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ABSTRACT. Let X and Y be compact Hausdorff spaces, and E, F' be Banach
lattices. Let C'(X, F) denote the Banach lattice of all continuous E-valued func-
tions on X equipped with the pointwise ordering and the sup norm. We prove
that if there exists a Riesz isomorphism ¢ : C'(X, E) — C(Y, F) such that &f is
non-vanishing on Y if and only if f is non-vanishing on X, then X is homeomor-
phic to Y, and E is Riesz isomorphic to F. In this case, ¢ can be written as a
weighted composition operator: @f(y) = I1(y)(f(¢(y))), where ¢ is a homeomor-
phism from Y onto X, and I1(y) is a Riesz isomorphism from E onto F for every
y in Y. This generalizes some known results obtained recently.

1. INTRODUCTION

Let X and Y be compact Hausdorff spaces, and C(X), C(Y) denote the spaces
of real-valued continuous functions defined on X, Y respectively. There are three
versions of the Banach-Stone theorem. That is to say, surjective linear isometries,
ring isomorphisms and lattice isomorphisms from C(X) onto C(Y") yield homeomor-
phisms between X and Y, respectively (cf. [1, 6, 14]).

Jerison [13] got the first vector-valued version of the Banach-Stone theorem. He
proved that if the Banach space F is strictly convex, then every surjective linear
isometry @ : C(X, F) — C(Y, E) can be written as a weighted composition operator

Df(y) = (y)(f(e(y), VI eC(X E),VyeY.

Here ¢ is a homeomorphism from Y onto X, and II is a continuous map from Y into
the space (L(FE, E), SOT) of bounded linear operators on E equipped with the strong
operator topology (SOT). Furthermore, I1(y) is a surjective linear isometry on E for
every y in Y. After Jerison [13], many vector-valued versions of the Banach-Stone
theorem have been obtained in different ways (see, e.g., [3, 4, 5, 7, 9, 10, 12, 16]).

Let E, F be nonzero real Banach lattices, and C(X, E) be the Banach lattice
of all continuous F-valued functions on X equipped with the pointwise ordering
and the sup norm. Note that, in general, a Riesz isomorphism (i.e., lattice iso-
morphism ) from C(X, F) onto C(Y, F') does not necessarily induce a topological
homeomorphism from X onto Y (cf. [16, Example 3.5]). To consider the Banach-
Stone theorems for continuous Banach lattice valued functions, we would like to
mention the papers [5, 7, 16]. In particular, when F, F' are both Banach lattices
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and Riesz algebras, Miao, Cao and Xiong [16] recently proved that if F' has no zero-
divisor and there exists a Riesz algebraic isomorphism ¢ : C(X, E) — C(Y, F) such
that @ f is non-vanishing on Y if f is non-vanishing on X, then X is homeomorphic
to Y, and E is Riesz algebraically isomorphic to F'. By saying f in C(X, F) is non-
vanishing, we mean that 0 ¢ f(X). Indeed, under these conditions they obtained
that @~ 'g is non-vanishing on X if g € C(Y, F) is non-vanishing on Y. Note that
every Riesz algebraic isomorphism must be a Riesz isomorphism.

Let E and F be Banach lattices. More recently, Ercan and Onal [7] have estab-
lished that if F' is an AM-space with unit, i.e., a C'(K)-space, and there exists a
Riesz isomorphism ¢ : C(X, E) — C(Y, F) such that ¢f is non-vanishing on Y if
and only if f is non-vanishing on X, that is, both & and $~! are non-vanishing
preserving, then X is homeomorphic to Y, and E is Riesz isomorphic to F'.

Inspired by [5, 7, 16], one can set a natural question:

Question 1. Is X homeomorphic to Y if E, F' are Banach lattices and there exists
a Riesz isomorphism @ : C(X, E) — C(Y, F) such that both ¢ and &~! are non-
vanishing preserving?

In this paper we show the answer to the above question is affirmative. Moreover,
in this case @ can be written as a weighted composition operator:

Df(y) = (y)(f(e(y), VIeC(X E),VyeYy,

where ¢ is a homeomorphism from Y onto X, and II(y) is a Riesz isomorphism from
E onto F for every y in Y. This generalizes the results obtained by Cao, Reilly and
Xiong [5], Miao, Cao, and Xiong [16], and Ercan and Onal [7].

Our notions are standard. For the undefined notions and basic facts concerning
Banach lattices we refer the readers to the monographs [1, 2, 14].

2. A BANACH-STONE THEOREM FOR RIESZ ISOMORPHISMS

In the following we always assume X and Y are compact Hausdorff spaces, E and
F are nonzero Banach lattices, and L£(F, F) is the space of bounded linear operators
from E into F' equipped with SOT. For z in X and y in Y, let M, and N, be defined
as

M,={feC(X,E): f(x) =0}, N,={g9€C(Y,F):g(y) =0}

Clearly, M, and N, are closed (order) ideals in C(X, F) and C(Y, F), respectively.
Lemma 2. Let ¢ : C(X,E) — C(Y, F) be a Riesz isomorphism such that ®(f) is
non-vanishing on Y if and only if f is non-vanishing on X. Then for each x in X
there exits a unique y in 'Y such that

PM, = N,.
In particular, this defines a bijection ¢ from'Y onto X by p(y) = x.
Proof. For each x in X, let
Z(PMy) ={yeY :Df(y) =0 for all f € M,}.

We first claim that Z(®M,) is non-empty. Suppose, on the contrary, that Z(PM,)
is empty. Then for each y in Y there would exist an f, in M, such that @ f,(y) # 0,
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and thus @f, is non-vanishing in an open neighborhood of y. Note that |f,| € M,,
and @|f,| = |®f,| since @ is a Riesz isomorphism. Therefore, we can assume further
that both f, and @f, are positive, by replacing them by their absolute values if
necessary. By the compactness of Y, we can choose finitely many f1,..., f, from
M} such that the positive functions @ f1, . .., D f, have no common zero in Y. Hence
D(f1 + -+ + fn) is strictly positive, that is, ®@(f1 + -+ + fn)(y) > 0 for each y in
Y. This contradicts the fact that f; 4+ --- + f, vanishes at x. We thus prove that
Z(BM,) # 6.

Next, we claim that Z(®M,) is a singleton. Indeed, if y1,y2 € Z(PM,) then we
would have @M, C Ny,,i = 1,2. Applying the above argument to &1, we shall have
@’1]\7%. C M,, for some z; in X, i = 1,2. It follows that &M, C N,, C ®M,,, i =
1,2. Then x = x1 = x2 since @ is bijective and X is Hausdorff. Thus,

y1 =y2 and DM, =Ny = N,,.
Now, we can define a bijective map ¢ : Y — X such that
¢M¥’(y) = Ny, VyeY.
O

The following main result answers affirmatively the question mentioned in the
introduction, and solves the conjecture of Ercan and Onal in [7].

Theorem 3. Let & : C(X,E) — C(Y,F) be a Riesz isomorphism such that ®f is
non-vanishing on'Y if and only if f is non-vanishing on X. Then'Y is homeomorphic
to X, and @ can be written as a weighted composition operator

2f(y) = Hy)(f(eW), VfeC(X,E)VyeY,

Here ¢ is a homeomorphism from'Y onto X, and I1(y) is a Riesz isomorphism from
E onto F for everyy in'Y . Moreover, Il : Y — (L(E, F),SOT) is continuous, and

2] = supyey [T (y)]-

Proof. First, we show that the bijection ¢ given in Lemma 2 is a homeomorphism
from Y onto X. It suffices to verify the continuity of ¢ since Y is compact and X is
Hausdorff. To this end, suppose, to the contrary, that there would exist a net {yy}
in Y converging to yo in Y, but ¢(y)) converges to xo # ¢(yo) in X.

Let Uy, and Uy, be disjoint open neighborhoods of zy and ©(yo), respectively.
First, for any f in C(X, E) vanishing outside U,,,) we claim that @f(yo) = 0.
Indeed, since ¢(yy) belongs to Uy, for A large enough and f(x) = 0 for any x in
Uy, we have that f € My,,). It follows from Lemma 2 that @f € Ny,, that is,
®f(yn) = 0 when X is large enough. Thus, @f(yg) = 0 since yx — yo and Pf is

continuous.

Let x € C(X) such that x vanishes outside U,,,) and x(¢(yo)) = 1. Then, for
any h in C(X, E) we have h = xh + (1 — x)h. Since xh vanishes outside Uy, by
the above argument, we can see that ®(xh)(yo) = 0. Clearly, #((1 — x)h) vanishes
at yo since (1— ) € Myq,,). Thus, $hyn) = P(xh) (o) + 2((1 — Jh)(s0) = 0
for any h in C(X, E). This leads to a contradiction since @ is surjective. So ¢ is
continuous, and thus a homeomorphism from Y onto X satisfying ®M,,(,) = N, for
each y in Y.
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Next, note that kerd, () = kerd, o &, where d, is the Dirac functional. Hence,
there is a linear operator I1(y) : E — F such that 0, o ® = II(y) o d,(,). In other
words,

Df(y) =(y)(fle(y), VfeCX E)VyeY.
See, e.g., [8, p. 67].

It is a routine work to verify the other assertions in the statement of this theorem.
For the convenience of the readers, we give a sketch of the rest of the proof. For e
in B, let 1x ® e € C(X, E) be defined by (1x ® e)(x) = e for each z in X. Let y in
Y be fixed. If e # 0, then II(y)e = II(y)((1x ® €)(¢(y))) = P(1x ® e)(y) # 0 since
1x ® e is non-vanishing. Hence, II(y) is one-to-one. On the other hand, for v in F'
we can find a function f in C(X, F) such that @f = 1y ® u by the surjectivity of
®. Let e = f(p(y)). Then II(y)e = II(y)(f(¢(y))) = ¢f(y) = u. That is, II(y) is
surjective. To see I1(y) is a Riesz isomorphism, let e1,es € E. Then I1(y)(e1 Vea) =
P(1x @ (e1Vez))(y) = P(1x ®e1)(y) V P(1x ®e2)(y) = 1 (y)ex V II(y)ez, since @
is a Riesz isomorphism.

Recall that every positive operator between Banach lattices is continuous. Let
e € E. Since [I(yel| = [[2(1x ® e)(y)]| < [[2(1x @ ¢)|| < [Pl[le]|, we have
II(y)|| < ||| for all y in Y. On the other hand, for any f in C'(X, E) and any y
in Y, we can see [|f(y)l = [1I(y)(f (@)l < [T f]. Consequently, ||P| <
supyey [[11(y)]l-

Finally, we prove that IT : Y — (L(E, F),SOT) is continuous. To this end, let
{yn} be a net such that yy — y in Y. Then, for any e in E, ||[II(yx)e — II(y)e|| =
|1P(1x ®e)(yn) — P(1x ®@e)(y)|| — 0, since ¢(1x ® e) is continuous on Y. O

In the above results, we have to assume that both ¢ and $~! are non-vanishing
preserving. In the following example, we can see that the inverse of a non-vanishing
preserving Riesz isomorphism is not necessarily non-vanishing preserving.

Example 4. Let X = {1,2} equipped with the discrete topology and E = R with its
usual ordering and norm, and let Y = {0} and F' = R? with the pointwise ordering
and the sup norm. Define ¢ : C(X, E) — C(Y, F) by @f(0) = (f(1), f(2)). Clearly,
the Riesz isometric isomorphism @ is non-vanishing preserving, but its inverse @~
is not.

Let E, F be both Banach lattices and Riesz algebras, Miao, Cao and Xiong
[16] recently proved that if F' has no zero-divisor and there exists a Riesz algebraic
isomorphism @ : C(X,E) — C(Y, F) such that ¢f is non-vanishing on Y if f is
non-vanishing on X, then X is homeomorphic to Y, and E is Riesz algebraically
isomorphic to F. In fact, from their proof we can see that @f is non-vanishing on
Y if and only if f is non-vanishing on X, that is, both @ and ¢~! are non-vanishing
preserving. Therefore, the result of Miao, Cao and Xiong can be restated as follows.

Corollary 5 ([16]). Let E, F be both Banach lattices and Riesz algebras. If F' has
no zero-divisor and ¢ : C(X,E) — C(Y,F) is a Riesz algebraic isomorphism such
that @f is non-vanishing on Y if f is non-vanishing on X, then @ is a weighted
composition operator

2f(y) = Hy)(f(eWy), VfeC(X,E)VyeY.
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Here ¢ is a homeomorphism from'Y onto X, and II(y) is a Riesz algebraic isomor-
phism from E onto F for everyy in Y.

In Theorem 3, when X, Y are compact Hausdorff spaces and £ = F = R, the
lattice hypothesis about @ can be dropped.

Example 6. Let X, Y be compact Hausdorff spaces, and C(X), C(Y') be the Banach
spaces of continuous real-valued functions defined on X,Y, respectively. Assume
& :C(X)— C(Y) is a linear map such that @f is non-vanishing on Y if and only if
f is non-vanishing on X.

Note that (®1x)~'® is a unital linear map preserving non-vanishing. Let A be in
the range of f. Then f— A1y is not invertible, and thus neither is (®1x) '@ f—A1y.
It follows that X is in the range of (#1x)~!'®@f. The converse also holds. Therefore,
the range of (#1y) '®@f coincides with the range of f for each f in C(X). In
particular, (#1x)~'® is a unital linear isometry from C(X) into C(Y). By the
Holsztyniski Theorem [11], there is a compact subset Yp of Y and a quotient map
@ : Yo — X such that

(P1x)'Df |y, = fop,  VfeC(X).

In case @ is surjective, the classical Banach-Stone Theorem ensures that ¢ is a
homeomorphism from Y = Y; onto X. Moreover, if ®1x is strictly positive on Y,
then @ is a Riesz isomorphism. However, when @ is not surjective the situation is a
bit uncontrollable. For example, consider @ : C[0,1] — C([0, 3] U [1, 3]) defined by

f2y), if 0<y<1/2
Df(y) = { (ny— 2)f(0) + (3 —2y)f(1), if1< z <3

Clearly, the thus defined @ is a non-surjective linear isometry preserving non-vanishing
in two ways, but [0, 1] is not homeomorphic to [0, %] U1, %]

Finally, we borrow an example from [15] which shows that the surjectivity cannot
be guaranteed by many other properties we usually consider.

Example 7. Let w and w; be the first infinite and the first uncountable ordinal
number, respectively. Let [0,w;] be the compact Hausdorff space consisting of all
ordinal numbers x not greater than w; and equipped with the topology generated
by order intervals. Note that every continuous function f in C[0,w;] is eventually
constant. More precisely, there is a non-limit ordinal xy such that w < xy < w; and
f(x) = f(wr) for all x > xy.

Define ¢ : [0,w1] — [0, w1] by setting
#(0)=w1, ¢n)=n—1foraln=12..., and¢(x)==zforal z>w.

Let @ : C[0,w1] — C[0,w1] be the non-surjective composition operator defined by
@f = fo¢. It is plain that @ is an isometric unital algebraic and lattice isomorphism
from C[0,w ] onto its range. In fact, one can see in [15, Example 3.3] that the map
& is a non-surjective linear n-local automorphism of C[0,w ], where n = 1,2, ..., w,
i.e., the action of @ on any set S of cardinality not greater than n agrees with an
automorphism &g.
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