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Abstract. Let X and Y be compact Hausdorff spaces, and E, F be Banach
lattices. Let C(X, E) denote the Banach lattice of all continuous E-valued func-
tions on X equipped with the pointwise ordering and the sup norm. We prove
that if there exists a Riesz isomorphism Φ : C(X, E) → C(Y, F ) such that Φf is
non-vanishing on Y if and only if f is non-vanishing on X, then X is homeomor-
phic to Y , and E is Riesz isomorphic to F . In this case, Φ can be written as a
weighted composition operator: Φf(y) = Π(y)(f(ϕ(y))), where ϕ is a homeomor-
phism from Y onto X, and Π(y) is a Riesz isomorphism from E onto F for every
y in Y . This generalizes some known results obtained recently.

1. Introduction

Let X and Y be compact Hausdorff spaces, and C(X), C(Y ) denote the spaces
of real-valued continuous functions defined on X, Y respectively. There are three
versions of the Banach-Stone theorem. That is to say, surjective linear isometries,
ring isomorphisms and lattice isomorphisms from C(X) onto C(Y ) yield homeomor-
phisms between X and Y , respectively (cf. [1, 6, 14]).

Jerison [13] got the first vector-valued version of the Banach-Stone theorem. He
proved that if the Banach space E is strictly convex, then every surjective linear
isometry Φ : C(X, E) → C(Y, E) can be written as a weighted composition operator

Φf(y) = Π(y)(f(ϕ(y))), ∀ f ∈ C(X, E), ∀ y ∈ Y.

Here ϕ is a homeomorphism from Y onto X, and Π is a continuous map from Y into
the space (L(E, E), SOT ) of bounded linear operators on E equipped with the strong
operator topology (SOT ). Furthermore, Π(y) is a surjective linear isometry on E for
every y in Y . After Jerison [13], many vector-valued versions of the Banach-Stone
theorem have been obtained in different ways (see, e.g., [3, 4, 5, 7, 9, 10, 12, 16]).

Let E, F be nonzero real Banach lattices, and C(X, E) be the Banach lattice
of all continuous E-valued functions on X equipped with the pointwise ordering
and the sup norm. Note that, in general, a Riesz isomorphism ( i.e., lattice iso-
morphism ) from C(X, E) onto C(Y, F ) does not necessarily induce a topological
homeomorphism from X onto Y (cf. [16, Example 3.5]). To consider the Banach-
Stone theorems for continuous Banach lattice valued functions, we would like to
mention the papers [5, 7, 16]. In particular, when E, F are both Banach lattices
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and Riesz algebras, Miao, Cao and Xiong [16] recently proved that if F has no zero-
divisor and there exists a Riesz algebraic isomorphism Φ : C(X, E) → C(Y, F ) such
that Φf is non-vanishing on Y if f is non-vanishing on X, then X is homeomorphic
to Y , and E is Riesz algebraically isomorphic to F . By saying f in C(X, E) is non-
vanishing, we mean that 0 /∈ f(X). Indeed, under these conditions they obtained
that Φ−1g is non-vanishing on X if g ∈ C(Y, F ) is non-vanishing on Y . Note that
every Riesz algebraic isomorphism must be a Riesz isomorphism.

Let E and F be Banach lattices. More recently, Ercan and Önal [7] have estab-
lished that if F is an AM -space with unit, i.e., a C(K)-space, and there exists a
Riesz isomorphism Φ : C(X, E) → C(Y, F ) such that Φf is non-vanishing on Y if
and only if f is non-vanishing on X, that is, both Φ and Φ−1 are non-vanishing
preserving, then X is homeomorphic to Y , and E is Riesz isomorphic to F .

Inspired by [5, 7, 16], one can set a natural question:

Question 1. Is X homeomorphic to Y if E, F are Banach lattices and there exists
a Riesz isomorphism Φ : C(X, E) → C(Y, F ) such that both Φ and Φ−1 are non-
vanishing preserving?

In this paper we show the answer to the above question is affirmative. Moreover,
in this case Φ can be written as a weighted composition operator:

Φf(y) = Π(y)(f(ϕ(y))), ∀ f ∈ C(X, E), ∀ y ∈ Y,

where ϕ is a homeomorphism from Y onto X, and Π(y) is a Riesz isomorphism from
E onto F for every y in Y . This generalizes the results obtained by Cao, Reilly and
Xiong [5], Miao, Cao, and Xiong [16], and Ercan and Önal [7].

Our notions are standard. For the undefined notions and basic facts concerning
Banach lattices we refer the readers to the monographs [1, 2, 14].

2. A Banach-Stone theorem for Riesz isomorphisms

In the following we always assume X and Y are compact Hausdorff spaces, E and
F are nonzero Banach lattices, and L(E, F ) is the space of bounded linear operators
from E into F equipped with SOT. For x in X and y in Y , let Mx and Ny be defined
as

Mx = {f ∈ C(X, E) : f(x) = 0}, Ny = {g ∈ C(Y, F ) : g(y) = 0}.
Clearly, Mx and Ny are closed (order) ideals in C(X, E) and C(Y, F ), respectively.

Lemma 2. Let Φ : C(X, E) → C(Y, F ) be a Riesz isomorphism such that Φ(f) is
non-vanishing on Y if and only if f is non-vanishing on X. Then for each x in X
there exits a unique y in Y such that

ΦMx = Ny.

In particular, this defines a bijection ϕ from Y onto X by ϕ(y) = x.

Proof. For each x in X, let

Z(ΦMx) = {y ∈ Y : Φf(y) = 0 for all f ∈ Mx}.
We first claim that Z(ΦMx) is non-empty. Suppose, on the contrary, that Z(ΦMx)
is empty. Then for each y in Y there would exist an fy in Mx such that Φfy(y) 6= 0,
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and thus Φfy is non-vanishing in an open neighborhood of y. Note that |fy| ∈ Mx,
and Φ|fy| = |Φfy| since Φ is a Riesz isomorphism. Therefore, we can assume further
that both fy and Φfy are positive, by replacing them by their absolute values if
necessary. By the compactness of Y , we can choose finitely many f1, . . . , fn from
M+

x such that the positive functions Φf1, . . . , Φfn have no common zero in Y . Hence
Φ(f1 + · · · + fn) is strictly positive, that is, Φ(f1 + · · · + fn)(y) > 0 for each y in
Y . This contradicts the fact that f1 + · · · + fn vanishes at x. We thus prove that
Z(ΦMx) 6= φ.

Next, we claim that Z(ΦMx) is a singleton. Indeed, if y1, y2 ∈ Z(ΦMx) then we
would have ΦMx ⊆ Nyi , i = 1, 2. Applying the above argument to Φ−1, we shall have
Φ−1Nyi ⊆ Mxi for some xi in X, i = 1, 2. It follows that ΦMx ⊆ Nyi ⊆ ΦMxi , i =
1, 2. Then x = x1 = x2 since Φ is bijective and X is Hausdorff. Thus,

y1 = y2 and ΦMx = Ny1 = Ny2 .

Now, we can define a bijective map ϕ : Y → X such that

ΦMϕ(y) = Ny, ∀ y ∈ Y.

¤

The following main result answers affirmatively the question mentioned in the
introduction, and solves the conjecture of Ercan and Önal in [7].

Theorem 3. Let Φ : C(X, E) → C(Y, F ) be a Riesz isomorphism such that Φf is
non-vanishing on Y if and only if f is non-vanishing on X. Then Y is homeomorphic
to X, and Φ can be written as a weighted composition operator

Φf(y) = Π(y)(f(ϕ(y))), ∀ f ∈ C(X, E), ∀ y ∈ Y.

Here ϕ is a homeomorphism from Y onto X, and Π(y) is a Riesz isomorphism from
E onto F for every y in Y . Moreover, Π : Y → (L(E, F ), SOT ) is continuous, and
‖Φ‖ = supy∈Y ‖Π(y)‖.
Proof. First, we show that the bijection ϕ given in Lemma 2 is a homeomorphism
from Y onto X. It suffices to verify the continuity of ϕ since Y is compact and X is
Hausdorff. To this end, suppose, to the contrary, that there would exist a net {yλ}
in Y converging to y0 in Y , but ϕ(yλ) converges to x0 6= ϕ(y0) in X.

Let Ux0 and Uϕ(y0) be disjoint open neighborhoods of x0 and ϕ(y0), respectively.
First, for any f in C(X, E) vanishing outside Uϕ(y0) we claim that Φf(y0) = 0.
Indeed, since ϕ(yλ) belongs to Ux0 for λ large enough and f(x) = 0 for any x in
Ux0 , we have that f ∈ Mϕ(yλ). It follows from Lemma 2 that Φf ∈ Nyλ

, that is,
Φf(yλ) = 0 when λ is large enough. Thus, Φf(y0) = 0 since yλ → y0 and Φf is
continuous.

Let χ ∈ C(X) such that χ vanishes outside Uϕ(y0) and χ(ϕ(y0)) = 1. Then, for
any h in C(X, E) we have h = χh + (1− χ)h. Since χh vanishes outside Uϕ(y0), by
the above argument, we can see that Φ(χh)(y0) = 0. Clearly, Φ((1− χ)h) vanishes
at y0 since (1 − χ)h ∈ Mϕ(y0). Thus, Φh(y0) = Φ(χh)(y0) + Φ((1 − χ)h)(y0) = 0
for any h in C(X, E). This leads to a contradiction since Φ is surjective. So ϕ is
continuous, and thus a homeomorphism from Y onto X satisfying ΦMϕ(y) = Ny for
each y in Y .
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Next, note that ker δϕ(y) = ker δy ◦ Φ, where δy is the Dirac functional. Hence,
there is a linear operator Π(y) : E → F such that δy ◦ Φ = Π(y) ◦ δϕ(y). In other
words,

Φf(y) = Π(y)(f(ϕ(y))), ∀ f ∈ C(X, E), ∀ y ∈ Y.

See, e.g., [8, p. 67].

It is a routine work to verify the other assertions in the statement of this theorem.
For the convenience of the readers, we give a sketch of the rest of the proof. For e
in E, let 1X ⊗ e ∈ C(X, E) be defined by (1X ⊗ e)(x) = e for each x in X. Let y in
Y be fixed. If e 6= 0, then Π(y)e = Π(y)((1X ⊗ e)(ϕ(y))) = Φ(1X ⊗ e)(y) 6= 0 since
1X ⊗ e is non-vanishing. Hence, Π(y) is one-to-one. On the other hand, for u in F
we can find a function f in C(X, E) such that Φf = 1Y ⊗ u by the surjectivity of
Φ. Let e = f(ϕ(y)). Then Π(y)e = Π(y)(f(ϕ(y))) = Φf(y) = u. That is, Π(y) is
surjective. To see Π(y) is a Riesz isomorphism, let e1, e2 ∈ E. Then Π(y)(e1∨e2) =
Φ(1X ⊗ (e1 ∨ e2))(y) = Φ(1X ⊗ e1)(y) ∨ Φ(1X ⊗ e2)(y) = Π(y)e1 ∨Π(y)e2, since Φ
is a Riesz isomorphism.

Recall that every positive operator between Banach lattices is continuous. Let
e ∈ E. Since ‖Π(y)e‖ = ‖Φ(1X ⊗ e)(y)‖ ≤ ‖Φ(1X ⊗ e)‖ ≤ ‖Φ‖‖e‖, we have
‖Π(y)‖ ≤ ‖Φ‖ for all y in Y . On the other hand, for any f in C(X, E) and any y
in Y , we can see ‖Φf(y)‖ = ‖Π(y)(f(ϕ(y)))‖ ≤ ‖Π(y)‖‖f‖. Consequently, ‖Φ‖ ≤
supy∈Y ‖Π(y)‖.

Finally, we prove that Π : Y → (L(E, F ), SOT ) is continuous. To this end, let
{yλ} be a net such that yλ → y in Y . Then, for any e in E, ‖Π(yλ)e −Π(y)e‖ =
‖Φ(1X ⊗ e)(yλ)− Φ(1X ⊗ e)(y)‖ → 0, since Φ(1X ⊗ e) is continuous on Y . ¤

In the above results, we have to assume that both Φ and Φ−1 are non-vanishing
preserving. In the following example, we can see that the inverse of a non-vanishing
preserving Riesz isomorphism is not necessarily non-vanishing preserving.

Example 4. Let X = {1, 2} equipped with the discrete topology and E = R with its
usual ordering and norm, and let Y = {0} and F = R2 with the pointwise ordering
and the sup norm. Define Φ : C(X, E) → C(Y, F ) by Φf(0) = (f(1), f(2)). Clearly,
the Riesz isometric isomorphism Φ is non-vanishing preserving, but its inverse Φ−1

is not.

Let E, F be both Banach lattices and Riesz algebras, Miao, Cao and Xiong
[16] recently proved that if F has no zero-divisor and there exists a Riesz algebraic
isomorphism Φ : C(X, E) → C(Y, F ) such that Φf is non-vanishing on Y if f is
non-vanishing on X, then X is homeomorphic to Y , and E is Riesz algebraically
isomorphic to F . In fact, from their proof we can see that Φf is non-vanishing on
Y if and only if f is non-vanishing on X, that is, both Φ and Φ−1 are non-vanishing
preserving. Therefore, the result of Miao, Cao and Xiong can be restated as follows.

Corollary 5 ([16]). Let E, F be both Banach lattices and Riesz algebras. If F has
no zero-divisor and Φ : C(X, E) → C(Y, F ) is a Riesz algebraic isomorphism such
that Φf is non-vanishing on Y if f is non-vanishing on X, then Φ is a weighted
composition operator

Φf(y) = Π(y)(f(ϕ(y))), ∀ f ∈ C(X, E), ∀ y ∈ Y.
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Here ϕ is a homeomorphism from Y onto X, and Π(y) is a Riesz algebraic isomor-
phism from E onto F for every y in Y .

In Theorem 3, when X, Y are compact Hausdorff spaces and E = F = R, the
lattice hypothesis about Φ can be dropped.

Example 6. Let X, Y be compact Hausdorff spaces, and C(X), C(Y ) be the Banach
spaces of continuous real-valued functions defined on X, Y , respectively. Assume
Φ : C(X) → C(Y ) is a linear map such that Φf is non-vanishing on Y if and only if
f is non-vanishing on X.

Note that (Φ1X)−1Φ is a unital linear map preserving non-vanishing. Let λ be in
the range of f . Then f−λ1X is not invertible, and thus neither is (Φ1X)−1Φf−λ1Y .
It follows that λ is in the range of (Φ1X)−1Φf . The converse also holds. Therefore,
the range of (Φ1X)−1Φf coincides with the range of f for each f in C(X). In
particular, (Φ1X)−1Φ is a unital linear isometry from C(X) into C(Y ). By the
Holsztyński Theorem [11], there is a compact subset Y0 of Y and a quotient map
ϕ : Y0 → X such that

(Φ1X)−1Φf |Y0 = f ◦ ϕ, ∀f ∈ C(X).

In case Φ is surjective, the classical Banach-Stone Theorem ensures that ϕ is a
homeomorphism from Y = Y0 onto X. Moreover, if Φ1X is strictly positive on Y ,
then Φ is a Riesz isomorphism. However, when Φ is not surjective the situation is a
bit uncontrollable. For example, consider Φ : C[0, 1] → C([0, 1

2 ] ∪ [1, 3
2 ]) defined by

Φf(y) =
{

f(2y), if 0 ≤ y ≤ 1/2;
(2y − 2)f(0) + (3− 2y)f(1), if 1 ≤ y ≤ 3

2 .

Clearly, the thus defined Φ is a non-surjective linear isometry preserving non-vanishing
in two ways, but [0, 1] is not homeomorphic to [0, 1

2 ] ∪ [1, 3
2 ].

Finally, we borrow an example from [15] which shows that the surjectivity cannot
be guaranteed by many other properties we usually consider.

Example 7. Let ω and ω1 be the first infinite and the first uncountable ordinal
number, respectively. Let [0, ω1] be the compact Hausdorff space consisting of all
ordinal numbers x not greater than ω1 and equipped with the topology generated
by order intervals. Note that every continuous function f in C[0, ω1] is eventually
constant. More precisely, there is a non-limit ordinal xf such that ω < xf < ω1 and
f(x) = f(ω1) for all x ≥ xf .

Define φ : [0, ω1] → [0, ω1] by setting

φ(0) = ω1, φ(n) = n− 1 for all n = 1, 2, . . ., and φ(x) = x for all x ≥ ω.

Let Φ : C[0, ω1] → C[0, ω1] be the non-surjective composition operator defined by
Φf = f ◦φ. It is plain that Φ is an isometric unital algebraic and lattice isomorphism
from C[0, ω1] onto its range. In fact, one can see in [15, Example 3.3] that the map
Φ is a non-surjective linear n-local automorphism of C[0, ω1], where n = 1, 2, . . . , ω,
i.e., the action of Φ on any set S of cardinality not greater than n agrees with an
automorphism ΦS .
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