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Abstract. In the classical Hahn-Banach-Kantorovich theorem, the range
space Y is Dedekind complete. In this paper, by extending the arguments
of the original Hahn-Banach-Kantorovich theorem and using an idea of Y.
A. Abramovich and A. W. Wickstead, we can weaken the order theoretic
assumption on Y and obtain more general results in the settings of Banach
lattices as well as ordered linear spaces.

1. Introduction

In the operator version of the Hahn-Banach-Kantorovich theorem, the range

space Y is assumed to be Dedekind complete. This assumption can be consid-

erably relaxed by using a weaker interpolation property, the so-called Cantor

property on Y. Some generalizations of this type were given by H. B. Cohen [3],

J. Lindenstrauss [9] and G. Buskes [2]. In particular, Y. A. Abramovich and A.

W. Wickstead [1] provided us the following

Theorem 1 ([1]). Let X and Y be Banach lattices such that X is separable

and Y has the Cantor property. Let P : X → Y+ be a continuous seminorm.

If G is a linear subspace of X and T : G → Y is a continuous linear operator

satisfying T (v) ≤ P (v) for all v in G then there exists a continuous extension S

of T to the whole of X such that S(x) ≤ P (x) for all x in X.

In this paper, we obtain two new results along the line. The first one states that

any positive linear operator from a majorizing subspace of a separable Banach

lattice into a Banach lattice with the Cantor property can be extended. The

second one states that any (o)-continuous linear operator from a subspace of an

ordered linear space with (os)-property into an ordered linear space with the

strong (σ)-interpolation property dominated by an (o)-continuous seminorm can

also be extended.
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2. Preliminaries

As far as the linear-order-theoretical terminology is concerned, we mostly fol-

low Cristescu’s book [4]. In particular, an ordered linear space X is said to have

the (os)-property if there exists a countable subset D of X such that for each x

in X there is a sequence {xn}n in D with xn
o→ x. A linear subspace G of X

is a majorizing subspace if for every x in X there exists a v in G with x ≤ v.

Consequently, there also exists a u in G such that u ≤ x.

Definition. Let Y be an ordered linear space. Y is said to have the Cantor

property (or the (σ)-interpolation property or the countable property) if for every

increasing sequence {xn}n and every decreasing sequence {zm}m in Y with xn ≤
zm, ∀ n,m ∈ N, there is a y in Y such that xn ≤ y ≤ zm, ∀ n,m ∈ N. Y is

said to have the strong (σ)-interpolation property if for every pair of sequences

{xn}n and {zm}m in Y with xn ≤ zm, ∀ n,m ∈ N, there is a y in Y such that

xn ≤ y ≤ zm, ∀ n,m ∈ N. In case Y is a vector lattice, these two notions coincide.

G. Seever [10] showed that for a completely regular space K, C(K) has the

Cantor property if and only if K is an F-space, i.e. every pair of disjoint open

(Fσ)-sets in K has disjoint closures. C. B. Huijsmans and B. De Pagter [8]

showed that an Archimedean vector lattice Y has the Cantor property if and

only if Y is uniformly complete and normal. In general, for a vector lattice we

have: Dedekind completeness implies Dedekind (σ)-completeness implies Cantor

property implies order completeness implies uniform completeness (see e.g. [12,

p. 696]).

In case Y is a Banach lattice, A. W. Wickstead [11] proved that the following

are all equivalent: (1) Y has the Cantor property; (2) The space of all regular

operators from convergent sequences into Y has the strong (σ)-interpolation

property; (3) The space of all regular operators from convergent sequences into

Y has the Riesz decomposition property. More recently, N. Dăneţ [6] showed

that they are also equivalent to: (3′) The space of all regular operators from any

separable Banach lattice into Y has the Riesz decomposition property.
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3. Main results

We start with a Kantorovich-type theorem concerning the extension of a pos-

itive linear operator. Note that every positive linear operator from a majorizing

subspace of a Banach lattice into a Banach lattice is continuous.

Theorem 2 Let X be a separable Banach lattice, G a majorizing subspace of

X, and Y a Banach lattice with the Cantor property. If T : G → Y is a positive

linear operator then there exists a positive linear operator S : X → Y such that

S(v) = T (v), ∀v ∈ G.

Proof. Let x0 ∈ X \G and G1 the linear hull of G ∪ {x0}. We will extend T

to G1. Because G is a majorizing subspace of X we can choose u, v from G such

that u ≤ x0 ≤ v. Since the operator T is positive we have

T (u) ≤ T (v).(1)

Let W be the nonempty set of all such u, v in G. Since X is separable, there

exists a countable dense subset D of W . In particular, the inequality (1) holds

for any u, v in D with u ≤ x0 ≤ v. By the Cantor property of Y we can find a

y0 in Y satisfying

T (u) ≤ y0 ≤ T (v), for all u, v ∈ D, u ≤ x0 ≤ v.

Since T is continuous, the last double inequality remains true for all u, v in G

with u ≤ x0 ≤ v. Now, letting T1(x0) = y0 we obtain a desired extension of T,

namely T1 : G1 → Y , defined by

T1(v + λx0) = T (v) + λy0.

Obviously G1 is again a majorizing subspace of X. Moreover, T1 : G1 → Y

is positive. Indeed, let v + λx0 ≥ 0 with λ 6= 0. If λ > 0 then x0 ≥ − 1
λv and

this implies y0 ≥ T (− 1
λv) = − 1

λT (v). Therefore, T1(x0) ≥ − 1
λT (v), and thus

T1(v + λx0) ≥ 0. If λ < 0 we get the same result.

Finally, a routine application of Zorn’s lemma will finish the proof. ¤

Recall that an axial element is an e in X+ such that for each x in X there

exists λ > 0 satisfying x ≤ λe.



4 RODICA-MIHAELA DĂNEŢ AND NGAI-CHING WONG

Corollary 3 Let X and Y be Banach lattices such that X is separable and

contains an axial element e and Y has the Cantor property. Then for each y0 in

Y+ there exists a positive linear operator U : X → Y with U(e) = y0.

Proof. Because e is an axial element of X, the linear hull G = Sp(e) is a

majorizing subspace of X. We define T : G → Y by T (λe) = λy0 and then apply

Theorem 2. ¤

Before stating another corollary of Theorem 2, we remark that any linear

subspace G of an ordered linear space X containing an element in the interior

IntX+ of the positive cone X+ of X is majorizing. Moreover, any positive

linear operator from X into an ordered linear space Y vanishing in a majorizing

subspace is necessarily zero.

Corollary 4 Let X be a separable Banach lattice with IntX+ 6= ∅, and Y a

Banach lattice with the Cantor property. Then for any linear subspace G of X

disjoint from IntX+, there exists a non-zero positive linear operator U : X → Y

with U |G= 0.

Proof. We choose an element x0 from IntX+ and denote by G0 the linear hull

of G∪{x0}. It follows that G0 is a majorizing subspace of X. Define T0 : G0 → Y

by T0(v + λx0) = λy0 for some fixed element y0 in Y+.

Let us prove that T0 is positive. Let v ∈ G and λ 6= 0 such that v + λx0 ≥ 0.

Suppose that λ < 0. Then −λx0 ∈ IntX+ and hence v = v + λx0 + (−λx0) ∈
IntX+. This conflicts with the hypothesis that G ∩ IntX+ = ∅. So λ > 0 and

hence T0(v + λx0) = λy0 ≥ 0. By Theorem 2 we can extend T0 to a positive

linear operator U : X → Y. Obviously U |G= 0. ¤

The following results supplement Theorem 1. The first appears without proof

in [7].

Theorem 5 Suppose X and Y are ordered linear spaces, G is a linear subspace

of X with the (os)-property, and Y has the strong (σ)-interpolation property.

Let T : G → Y be an (o)-continuous linear operator and P : X → Y+ an

(o)-continuous seminorm such that T (v) ≤ P (v) for all v in G. Then for any

x0 in X \ G we can extend T to an (o)-continuous linear operator T1 : G1 =

Sp(G ∪ {x0}) → Y such that T1(z) ≤ P (z) for all z in G1.
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Proof. Because G has the (os)-property, there exists a countable subset D of

G such that, for each v in G, there is a sequence (vn)n∈N in D with vn
o→ v. If

u, v ∈ G then

T (u)− T (v) = T (u− v) ≤ P (u− v) =

= P ((u + x0)− (v + x0)) ≤ P (u + x0) + P (v + x0).

So

−P (v + x0)− T (v) ≤ P (u + x0)− T (u), for all u, v ∈ G.(2)

In particular, the inequality holds for all u, v in D. Using the strong (σ)-interpolation

property of Y we find a y0 in Y such that

−P (v + x0)− T (v) ≤ y0 ≤ P (u + x0)− T (u), for all u, v ∈ D.(3)

But T and P are (o)-continuous and hence the inequalities (3) hold for all

u, v in G. Now, by letting

T1(v + λx0) = T (v) + λy0

we obtain a linear extension of T to G1.

It remains to show that T1(v + λx0) ≤ P (v + λx0) for all v in G and λ in R,

or equivalently,

T (v) + λy0 ≤ P (v + λx0) for all v ∈ G and λ ∈ R.(4)

If λ = 0, the inequality (4) is valid because T1 = T ≤ P on G. If λ > 0, using

the right inequality in (3), for 1
λv instead of u, we obtain

y0 ≤ P (
1
λ

v + x0)− T (
1
λ

v) =
1
λ

[P (v + λx0)− T (v)] .

Therefore,

T (v) + λy0 ≤ P (v + λx0).

If λ < 0, we use the left inequality in (3) to establish (4) instead.

Being dominated by the (o)-continuous seminorm P , the extension T1 of T is

(o)-continuous as well. ¤

Corollary 6 Suppose in Theorem 5, in addition, every linear subspace of

X has the (os)-property. Then there exists an (o)-continuous linear operator

S : X → Y such that S(v) = T (v) for all v in G, and S(x) ≤ P (x) for all x in

X.
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Proof. It follows from Theorem 5 and an application of Zorn’s lemma. ¤
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