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1. Introduction

Let H be a real Hilbert space with inner product (-, -) and norm ||-||. Let C' be a nonempty
closed convex subset of H and let & : C' x C' — R be a bifunction, where R is the set of real
numbers. The equilibrium problem for ® : C' x ' — R is to find x € C such that

O(z,y) >0, Vyel. (1.1)

The set of solutions of (1.1) is denoted by EP(®). Given a mapping 7' : C — H, let
O(z,y) = (Tx,y — z) for all z,y € C. Then, z € EP(®) if and only if (T'z,y — z) > 0 for all
y € C, i.e., z is a solution of the variational inequality. Some methods have been proposed to
solve the equilibrium problem; see, e.g., [2, 3].

A mapping S of C' into H is called nonexpansive if

1Sz = Syl| < |lz —yll, Vz,yel.

Denote by F(S) the set of fixed points of S. If C' C H is bounded, closed and convex and
S is a nonexpansive mapping of C' into itself, then F'(S) is nonempty; for instance, see [12].
There are some methods for approximation of fixed points of a nonexpansive mapping. In
2000, Moudafi [4] proved the following strong convergence theorem.

Theorem 1.1. See Moudafi [4]. Let C' be a nonempty closed convex subset of a Hilbert
space H and let S be a nonexpansive mapping of C' into itself such that F'(S) # (). Let f be
a contraction of C' into itself and let {z,} be a sequence defined as follows: z; = z € C' and

1 En
Tyl = mS!En + ﬁf(xn)y Vn > 1,

where {e,} C (0, 1) satisfies

> 1 1
lime, =0, » e,=o0c and lim | ——|=0.

W ~ n—oole, gy,
Then, {z,} converges strongly to z € F(S), where z = Pp(g)f(2) and Pps) is the metric
projection of H onto F(.S).

Such a method for approximation of fixed points is called the viscosity approximation
method. This approach is mainly due to Moudafi [4]; see also Xu [8]. Very recently, modified
by Combettes and Hirstoaga [2], Moudafi [4], and Tada and Takahashi [7], Takahashi and
Takahashi [13] introduced and studied an iterative scheme by the viscosity approximation
method for finding a common element of the set of solutions of (1.1) and the set of fixed
points of a nonexpansive mapping in a Hilbert space. Moreover, utilizing Opial’s property of
Hilbert space they proved a strong convergence theorem which is connected with the results
of Combettes and Hirstoaga result [2] and Wittmann [11].



Theorem 1.2. See Takahashi and Takahashi [13, Theorem 3.2]. Let C' be a nonempty
closed convex subset of H. Let ® : C' x C' — R satisfy (A1)-(A2):

(A1) ®(z,z) =0 for all z € C

(A2) @ is monotone, i.e., (z,y) + ®(y,z) <0 for all z,y € C;

(A3) for each x,y,z € C,

lim ®(tz + (1 —t)z,y) < O(x,y);

t—0t

(A4) for each x € C, y — ®(x,y) is convex and lower semicontinuous.
Let S be a nonexpansive mapping of C' into H such that F(S) N EP(®) # 0. Let f be a
contraction of H into itself and let {x,} and {u,} be sequences generated by z; € H and

Tn

(U, y) + (Y = Un, U — x0) >0, Vy € C,
Tpi1 = anf(zn) + (1 — o) Suy,, Yn > 1,

where {a,,} C [0,1] and {r,} C (0, 0) satisfy

o o0
71121()1004”:0, Zan:oo, Z]anH — ap| < oo,
n=1 n=1
o0
liminfr, >0 and 231 |Tng1 — | < 00.
n=

Then, {z,} and {u,} converge strongly to z € FI(S) N EP(®), where z = Ppsynep@)f(2).

Further, Ceng and Yao [10] investigated the problem of finding a common element of the
set of solutions of a mixed equilibrium problem and the set of common fixed points of finitely
many nonexpansive mappings in a Hilbert space. The authors’ result is the improvements
and extension of Takahashi and Takahashi Theorem 3.2 [13].

For recent years, viscosity approximation methods have been developed for finding a com-
mon fixed point of the family of nonlinear operators. Let G be an unbounded subset of R such
that s+t € G whenever s,t € G (often G = N, the set of nonnegative integers of R™"). Let X
be a smooth Banach space, C' a nonempty closed convex subset of X, and I' = {7, : s € G} a
commutative family of nonexpansive self-mappings of C'. Denote by F(I") the set of common
fixed points of I, i.e., F(I') = {x € C : Tyx = x, Vs € G}. Throughout this paper we always
assume that F'(I") is nonempty. Very recently, Yao and Noor [14] considered and analyzed the
following viscosity iterative scheme for a commutative family of nonexpansive mappings:

Algorithm 1.1. See Yao and Noor [14, Algorithm 1]. Let zy € C, f : C — C be
a contraction on C, and {a,},{0,} and {v,} be three sequences in (0,1) and {l,} be a
sequence in G. Define a sequence {x,} recursively by the following explicit iterative scheme:



In [14], Yao and Noor established the strong convergence of the sequence {z,} generated
by (1.2) under some suitable conditions.

Theorem 1.3. See Yao and Noor [14, Theorem 1]. Let C' be a nonempty closed convex
subset of a reflexive Banach space X with a weakly sequentially continuous duality mapping.
Let {an}, {6,} and {v,} be three sequences in (0,1) and {l,} be a sequence in G. Let {a,}
satisfy the control conditions: (C1) lim,,_, o, = 0, and (C2) >°° ; o, = 00. Assume that

(i) an+ B+ =1;

(i) 0 < liminf, . B, < limsup,,_, ., B < 1;

(iil) limy, o0 7 = 00;

(iv) T' is a semigroup (i.e., T,7s = T, for all r;s € G) and satisfies the uniformly
asymptotic regularity condition

lim sup||7\T.x — Tyz[| =0, uniformly in s € G, (UARC)

G
reG,r—oo wcC

where C is any bounded subset of C. If there exists Q(f) € F (I') which solves the variational
inequality

(I =), J(Q(f) —p) <0,
then the sequence {z,} generated by (1.2) converges strongly to Q(f) € F(I').

In this paper, inspired by Combettes and Hirstoaga [2], Wittmann [11], Moudafi [4], Tada
and Takahashi [7], Xu [8], Takahashi and Takahashi [13], Yao and Noor [14], and Ceng and
Yao [10], we introduce and consider a new iterative scheme

Tn

D (Up,y) + (Y — Up, up — 1) >0, Yy € C,
Tp4+1 = anf<xn> + ﬁnl‘n + ')/njjlnuru vn Z 0

by the viscosity approximation method for finding a common element of the set of solutions of
(1.1) and the set of common fixed points of a commutative family of nonexpansive mappings
in a Hilbert space. Then we prove a strong convergence theorem which is connected with the
results of Takahashi and Takahashi [13] and Yao and Noor [14]. Using this result, we obtain
two corollaries which improve and extend their results.

Throughout the rest of this paper, we denote by “—” and “—” the strong convergence
and weak convergence, respectively.
2. Preliminaries

Let H be a real Hilbert space with inner product (-,-) and norm || - ||. Tt is well known
that there holds the identity

1Az + (1= Nyl* = Mll* + @ = Vlyll* = A1 =Nz —yl*, Yo,y € H A€ [0,1].
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Let C' be a nonempty closed convex subset of H. Then, for any x € H, there exists a unique
nearest point in C', denoted by Pox, such that

lo = Pox| < [lz —yll, VyeC.

Such a Pg is called the metric projection of H onto C'. It is known that Po is nonexpansive.
Further, for x € H and z € C,

z=Pox & (x—zz—y)>0,VyeC.

It is also known that H satisfies Opial’s property, i.e., for any sequence {z, } C H with z,, — z,
the inequality
lim inf ||z, — || < liminf ||z, — y||

holds for every y € H with = # y; see [5] for more details.
Before starting the main results of this paper, we include some lemmas. The following
lemma appears implicitly in [1].

Lemma 2.1. See [1]. Let C' be a nonempty closed convex subset of H and let ¢ : C'xC —
R be a bifunction satisfying (A1)-(A4). Let » > 0 and « € H. Then, there exists z € C such

that
1

<I>(z,y)+r<y—z,z—x> >0, VyeC.

The following lemma was also given in [2].

Lemma 2.2. See [2]. Assume that ® : C' x C' — R satisfies (A1)-(A4). For r > 0 and
x € H, define a mapping S, : H — C as follows:

1
Sp(x)={z€C:P(z,y) +;(y—z,z—x) >0, Vy € C}
for all z € H. Then, the following hold:
(1) S, is single-valued,;
(2) S, is firmly nonexpansive, i.e., for any x,y € H,

1S, — Spyll? < (Svx — Sy, — y);

(3) F(S;) = EP(®);
(4) EP(®) is closed and convex.

The following lemma is an immediate consequence of an inner product.
Lemma 2.3. In a real Hilbert space H, there holds the inequality

lz +ylI* < ll2l” + 2y, z +y), Va,ye€ H
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Lemma 2.4. See [9]. Let {x,} and {y,} be bounded sequences in a Banach space X
and let {a,} be a sequence in [0, 1] with 0 < liminf,, . a,, < limsup,,_ . @, < 1. Suppose
Tpi1 = 0Ty +(1—ay,)y, for all integers n > 0 and lim sup,, o (|yns+1 —Ynl| = |Zns1 —2nl]) < 0.
Then, lim, o [|Yn — 2x| = 0.

Lemma 2.5. Demiclosedness Principle. See [12]. Assume that 7" is a nonexpansive self-
mapping of a closed convex subset C' of a Hilbert space H. If T has a fixed point, then [ — T
is demiclosed. That is, whenever {x,} is a sequence in C' weakly converging to some x € C
and the sequence {(I —T)x,} strongly converges to some y, it follows that (I —T)x = y. Here
I is the identity operator of H.

Lemma 2.6. See [8]. Assume that {a,} is a sequence of nonnegative real numbers such
that
An+1 S (1 - Vn)an + 5na vn 2 17

where {7, } is a sequence in (0,1) and {9, } is a sequence such that
(i) 220:1 Tn = OQ;
(ii) imsup,,_,o 0n/7m < 0 or >0°, [0,] < 00.

Then lim,,_,-, a,, = 0.

3. Strong Convergence Theorem

In this section, we deal with an iterative scheme by the viscosity approximation method
for finding a common element of the set of solutions of the equilibrium problem and the set of
common fixed points of a commutative family of nonexpansive mappings in a Hilbert space.

Theorem 3.1. Let C' be a nonempty closed convex subset of H. Let & : C' x C' — R be a
bifunction satisfying (A1)-(A4) and let {a,},{f.} and {7, } be three sequences in (0,1) and
{l,} be a sequence in G. Let {a,} satisfy the control conditions: (C1) lim, . a, = 0, and
(C2) >or° ) oy = 00. Assume that

(i) an + B0+ =1

(i) 0 < liminf, o B, < limsup,,_, . B < 1;

(i) limy, o0 I, = 00;

(iv) T is a semigroup (i.e., T,Ts = T4 for r,s € G) with F(I') N EP(®) # () and satisfies
the uniformly asymptotic regularity condition

lim sup ||Ts7,x — T,x|| =0, uniformly in s € G, (UARC)

eaqG,
r T &

where C is any bounded subset of C.
Let f: C — C be a contraction and let {x,} and {u,} be sequences generated by xy € C
and

Tn

O (Up,y) + (Y — Up, Uy — 1) >0, Vy € C,
Tp4+1 = anf(xn) + 5711'71 + 'Ynﬂnun7 vn Z 07
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where {r,} C (0, 00) satisfies

liminfr, >0 and lim |r,1 —7,| =0.
n—oo

Then, {z,} and {u,} converge strongly to z € F(I') N EP(®), where 2 = Ppryngp@)f(2).

Proof. Let QQ = Pprnep@). Then Qf is a contraction of C' into itself. In fact, there
exists o € [0,1) such that ||f(z) — f(y)|| < a|lx — y|| for all z,y € C. So, we have that

1Qf (x) = QF W) < If () = )l < allz =yl

for all x,y € C. So, Qf is a contraction of C' into itself. Since C' is complete, there exists a
unique element z € C' such that z = Q f(z).

For the remainder of the proof, we proceed with the following steps.

Step 1. {z,} and {u,} are bounded. Indeed, let p € F(I') N EP(®). Then from w, =
Sy, Tn, we have
lwn = pll =[S, 20 = Srpll < [l — pll, VR 2 0.

IN

Put M = max{||zo—p|, == ||/ (p) —p||}. It is obvious that [|zo —p|| < M. Suppose ||z, —p||
M. Then, we have

||xn+1 - p” = Hanf(xn) + Bnn + VTl un — p“

< ap||f(zn) = pll + Bullzn — pll + ol 10, un — pll

< anllf(@n) = F()|| + ol f () = Il + Bullzn — Il + nlltn — pl|
< anllf(zn) = f(O) + cnll f(p) = pll + Bullzn — pll + Yullzn — Pl
< aop ||z, = pll + (1 = an)l|@n — pl| + | f(p) — P

=[1 = (1 = a)an]llzn = pl| + ol f(p) — pll

[1— (1= a)an][lz, —pl + (1 = a)an - 251 f(p) = 1l
1—(1—-a)a,]M+ (1 —a)a, M = M.

—f
—f

IA I

So, by induction we have that ||z, — p|| < M for all n > 0 and hence {x,} is bounded. We
also know that {u,} and {f(x,)} are bounded. Since for each s € G we have

[ Tszn — pl| = [[Tszn — Top|| < |lza — p,
it is known that the set {7z, : s € G and n > 0} is bounded, and so is {7}, x,}.

Step 2. lim,, . ||Tpi1 — @l = limy,— oo ||tnt1 — up|| = 0. Indeed, define a sequence {z,,}
by



Then, observe that

. — Tn42=Bni1Tni1l _ Tni1—Fuln
yn+1 yn 1713n+1 1*ﬁn
o an+1f(xn+1)+'yn+1Tln+1un+l _anf(@n)+ T, un
- 1—Bn+1 1—0n

An41

= ] @nit) = 725, f(20)
+ 11%2_1 (Tlnﬂ Un+1 — TanuR) + ﬂn+lun

_ _Qn_ _ _On+41
E”un + 1*%n ,Tl"un 1*5n+17}”+1u"‘

It follows that

[Ynr1 = ynll = lznsr — 2l
[§20)
< g U s+ 1Tl ]) +

2 (1 (@)l + 1T, unl)

+ ’Yn+1 ||irln+1un+1 T’ln+1unH + HT’ln-H E un” ||£Un+1 - ZUnH

< 1a}§+il(||f(56n+1)\| + | Ty unll) + 725 (I (@)l + |10, unll)
+ ”un—i—l - Un” + ||ﬂn+l n Tlnun” - Hxn-&-l - xn”

On the other hand, from w, =S, z, and u,+; = S

rni1Tnt1, We have

1
f(un7y)+7<y_un7un_xn>207 vyec

n

and
1

T'n+1

f(un+17 y) +

Putting y = w41 in (3.3) and y = u,, in (3.4), we have

1
f(unyun-H + 7)<un+l — Up, Up — xn) 2 O
and .
f(un+17 un) + 7<un — Up+41, Un+1 — xn—i—l) Z 0.
Tn41

So, from (A2) we have

Up — Tn Up+1 — Tn+1
<un+1 — Unp, - > Z 0
Ty Tn—i—l
and hence
Tn >
<un+1 — Up, Up — Up+1 + Up+1 — Tp — r (un-‘rl - xn+1)> el 0
n+1

<y = Un+41, Unt1 — xn+1> > O, Vy e C.

(3.2)

(3.3)

(3.4)

Without loss of generality, let us assume that there exists a real number b such that r, > b >

0, Vn > 0. Then, we have

Hun+1 - un||2 S <un+1 — Up, Tn4+1 — Tp + (1 -
n+41

< lungr = wnll{llznn =zl + 11 = 725 lung —

) (Unt1 — Tny1))



and hence

”un-i—l - un” S ”xn—l-l - xn” + oo | Tn+1 — rn|||un+1 xn-l—l”

”"*1 3.5
<z = 2l s —ralL 39
where L = sup{||u, — z,|| : n > 0}. So, from (3.2) we have
[Ynt1 = Ynll = llznsr — @]
<1 gjil(Hf(an)H T unll) + 7225 (L (@)l + 1T, unl]) (3.6)
b|7"n+1 Tn|L + HTlnH TlnunH
If l,,41 > l,,, since I' is a semigroup, we have by (UARC)
Hﬂn+l 7—‘ln,unH = ||7—‘ln+l_ln7}nun - 7—‘lnu'nH - 0
Interchanging l,,41 and [, if [, 11 < l,,. Similarly we can obtain ||T;,,,u, — 1}, u,| — 0.
Thus it follows from (3.6) that
lim sup([|yn+1 = gl = lznss = 2all) < 0
Hence, by Lemma 2.3, we have
T [, — ] = 0.
Consequently, it follows from (3.1) that
B i~ ll = B (1= 50) o — 2l = 0 37)
From (3.5) and |r,+1 — 7| — 0, we have
Tim s — ] = 0.
Step 3. lim,, .o ||z — uy|| = limy, o0 |17, s — up|| = 0. Indeed, since z,41 = o f(x,) +

ﬁnxn + /YnT‘lnunv we have

[Znt1 = Ty tngall < @nsr = To,unll + 1 T0,un — Ty o |
< apl|f(2n) = T, unll + Bullvn — T, ||
+ ||Enun - En-ﬂun” + ||irln+1un - T’ln+1un+1H (38>
< ol f(@n) = Th,unll + Bullzn — Th, un||
+ 170 un = Tyt + llun — unga]]-

As in Step 2, we can obtain that |7, u, — T}, ,us|| — 0. Thus it follows from (3.8) and

condition (C1) that

n+1

(1 — limsup) limsup ||z, — T}, u,|| <0,

n—000n n—00

and so limy, . ||z, — T}, us|| = 0. For p € F(I') N EP(®), we have

1Sk, — Sr,pl|*

<Srnxn - rnp7 Tp — p>

< — D, Ty _p>

Q(Hun PIP + llzn = pII? = llon — unll?)

[ = pII?

|| IA I
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and hence
[t = pl|* < Nlan = plI* = 20 — unl®. (3.9)

Therefore, from the convexity of || - ||?, we have

”l'nJrl - pH2 = Hanf(xn> + ﬁnxn + fYnT'lnun - pH2
< an|lf(@n) = 2>+ Ballwn — 2l + ol it — p|?
< au |l f(@n) = 2>+ Ballwn — 2l + nlltn — plf?
< aullf(zn) = plI> + Bullwn — plI” + yulllzn = plI* = |20 — uall?)
= au| f(2n) = p[* + (1 — )20 = PI* = WllTn — un?
< anllf(@n) = I+ [lzn — Pl = Yall2n — wnll®
and hence

Yallzn = unll* < omllf(zn) —plli + e = plI* = llzns — pIf?
< an|lf(zn) = pII* + l#n = Zngal[([[2n = pll + 2040 = p)-

So, we have ||z, — u,| — 0. From
1T, un — wnl| < | T0un — ol + (|20 — uall,
we also have ||}, u, — uy,|| — 0.

Step 4. Fir each s € G, lim,,_., ||Tsu, — u,|| = 0. Indeed, let C be any bounded subset
of C' which contains the sequence {u,}. It follows that

[Tsun = unll - < [ Tsun = T, un| + | T, un — Tl + 110, un — ua|
< 2| o, un = up|| + sup [ T5Th, 2 = Ti, ]
zeC

Since ||17, un — u,|| — 0, from (UARC) we derive
dim [|Tsuy, — upl| = 0.

Step 5. limsup,_(f(2) — 2,2, — 2) < 0, where 2 = Ppyngp@)f(2). To show this
inequality, we choose a subsequence {u,,} of {u,} such that

lim (f(z) — z,,, — 2) = limsup(f(z) — z, 2, — 2).

1—00 n—o0o

Since {uy,,} is bounded, there exists a subsequence {unj} of {u,,} which converges weakly to
w. Without loss of generality, we can assume that w,, — w. From [|T}, u, — u,|| — 0, we
obtain 7j, u,, — w. Let us show w € EP(®). By u, = S,,z,, we have

1
F(up,y) + —(y — up,up, —x,) >0, VyeC.

n

11



From (A2), we also have
1
77@ = Up, Up — xn> Z f(ya un)

and hence
Up, — T,

s

Since =—" — (0 and u,, — w, from (A4) we have

0> fly,w), VyeC.

For t with 0 <t < landy e C, let y, =ty + (1 — t)w. Since y € C' and w € C, we have
y, € C and hence f(y;, w) < 0. So, from (Al) and (A4) we have

0 = f(ytu yt)
< tf(ye,y) + (1 =) f(yr, w)
<tf(y,y)

and hence 0 < f(y;,y). From (A3), we have
0< f(w,y), VyelC

and hence w € EP(®). We shall show w € F(I'). Assume w ¢ F(I'). Since u,, — w and
lim, oo [|Tstn — uy|| = 0 for each s € G, we deduce from Lemma 2.5 that w € F(I') =

Nseg F(Ts). Since z = Ppynep@)f(2), we have

limsup,, . (f(2) — 2,2, —2) =lim; o(f(2) — 2, xn, — 2)
= (f(z) —z,w—2) <0.
Step 6. lim, . ||z, — 2| = lim,—. ||, — 2|| = 0 where 2 = Pprynpp@)f(2). Indeed,

since xp1 — 2 = ap(f(xn) — 2) + Bu(xn — 2) + Yo (Th, uy — 2), by Lemma 2.3 we derive from
(3.9)

[nss = 207 < 1Baln — 2) + (Tt — 2) 12 + 200 (F(0) = 2 Tnss — 2)
< Ballzn — 2l + wllzn — 2% + 200 (f (20) = 2, Tnt1 — 2)
= (1 —an)?l|lzn — 2 + 200 (f(2n) — f(2), Tnt1 — 2)
+ 20, (f(2) — 2, Tpt1 — 2)
< (1= an)?[lzn — 2|1* + 20mallzy — 2|[|2p41 — 2|
+ 200, (f (2) = 2, Tpy1 — 2)
< (1= an)?llzn — 2l + anadllz, — 2[° + 2 — 2[I7}
+ 20, (f(2) — 2, Tpi1 — 2).
This implies that

2
npr — 22 < G=pedtandig, — 2|2 4 200 (f(2) — 2, 2041 — 2)

= et o — 2l 4+ i e — 2
+ 1727@ <f(Z) — 2, Tp+1 — Z>
<(1- %)Hxn = ZHQ
+ 11 fnzn{2(1 @) (f(z) — 2, Tpt1 — 2) ),

12



where M = sup{|lz, — z||? : n > 0}. Since lim,, ., a;, = 0, there exists ng > 1 such that for
all n > ng

2(1 — a)ay,
o e (0,1) & an(2—a) e (0,1).
T (0,1) an(2 —a) €(0,1)
It is clear that lim, ., 21=2% = 0. Note that condition (C2) implies that 332, 2= —
oo. Moreover, it is obvious that
WM 1
lim sup{ (F(z) = 2, @ —2)} < 0.

n— o0 2( —Oé) l—«

Therefore, according to Lemma 2.6, we conclude that lim,, . ||z, —z|| = 0, i.e., {z,,} converges
strongly to z € F/(I') N EP(®), where 2 = Pprynpp@)f(2). Since lim, .o ||ty — x,|| = 0, it
follows that lim, . ||u, — z|| = 0. This completes the proof of Theorem 3.1. O

Remark 3.1. Our Theorem 3.1 extends Takahashi and Takahashi Theorem 3.2 [13] to
the case of nonexpansive semigroups with uniformly asymptotic regularity and to the one of
the modified iterative scheme

{ O (Up,y) + (Y — Up, Up — 1) >0, Yy € C,

Tn
Tpi1 = O f(zn) + Bptn + Va1, Un, Yn > 0.

Moreover, our Theorem 3.1 removes the restrictions 3, |a, 11 — | < 00 and X, |rpi1 — | <
oo in their Theorem 3.2 [13]. On the other hand, Yao and Noor’s algorithm in [14, Theorem 1]
is extended to develop the new one in our Theorem 3.1 for finding a common element of the set
of solutions of an equilibrium problem and the set of common fixed points of a nonexpansive
semigroup with uniformly asymptotic regularity. There is no doubt that such an extension is
very interesting and quite significant.

As direct consequences of Theorem 3.1, we obtain two corollaries.

Corollary 3.1. Let C' be a nonempty closed convex subset of H. Let {a,},{3,} and
{7n} be three sequences in (0,1) and {l,} be a sequence in G. Let {a,} satisfy the control
conditions: (C1) lim, . o, =0, and (C2) >°° o, = co. Assume that

(i) tn + B + Yn = 1;

(i) 0 < liminf, o B, < limsup,,_,., B, < 1;

(i) limy, o0 I, = 00;

(iv) T is a semigroup (i.e., T,Ts = T,.s for r;s € G) with F(I') # ( and satisfies the
uniformly asymptotic regularity condition

lim sup ||TsT,x — T,z|| =0, uniformly in s € G, (UARC)
c

reG,r—oo
€&, z€

where C' is any bounded subset of C. Let f : C'— C' be a contraction and let {z,} and {u,}
be sequences generated by xg € C' and

Tp41 = anf(xn) + 6nxn + VnﬂnPanu n Z 0.
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Then, {z,} converges strongly to z € F'(I'), where z = Ppr f(2).

Proof. Put ®(z,y) =0 for all z,y € C and r,, = 1 for all n > 0 in Theorem 3.1. Then,
we have u, = Pox,. So, according to Theorem 3.1, the sequence {z,} generated by zq € C
and

Tpy1 = O-/nf(xn) + Bntyn + V11, Poxn, Yn >0,

converges strongly to z € F(I'), where 2z = Ppr) f(2). ]

Corollary 3.2. Let C' be a nonempty closed convex subset of H. Let ® : C' x C' — R be
a bifunction satisfying (A1)-(A4) such that EP(®) # () and let {a,}, {6,} and {7,} be three
sequences in (0,1). Let {a,} satisfy the control conditions: (C1) lim, . o, = 0, and (C2)
>orl o 0y = 00. Assume that

(1) an+ﬁn+7n =1

(i) 0 < liminf, . G, < limsup,_ . G, < L.

Let f: C' — C be a contraction and let {z,} and {u,} be sequences generated by zo € C
and

O(tt, y) + 2y — i,y — ) >0, Vy € C,
{ Tp+1 = anf<xn> + 5nxn + YnUn, vn Z Oa

where {r,} C (0, 00) satisfies
ligri%)rolfrn >0 and nll_{go |1 — ra] = 0.
Then, {z,} and {u,} converge strongly to z € EP(®), where z = Pgp(a)f(2).

Proof. Put T,z =z, Vo € C,s € G in Theorem 3.1. Then, in terms of Theorem 3.1, the
sequences {x,} and {u,} generated in Corollary 3.2 converge strongly to z € EP(®), where

z = PEP(@)f(Z) O

Remark 3.2. Takahashi and Takahashi derived Wittmann’s theorem [11] in the case
when f(y) = x; € C for all y € H and S is a nonexpansive mapping of C' into itself in
their Corollary 3.3 [13]. Our Corollary 3.1 extends their Corollary 3.3 [13] to the case of
nonexpansive semigroups with uniformly asymptotic regularity. Takahashi and Takahashi
also derived Combettes and Hirstoaga theorem [2] in the case when f(y) = z; € H for all
y € H in their Corollary 3.4 [13]. Our Corollary 3.2 extends their Corollary 3.4 [13] to the
case of the modified iterative scheme

{ (I)(un7y)+ 1<y_unaun_xn>207 VyEC,

Tn

Furthermore, our Corollary 3.1 removes the restriction Y, |, 11 — ay,| < oo in their Corollary
3.3 [13], and Corollary 3.2 removes the restrictions Y, |ap 11 —an| < 0o and 3, |71 —70| < 00
in their Corollary 3.4 [13].
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