseudocontractive and k-Lipschitz-continuous,
then the mapping A = I — 7' is monotone and k + 1-Lipschitz-continuous; moreover, F(T) =
VI(C,A) (see e.g., [21, proof of Theorem 4.5]).

A set-valued mapping T : H — 27 is called monotone if for all z,y € H, f € Tx
and g € Ty imply (x —y,f —g) > 0. A monotone mapping T' : H — 2% is maximal
if its graph G(7T') is not properly contained in the graph of any other monotone mapping.
It is known that a monotone mapping 7' is maximal if and only if for (z,f) € H x H,
(x —y, f—g) >0 forall (y,g9) € G(T) implies f € Tz. Let A be a monotone, k-Lipschitz-
continuous mapping of C' into H and let Ngv be the normal cone to C' at v € C| i.e.,
Nev={w e H : (v—u,w) >0 for all u € C'}. Define

B Av+ Nev ifveC,
T“_{ 0 if v C.



It is known that in this case T' is maximal monotone, and 0 € Tw if and only if v € VI(C, A);
see [3].

Throughout the rest of the paper, we shall use the following notation: for a given sequence
{z,} C H, wy(z,) denotes the weak w-limit set of {x,}; that is,

Wy (Tn) == {r € H : {,,} converges weakly to x for some subsequence {n;} of {n}}.

3. Strong Convergence Theorem

We are now in a position to prove our main result in this paper. Given N nonexpansive
mappings {S;}Y, of C into itself, for each integer n > 1 we write

Sn = SnmodN

with the mod function taking values in the set {1,2,..., N}; i.e., if n = jN +¢ for some integers
j>0and 0 < g < N, then S, =Syifg=0and 5, =95,if 1 <g<N.

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H. Let A be a
monotone and k-Lipschitz-continuous mapping of C'into H and let {S;}, be N nonexpansive
mappings of C' into itself such that NY., F(S;) N VI(C, A) # 0. Let {z,}, {y.} and {z,} be
sequences generated by

To =T € C,

t, = Po(zn, — MAyn — A(1 — py) Aty),

Zn = Ty + (1 — ay) Sptn, (3.1)
Cn={2€C: |z, —2]| < |lm — 2||},
Qn=1{2€C:{(x,—z,x—x,) >0},

Tn41 = PCannl"

for every n = 0,1, ..., where S,, = Spmoan, and the following hold:
(i) {pn} € (0,1] and lim, o0 ptr, = 1;
(i) {\n} C [a,b] for some a,b € (0,1/k);
(iii) {a,} C [0, ¢] for some ¢ € [0, 1).

Then th n}s {yn} and {2, trongly to ¢ = P, ,
en the sequences {z,}, {y,} and {z,} converge strongly to ¢ N~ Psonvic.a)®
Remark 3.1. First, observe that for all z,y € C and alln >0

| Po(zn — AnpAzn — Ao(1 = pin) Ax) — Po(n — AppAzn — An(1 — pn) Ay) ||
< |[(#n = Anpn Ay, — A (1 = pin) AT) — (Tn — Apin AZn — An(1 = ) Ay)||
(- s - Ay

< Mikllz =yl



Thus, by Banach Contraction Principle, we know that for each n > 0 there exists a unique

yn € C' such that

Yn = Po(xn, — Mpin Az, — A (1 — pn) Ayy).

Also, observe that for all z,y € C' and all n >0

||PC(xn - )‘nAyn - An(l - Mn)Ax) - PC(‘rn - )‘nAyn - /\n(l - Un)Ay)H
< [ = A AYn — An(1 = pn) A) — (2 — AnAyn — An(1 — ) Ay)||
= Au(1 — ) | Az — Ay

< Ankllz =yl

(3.2)

Utilizing Banach Contraction Principle, we know that for each n > 0 there exists a unique

t, € C such that

tn = Po(zn — MAyn — An(1 — py)Aty).

Proof of Theorem 3.1. We divide the proof into several steps.

(3.3)

Step 1. We claim that every C,, is closed and convex, and that O, F(S;) N VI(C, A) C

C, Vn > 0.

Indeed, it is obvious that C,, is closed for all n > 0. Since

Cpn={2€C:|lzn—zn|* +2{zn — 2,7, — 2) <0},

we deduce that C,, is convex for all n > 0. Note that t,, = Po(x, — M\ Ayn — A (1 — iy ) Aty,) for
alln > 0. Let u € NY, F(S;)NVI(C,A) be an arbitrary element. From (2.2), monotonicity
of A, and v € VI(C, A), we have

th - u||2 < ||<an — MAyn — )‘n(l - ,un)Atn) - u||2

— (0 = A Ay — A1 — pan) Aty,) — L,

= [0 = Aa(1 = o) Aty — u|?
— 10 — An(1 = ) Aty — o ||* + 20 Ay, u — t,)

= (|20 = A1 = pn) Aty — u|l* = [lz — Aa(1 — pn) Aty — 1,12
+ 200 ((Ayn, = yn) + (AYn, Yo — tn))

= [|@n — A (1 = o) Aty — ul]?* = [l2n — An(1 — pn) Aty — £,
+ 20 ((Ayy, — Au,u — yp) + (Au, u — yp) + (AYn, Y — tn))

< lwn — An(1 = o) Aty — ull? = [lzn — Aa(1 — ) Aty — 1,2
+ 20 (AYn, Y — )

= llon — ull® = [lzn — tall* — 2X0(1 — pn) (At tn — u)
+ 20 (AYn, Y — th)

= |20 — ull” = (|0 = Yl = 2(T0 = Yn, Yo — ta) = 90 — tal?
+ 20 (AYn, Yn — tn) — 220 (1 — pn) ((At, — Au, t, — w)
+ (Au, t, — u))

< ||z, — UHQ — [Ja, — ynH2 — [Jyn — thQ + 2(T0 — M AYn = Yn tn — Yn)-



Further, since vy, = Po(x, — MNptn Az — (1 — 1) Ayp) and A is k-Lipschitz-continuous, we
have

(T — Mo AYn — Yny bt — Yn)

= <$n - AnﬂnA$n - )\n(l - Mn)Ayn — Yn, tn — yn) + /\"ﬂn<Axn - Ayn’ tn = yn>
< Mafin{ Ay — Ayt — yn)

< Nkl = yall [t — yal|-

So, we have

ltn = ull® < llzn = wll® = llzn = gl = llyn = tal® + 22k ll20 = yalllltn — yall
< lwn = ull® = llzn = 4nll* = lyn = tall* + A0E2 120 — yall + 14 — tall?
= [lzn = ul® + (AF* = Dz — yall®
< flan — ul®

(3.4)

Therefore, from (3.4), z, = a2, + (1 — ay,)Spty, and u = S,u, we have

120 —ull* = e, + (1 — ap)Snt, — ul|?

|an(zn — u) + (1 — ) (Snty — u)HQ

||z, — uH2 + (1 = ay)|[Sntn — qu

|z — ul® + (1 — o) [t — ul|? (3.5)
Ty — ull® + (1 = o) |z — ul® + (A2E> = 1) ||z, — ynl|*]

20— ul® + (1 — ) AZK? = 1)||20 — ya?

< ||#n — ulf?

IAIAIA

for all n > 0 and hence u € C,,. So, N, F(S;) NVI(C, A) C C, for all n > 0.

Step 2. We claim that {x,} is well defined and NY, F(S;) NVI(C, A) C C, N Q, for all
n > 0.

Indeed, let us show by mathematical induction that {x,} is well defined and NY., F(:S;) N
VI(C,A) C C,NQ, for all n > 0. First, it is obvious that @, is closed and convex for all
n>0. As@,={z€C:(x, —z,x—x,) >0}, we have (x, — z,2 — x,) > 0 for all z € Q,
and, by (2.1), =, = Pg,z. Second, according to Remark 3.1 we know that for each n > 0
there exist a unique y, € C and a unique t,, € C' such that (3.2) and (3.3) hold, respectively.
For n = 0 we have Qy = C. Hence we obtain ., F(S;)NVI(C, A) C CoNQy. Suppose that
7y, is given and N, F(S;)NVI(C, A) C C,NQy, for some k > 0. Since "X, F(S;)NVI(C, A)
is nonempty, Cyx N @k is a nonempty closed convex subset of C'. So, there exists a unique
element z341 € Cp N Qf such that x4y = Po,ng,x. It is also obvious that there holds
(Tpy1 — 2,0 — Tpy1) > 0 for all 2 € Cp N Qg. Since N, F(S;) NVI(C, A) C C,NQy, we have
(Tpp1—2,0—2p11) > 0for z € NN, F(S;)NVI(C, A) and hence NY., F(S;)NVI(C, A) C Q1.
Therefore, we obtain ., F(S;) N VI(C, A) C Chi1 N Qpi1-

Step 3. We claim that the following statements hold:
(1) {z,} is bounded, and lim,,_,« ||Zn+; — x| = 0 for each i = 1,2,..., N;
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(2) limy,—o0 |20 — || = 0.

Indeed, let g = Pﬂle(Si)mw(C,A)x' From 7,11 = Po,ng, 7 and ¢ € NN, F(S)NVI(C, A) C
C, N Q,, we have -

[en1 — 2] < llg — =[] ¥n>0. (3.6)

Therefore, {z,} is bounded and so are {z,} and {t,} due to (3.4) and (3.5). Since x,1 €
C,NQ, CQ, and z,, = Py, z, we have

|z — z|| < [|@n4r — 2| Vn > 0.
Therefore, there exists lim,,_.« ||z, —||. Since x,, = Py, x and x,4+1 € @, using (2.2) we have
|Znt1 — mn”Q < ||zp1 — :EHQ — |lzn — xHQ Vn > 0.

This implies that

T nss — 2l = 0,
and hence lim,, . ||€,; — z,|| = 0 for each i = 1,2,...,N. Since z,,; € C,, we have

|20 — Zpa1|| < ||xn — zna1|| and hence
|20 = @nll < llzn = Tpgall + (|01 — 2all < 2|20 — Zpa || VR = 0.
Consequently, from lim,, . [[z,+1 — 2] = 0, we have lim,, ., ||z, — .|| = 0.

Step 4. We claim that the following statements hold:

(1) limy oo |20 — ynll = 0;

(2) limy, o0 || S1%, — || = 0 for each [ = 1,2, ..., N.

Indeed, for u € Y, F(S;) NVI(C, A), from (3.5) we derive

120 = wll® < llon — ull® + (1 = an)(ARk* = 1)l — yall*.

Therefore, we have

[z — ynl® < W(H% —ul* = [z — ull?)
1

Tamazim Uz —ull = llzn = ull)(lzn — ull + llzn — ul]) (3.7)
m(llxn —ull +llz0 — ull)lzn — 2l

IN

Since ||z, —x,|| — 0 and the sequences {z,,} and {z,} are bounded, we obtain ||x,, —y,| — 0.
By the same process as in (3.4), we also have

[tn — uH2 < |lzn — uH2 — [, — ynH2 — [lyn — th2 + 2Xnk |20 — Yulllltn — Yl

<l = ull® = llzn = yall® = llyn = tall® + 20 = yall® + A5 yn — tall?
= Jlzn —ul? + (K = Dllyn — tal®
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and hence {t,}, {At,} are bounded. Then, in contrast with (3.5),

|2 — ul]?* = llanxn + (1 — ) Snt, — ul)?

|an(zn —u) + (1 = ) (Sntn — u)||2

|0 — u||2 + (1 = ) [|Sutn — u||2

|z — ull* + (1 = an)[Itn — ull?

|z — ull? + (1 = an) (|2 — ull? + (AZE* = Dlyn — 1)
[z —ull® + (1 = ) (AZK? = D)lyn — ta)?

< | — ull?

A IAIA

and, rearranging as in (3.7),

th_ynH2 )(Hxn_UHQ_ ||Zn_u||2)

1
(1*%)(11*)\%162
(1_%)(1_)\%1@2)(”1771 —ull = [|zn — ul)([|n — u|| + [|2n — ul|)

1

W(Hxn —ull 4+ llzn — ulh)l|zn — zall.

IA 1IN

Since ||z, —x,|| — 0 and the sequences {z, } and {z,} are bounded, we obtain ||¢,,—y,| — 0. As
A is k-Lipschitz-continuous, we have || Ay, — At,|| — 0. From ||z, —t,|| < |20 —ynll +||yn —t.]|
we also have ||z, — t,|| — 0. Since z, = a,z, + (1 — @,)Spt,, we have (1 — ay,)(Spt, — t,) =
an(t, — x,) + (2, — t,). Then

(1= o)|[Sutn —tnl < (1 — )||Sutn — ]|
< alltn — Tl 4 (|20 — ta|
< (1 + an)||tn - In” + Hzn - an

and hence ||Syt,, — t,|| — 0. Also, observe that

||Snxn - an < HSnxn - Sntn” + HSntn - tn” + th - xn”
< 2|z — tall + [|Sntn — tall-

Since ||z, — t,|| — 0 and [|S,t,, — t,|| — 0, we have ||S,x, — z,|| — 0. Consequently, we have
foreacht=1,2,...,. N

Hxn - SnﬂwnH < Hxn - anrZH + Hxnﬂ - SnJr’ianriH + HSnJrixnﬂ' - SnJrian
< QHIn - xn+z” + Hxn—i-z - Sn+ixn+iH

and so lim, . ||z, — Spyixn|| = 0 for each ¢ = 1,2,...; N. This implies that for each [ =
1,2,... N
giing |zn, — Sixzn|| = 0.

Step 5. We claim that w,(z,) C NN, F(S;) NVI(C, A), where w,(x,) denotes the weak
w-limit set of {z,}, i.e.,

Wy (2,) = {u € H : {xy,} converges weakly to u for some subsequence {n;} of {n}}.
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Indeed, since {z,} is bounded, it has a subsequence which converges weakly to some point
in C' and hence wy(z,) # 0. Let u € wy(z,) be an arbitrary point. Then there exists a
subsequence {z,,} C {z,} which converges weakly to u and hence we have lim;_ ||z, —
Sy, || = 0 for each [ = 1,2,...,N. Note that from Lemma 2.2 it follows that I — S is
demiclosed at zero. Thus u € F(S;) for each [ = 1,2,...,N, i.e., u € NN, F(S;). Now, we
show uw € VI(C, A). Let
TU:{ Av+ Nov if v e C,
0 if v (.

Then T' is maximal monotone and 0 € T if and only if v € VI(C, A); see [17]. Let (v, w) €
G(T'). Then we have w € Tv = Av + Nev and hence w — Av € Nev. So, we have (v —t,w —
Av) > 0 for all t € C. On the other hand, from t, = Po(x, — \yAy, — An(1 — ) Aty,) and
v € C we have

(Xn, — MAYn — An(1 — pp) Aty — ty ty —v) >0

and hence
tn — Tn

An
From (v —t,w — Av) > 0 for all t € C' and t,,, € C, we have

(v —ty, + Ay, + (1 — pn)Aty,) > 0.

(v —tn,,w) (v —ty,, Av)
tn. —Tn.

(V= tn,, Av) — (v — ty, ’)\nj Lt Ay, + (1= i, ) Aty )

U= tnja Avtn_fiin) + <U - tnj? Atnj - Aynj>

_<U_tnj7 J)\nj J>_(1_/1’nj)<v_tnj714tnj>

tn. —Tn.
Z <U - tn]'7Atnj - Aynj> - <U - tn]-7 ])‘"j J> - (1 - /‘Lnj)</U - tnjuAtn]'>'

>
>

So, we obtain (v —u,w) > 0 as j — oo. Since T' is maximal monotone, we have v € 7710 and
hence u € VI(C, A). Therefore, u € NN, F(S;) NVI(C, A).

F(s)nviIc,a)T:

Indeed, let v € wy(z,) be an arbitrary point. Then there exists a subsequence {z,;} C
{x,} which converges weakly to u. By Step 5, we know that u € N, F(S;)NVI(C, A). Hence
from ¢ = Pm z and (3.6) we derive

Step 6. We claim that {z,}, {y,} and {z,} converge strongly to ¢ = PﬂN
i=1

N
N F(S)NVI(C,A)

lg — 2| < [lu—=| <liminf ||z, — 2| < limsup ||2,, — 2| <[lg - ||
j—o0 j—00

So, we obtain
lim [z, — 2l = [l¢ — z|.
j—o00

From z,,, — 2z — v — x we have z,, — v — u — x and hence z,,, — u. Since z,, = Py, r and
J J J n

qeNY,F(S)NVI(C,A) CC,NQ, CQ,, we have
—|lg = @, |I” = (g — Ty @0y — T) + (g — @0y, 2 — q) = (g — Ty, T — q).
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(S)NVI(C,A)
u € NN, F(S;)NVI(C,A). Thus we have u = ¢. This implies that z,, — ¢. Consequently,
from ||z, — yn|| — 0 and ||z,, — 2,|| — 0 we infer that both {y,} and {z,} converge strongly

to q = Pﬂlz_vle(Si)nw(C’A)x. This completes the proof. O

As j — o0, we get —[l¢g —ul]*> > (¢ —u,z —¢) > 0 due to ¢ = szv r x and
i=1

4. Applications

Utilizing Theorem 3.1 in the above section, we prove some strong convergence theorems
in a real Hilbert space.

Theorem 4.1. Let C be a closed convex subset of a real Hilbert space H. Let A be
a monotone and k-Lipschitz-continuous mapping of C' into H such that VI(C, A) # (. Let
{z,}, {yn} and {z,} be sequences generated by

To =T € C,

Zn = QpXy + (1 — )iy,
Cn={z€C:|zn =zl < [lan — 2I},
Qn=1{z€C: (v, —z,x —x,) >0},
Tpt1 = PCanfU

for every n = 0, 1, ..., where the following hold:
(i) {pn} C (0,1] and lim,, o0 p, = 1;
(ii) {\.} C [a,b] for some a,b € (0,1/k);
(iii) {an} C [0, ] for some ¢ € [0, 1).
Then the sequences {z,}, {y,} and {z,} converge strongly to ¢ = Py a)z.

Proof. Putting S; =1 (1 <i<N), a, =0 for all n > 0, by Theorem 3.1 we obtain the
desired result. O

Remark 4.1. See liduka, Takahashi and Toyoda [13] for the case when the mapping A
is a-inverse-strongly-monotone; see Nadezhkina and Takahashi [21, Theorem 4.1] for the case
when the mapping A is monotone, Lipschitz-continuous.

Theorem 4.2. Let C be a closed convex subset of a real Hilbert space H. Let {S;}¥, be
N nonexpansive mappings of C into itself such that N, F(S;) # 0. Let {z,} and {y,} be
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sequences generated by

xo=1x € C,

Yn = Ty + (1 — ) SpPoy,
Co={2€C:|lyn — 2|l < llzn — 2|},
Qn={2z€C:{(x,—z,0—x,) >0},
Tn+1 = Po,ng.®

for every n = 0,1, ..., where S,, = Spymoan, and {a,} C [0,¢] for some ¢ € [0,1). Then the
sequences {z,} and {y,} converge strongly to ¢ = szv 5T
i=1 g

Proof. Putting A = 0, by Theorem 3.1 we obtain the desired result. a

Remark 4.2. See Nadezhkina and Takahashi [21, Theorem 4.2] for the case when N =1,
and see also Nakajo and Takahashi [18].

Theorem 4.3. Let H be a real Hilbert space. Let A be a monotone and k-Lipschitz-
continuous mapping of H into itself and let {S;}¥, be N nonexpansive mappings of H into
itself such that NN, F(S;) N A7'0 # (. Let {x,}, {y.} and {z,} be sequences generated by

Top =T € H,

Yn = Ty — Apin Ay — Ay (1 — 10) AYn,
tn = Tp — M Ayn — A (1 — pp) Aty

Zn = apZy + (1 — ay) Spty,
Co={2€H: |z, — 2| <|lwn —2|l},
Qn={z€H:{(x,—z,x—x,) >0},
Tnt1 = Po,ng,T

for every n = 0,1, ..., where S,, = Spmoan, and the following hold:

(1) {un} € (0,1] and limy, o ptr, = 1;

(i) {\n} C [a,b] for some a,b € (0,1/k);

(iii) {a,} C [0, ¢] for some ¢ € [0, 1).
Then the sequences {z,}, {y,} and {z,} converge strongly to g = lf’mz_v:1 F(s)nA-10%"

Proof. We have A~'0 = VI(H, A) and Py = I. By Theorem 3.1 we obtain the desired
result. a

Let B : H — 2" be a maximal monotone mapping. Then, for any x € H and r > 0,
consider JPz = {2z € H : 2+ rBz 3 x}. Such JPz is called the resolvent of B and is denoted
by JP = (I+rB)~".

Theorem 4.4. Let H be a real Hilbert space. Let A be a monotone and k-Lipschitz-
continuous mapping of H into itself and let B; : H — 27, i = 1,2,..., N be N maximal
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monotone mappings such that NX, B; '0N A710 # (). Let JZ be the resolvent of B; for each
r > 0. Let {x,}, {y,} and {z,} be sequences generated by

ro=x € H,

Yn = Tp — Mfin ATp — A (1 — pin) Ay,
tn = Tn — M Ay — A (1 — pp) Aty

Zn = Ty + (1 — ) J B,
Co={z€H: |z — 2| <|lzn — 2]},
Qn={z€H:{(x,—z,2—x,) >0},
Tp1 = Po,nQ.T

for every n = 0,1, ..., where JPr = JBnmoan “and the following hold:
(1) {un} € (0,1] and limy, o0 ftr, = 1;
(i) {\.} C [a,b] for some a,b € (0,1/k);
(iii) {a,} C [0, ] for some ¢ € [0, 1).

Then the sequences {z,}, {y,} and {z,} converge strongly to g = PnN x.
i=1

B;'onA-10

Proof. We know that J5 is nonexpansive for every i = 1,2,..., N. We also have A710 =
VI(H,A) and F(JP) = B;'0 for every i = 1,2, ..., N. Putting Py = I, by Theorem 3.1 we
obtain the desired result. |

We also know one more definition of a pseudocontractive mapping, which is equivalent to
the definition given in the introduction. A mapping T of C' into itself is called pseudocontrac-
tive if

(Tz = Ty,x—y) < ||z -y
for all x,y € C; see [6]. Obviously, the class of pseudocontractive mappings is more general
than the class of nonexpansive mappings. For the class of pseudocontractive mappings there
are some nontrivial examples; see [21, p.1239] for more details. In the following theorem
we introduce an iterative process that converges strongly to a common fixed point of N +
1 mappings, one of which is Lipschitz-continuous and pseudocontractive, and the rest N
mappings are nonexpansive.

Theorem 4.5. Let C' be a closed convex subset of a real Hilbert space H. Let T be a
pseudocontractive and m-Lipschitz-continuous mapping of C into itself , and let {S;}Y, be
N nonexpansive mappings of C' into itself such that NY, F(S;) N F(T) # 0. Let {x,}, {y.}
and {z,} be sequences generated by

To =T € C,

t, = Po(zn, — MAyn — A(1 — py) Aty),

Zn = QpZy + (1 — @) Sptn, (3.1)
Cn = {Z eC: HZn - ZH < Hxn - Z||},
Qn=1{2€C:{(x,—z,x—x,) >0},

Tnt1 = PCannl"
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for every n = 0,1, ..., where A=1—"T, S, = Spmoan, and the following hold:
(i) {pn} C (0,1] and lim, oo pr, = 1;
(i) {\.} C [a,b] for some a,b € (0,1/k);
(iii) {an} C [0, ] for some ¢ € [0, 1).
Then the sequences {z,}, {y,} and {z,} converge strongly to g = Pﬂfvl P

Proof. Let A =1 —T. Let us show the mapping A is monotone and (m + 1)-Lipschitz-
continuous. Indeed, observe that

(Av — Ay,z —y) = |z —ylI* = (Tz = Ty,z —y) >0,
and
Az = Ay[| = [l —y = (T = Ty)| < |z = yl| + [Tz = Ty|| < (m + Dz —y|.
Now let us show F(T) = VI(C, A). Indeed, we have, for fixed A\g € (0,1),
Tu=u<u=u—MNAu= Po(u— NAu) < (Au,y —u) > 0 Vy € C.

By Theorem 3.1 we obtain the desired result. |
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