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Abstract. This paper is concerned with the study of solution existence of

variational inequalities and generalized variational inequalities in reflexive

Banach spaces with pseudomonotone operators in the sense of H. Brézis.

The obtained results covers some preceding results in [4], [11] and [14].

Keywords. Variational inequality, generalized variational inequality, pseu-

domonotone operator, solution existence.
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1 Introduction

Variational inequality (VI, for brevity), generalized variational inequality (GVI), and

quasivariational inequality (QVI) have been recognized as suitable mathematical mod-

els for dealing with many problems arising in different fields, such as optimization

theory, partial differential equations, economic equilibrium, mechanics, etc. In the

last four decades, since the time of the celebrated Hartman-Stampacchia theorem (see

[9] and [11]), solution existence of VIs, GVIs, QVIs and other related problems has

become a basic research topic which continues to attract attention of researchers in

applied mathematics (see for instance [2], [6], [8], [11]-[21] and the references therein).

Some difficult questions do exist in this field (see, for example, [16] and [20]).

Let us assume that X is a reflexive Banach space over the reals, K ⊂ X is a

nonempty closed convex set, Φ : K ⇒ X∗ is a multifunction from K into the dual

space X∗ (which is equipped with the weak∗ topology).

The generalized variational inequality defined by K and Φ, denoted by GVI(K, Φ),

is the problem of finding a point x ∈ K such that

∃x∗ ∈ Φ(x), 〈x∗, y − x〉 ≥ 0 ∀y ∈ K. (1.4)

Here 〈, 〉 denotes the canonical pairing between X∗ and X. The set of all x ∈ K

satisfying (1.4) is denoted by SOL(K, Φ). If Φ(x) = {F (x)} for all x ∈ K, where

F : K → X∗ is a single-valued map, then the problem GVI(K, Φ) is called a variational

inequality and the abbreviation VI(f, K) is used instead of GVI(K, Φ).

If for any x, y ∈ K and x∗ ∈ Φ(x), y∗ ∈ Φ(y) one has 〈x∗− y∗, x− y〉 ≥ 0, then one

says that Φ is a monotone operator. The first substantial results concerning monotone

operators were obtained by G. Minty [15] and F. E. Browder [3]. Then the properties

of monotone operators were studied systematically by F. E. Browder in order to obtain

existence theorems for quasi-linear elliptic and parabolic partial differential equations.

The existence theorems of F. E. Browder were generalized to more general classes of

quasi-linear elliptic differential equations by P. Hartman and G. Stampacchia (see [9]

and [11]).

In 1968, H. Brézis [5]introduced a vast class of operators of pseudomonotone type as

follows. A operator T : K → 2X∗
is called pseudomonotone iff the following holds. Let

(un, u
∗
n) be such that u∗n ∈ T (un), un ⇀ u as n →∞ and lim supn→∞〈u∗n, un − u〉 ≤ 0.

Then for each v ∈ K, there exists v∗ ∈ T (u) such that

〈v∗, u− v〉 ≤ lim inf
n→∞

〈u∗n, un − v〉.

The theory pseudomonotone operators plays an important role in the study of solv-

ability of operator equations and quasi-linear elliptic equations. This class have been
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studied systematically. We refer the readers to [4] and Chapter 27 in [22] for more

information and properties of the class.

Beside the concept of pseudomonotone operators in the sense of Brézis, another

concept of pseudomonotone operators was proposed by Karamardian in 1976 (see [10]).

Let us recall the definition of pseudomonotone operators in the sense of Karamardian.

A operator Φ : K → 2X∗
is said to be pseudomonotone if for any x, y ∈ K and

x∗ ∈ Φ(x), y∗ ∈ Φ(y) implies

〈y∗, x− y〉 ≥ 0 =⇒ 〈x∗, x− y〉 ≥ 0.

It is clear that monotonicity implies pseudomonotonicity in the sense of Karamardian.

The converse implication is not true in general (take, for instance, K = R and F (x) =

x2 + 1 for all x ∈ K).

Existence of solutions of variational inequalities for pseudomonotone operators in

the sense of Karamardian has been investigated intensively in recent years (see, for

instance [2], [8], [13], [18], [19] and references therein). We cite here some existence

results of VIs that have a close connection with the present work.

Theorem 1.1 ([[18], Theorem 3.3]) Let X be a real reflexive Banach space and K ⊂ X

be a closed convex and bounded set. Assume that F : K → X∗ is a pseudomonotone

operator (in the sense of Karamardian) which is continuous on finite dimensional sub-

spaces of X. Then VI(F, K) has a solution.

Particularly, in [12] the authors obtained a necessary and sufficient condition for

the solution existence of pseudomonotone VIs in reflexive Banach spaces.

Theorem 1.2 ([[12], Theorem 3.1]) Let X be a real reflexive Banach space and K ⊂ X

be a closed convex set. Assume that F : K → X∗ is a pseudomonotone operator (in

the sense of Karamardian) which is continuous on finite dimensional subspaces of X.

Then the following statements are equivalent:

(a) There exists a reference point xref ∈ K such that the set

L<(F, xref) := {x ∈ K : 〈F (x), x− xref〉 < 0}

is bounded (possibly empty);

(b) There exist an open ball Ω and a vector xref ∈ Ω ∩K such that

〈F (x), x− xref〉 ≥ 0 ∀x ∈ K ∩ ∂Ω;

(c) The problem VI(K, F ) has a solution.

Besides, if there exists a vector xref ∈ K such that the set

L≤(F, xref) :=
{
x ∈ K : 〈F (x), x− xref〉 ≤ 0

}
is bounded, then the solution set SOL(K, F ) is nonempty and bounded.
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It is natural to ask whether the conclusions of Theorem 1.1 and Theorem 1.2 are

still valid for the case of pseudomonotone operators in the sense of Brézis. Our aim

in this paper is to obtain such conclusions. It is noted that the proofs of Theorem

1.1 and Theorem 1.2 are based on the Minty lemma. However, when operators are

not pseudomonotone in the sense of Karamadian, the lemma is invalid. Hence in

this case the scheme of proofs of Theorem 1.1 and Theorem 1.2 fails to apply to our

problem. In order to obtain existence results as Theorem 1.1 and Theorem 1.2 for the

case of pseudomonotone operators in the sense of Brézis, we derived a new scheme for

proofs which based on the Galerkin method. Using this scheme, we can establish some

existence theorems for VIs and GVIs in reflexive Banach spaces. The obtained results

extend preceding results in [4], [22] and [14]. Besides, the results allow us to retrieve

existence results of VIs for the case of finite dimensional spaces as a special case.

It is worth pointing out that although there have been many existence results of

VIs for pseudomonotone operators in the sense of Karamardian, there are very few

results of VIs for pseudomonotone operators in the sense of Brézis in the literature.

Our paper aims at a small contribution for this gap.

2 Existence results for VIs

Throughout of the paper we denote by BK the set of operators T : K → 2X∗
which are

pseudomonotone in the sense of Brézis and by KK the set of operators Φ : K → 2X∗

which are pseudomonotone in the sense of Karamardian.

Recall that a single-valued operator A : K → X∗ belongs to class BK iff the

following holds: un ⇀ u and lim supn→∞〈Aun, un − u〉 ≤ 0 imply

〈Au, u− w〉 ≤ lim inf
n→∞

〈Aun, un − w〉 for all w ∈ K.

A is said to be of class (S)+ if for any sequence un ⇀ u and lim supn→∞〈Aun, un−u〉 ≤ 0

imply un → u.

We say that A is demicontinuous iff un → u implies Aun ⇀ Au. A is said to be

hemicontinuous iff the real function

t 7→ 〈A((1− t)u + tv), w〉

is continuous on [0, 1] for all u, v, w ∈ K. If the set A(K) is bounded then A is called

bounded on K.

We begin with the first existence theorem for class BK .

Theorem 2.1 Let K be a nonempty closed convex set in a real reflexive Banach space

X and A ∈ BK a single-valued operator. Assume that A is continuous on finite di-

mensional subspaces of X and there exists a reference point xref ∈ K such that the
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set

L<(A, xref) := {x ∈ K : 〈Ax, x− xref〉 < 0}

is bounded (possibly empty).

Then problem VI(K, A) has a solution.

Proof. Since the set L<(A, xref) is bounded, there exist an open ball Ω such that

{xref} ∪ L<(A, xref) ⊂ Ω. Consequently,

〈Ax, x− xref〉 ≥ 0 ∀x ∈ K ∩ ∂Ω. (2.1)

Let us denote by L the set of all finite dimensional subspaces L of X containing xref .

Fixing any L ∈ L we put KL = K ∩ L, ΩL = Ω ∩ L, and let ∂LΩL stand for the

boundary of ΩL in the induced topology of L. Then ∂LΩL = (∂Ω) ∩ L. Consider the

map AL : KL → L∗ defined by

〈ALx, y〉 = 〈Ax, y〉 ∀y ∈ L. (2.2)

From (2.1) and (2.2), all the conditions stated in the statement (b) of Proposition 2.2.3

in [8], where (KL, AL, ΩL, xref) plays the role of the (K, A, Ω, xref), are fulfilled. Hence

there exists a vector xL ∈ ΩL such that

〈AxL, y − xL〉 ≥ 0 ∀y ∈ KL. (2.3)

For each Y ∈ L we denote by SY the set of all x̂ ∈ K such that there exists a

subspace L ⊇ Y with the property that x̂ ∈ ΩL and

〈Ax̂, y − x̂〉 ≥ 0 ∀y ∈ KL.

From (2.3) we see that SY 6= ∅ because xY ∈ SY . Moreover, the family {SY }Y ∈L has a

finite intersection property, where SY is the weak closure of SY in X. Indeed, taking

any L1, L2, ..., Ln ∈ L and putting M = span{L1, L2, . . . , Ln}, we have M ∈ L and

SM ⊆
n⋂

i=1

SLi
.

This implies that

∅ 6= SM ⊆ SM ⊆
n⋂

i=1

SLi
⊆

n⋂
i=1

SLi
.

We now see that SY ⊂ Ω and Ω is a weakly compact set. The finite intersection

property of Ω implies ⋂
Y ∈L

SY 6= ∅.
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Thus there is a point x0 such that x0 ∈ SY for all Y ∈ L.

Fix any y ∈ K. Take Y ∈ L such that Y contains y and x0. Since x0 ∈ SY , there

exists a sequence xn ∈ SY such that xn ⇀ x0. By the definition of SY one has

〈Axn, v − xn〉 ≥ 0 ∀v ∈ KY .

Particularly,

〈Axn, xn − x0〉 ≤ 0 and 〈Axn, xn − y〉 ≤ 0.

Hence

lim sup
n→∞

〈Axn, xn − x0〉 ≤ 0.

By the pseudomonotonicity of A, we obtain

〈Ax0, x0 − y〉 ≤ lim inf
n→∞

〈Axn, xn − y〉 ≤ 0.

Thus we have shown that

〈Ax0, y − x0〉 ≥ 0 for all y ∈ K.

This implies that x0 is a solution of VI(K, A). The proof is complete. �

When K is a bounded set we obtain

Theorem 2.2 Let K be a weakly compact convex set in a reflexive Banach space X

and A ∈ BK. Assume that A is continuous on finite dimensional subspaces of X. Then

problem VI(K, A) has a solution.

Proof. The proof of the theorem is similar to the proof of Theorem 2.1, where instead

of using Proposition 2.2.3 in [8], we use Theorem 3.1 in [[11], p. 12]. �

Let us present some corollaries of Theorem 2.2.

Corollary 2.3 ([[11], Theorem 1.4, p. 84]) Let K be a closed convex and bounded set

in a reflexive Banach space X and A : K → X∗ be a operator which is monotone and

continuous on finite dimensional subspaces of X. Then the problem VI(K, A) has a

solution.

Proof. Since A is continuous on finite dimensional subspaces of X, A is hemicontinu-

ous. According to Proposition 27.6 (a) in [22], we have A ∈ BK . The conclusion follows

from Theorem 2.2. �

7



Corollary 2.4 ( [[14], Theorem 2.1]) Suppose that K is a nonempty weakly compact

convex subset of the reflexive Banach space X and A : K → X∗. Assume conditions:

(i) A is of class (S)+;

(ii) A is continuous on finite dimensional subspaces;

(iii) if xn → x then {Axn} has a weakly convergent subsequence with limit Ax.

Then VI(K,A) has a solution.

Proof. We shall show that A is of class BK . In fact, assume that un ⇀ u and

lim supn→∞〈Aun, un − u〉 ≤ 0. Fix any v ∈ K and put

α = lim inf
n→∞

〈Aun, un − v〉.

Then there exists a subsequence {unk
} such that

α = lim
k→∞

〈Aunk
, unk

− v〉.

By (i) we have unk
→ u as k →∞. By (iii) we can assume that Aunk

⇀ Au as k →∞.

Hence we obtain

〈Au, u− v〉 = lim
k→∞

〈Aunk
, unk

− v〉 = α.

This implies that A is pseudomontone. The conclusion now follows from Theorem 2.2.

�

Let us give an example which shows that there exists an operator A ∈ BK \ KK .

Example 2.1 Consider VI(K, A), where K ⊂ R2 defined by

K = {(x, y) ∈ R2 : x + y ≤ 1, x ≥ −1, y ≥ −1}

and A defined by A(x, y) = (−x3, y2). Since A is continuous and X is a finite dimen-

sional space, A ∈ BK (see [[22], Proposition 27.6]). Thus VI(K, A) satisfies all condi-

tions of Theorem 2.2. Moreover A /∈ KK . Indeed, taking u = (1, 0) and v = (−1, 0),

we have 〈Av, u− v〉 = 2 and 〈Au, u− v〉 = −2. Hence A is not pseudomonotone in the

sense of Karamardian.

The class of pseudomonotone operators in the sense of Brezis is rather large. For

examples, maximal monotone operators are of class BK (see [[4], Proposition 8]), mono-

tone and hemicontinuous operators are of BK (see [[22], Proposition 27.6]). The follow-

ing example shows that there exists a pseudomonotone operator acting on a Sobolev

space which is not monotone.

Example 2.2 Let G be a bounded open set in Rn with n = 1, 2, 3 and let X =
◦

W 1
2 (G)

be a closed subspace of the Sobolev space W 1
2 (G). Let An : X → X∗ be an operator

defined by

〈Anu, v〉 = α

∫
G

n∑
i=1

(Diu)(sin u)vdx,
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where α < 0 and Diu(x) := ∂u
∂xi

(x). By the Proposition 27.11 in [22], An is pseu-

domonotone. However, An is not monotone in general. In fact, for n=1 and G = (0, 1)

we have

〈A1u, v〉 = α

∫ 1

0

u̇(sin u)vdx.

Take two functions u1(x) ≡ 0 and u2(x) = −x3 + x2. We see that u1, u2 ∈ C∞(0, 1)

and ui(0) = ui(1) = 0, i=1, 2. Hence u1, u2 ∈ X. We now have

〈A1u1 − A1u2, u1 − u2〉 = 〈A1u2, u2〉 = α

∫ 1

0

(−3x2 + 2x)(−x3 + x2) sin(−x3 + x2)dx.

Since 0 ≤ −x3 + x2 ≤ 4/27 for all x ∈ (0, 1), we have sin(−x3 + x2) ≥ 0. Also

(−3x2 + 2x)(−x3 + x2) ≥ 0 for all x ∈ (0, 1). Hence we obtain∫ 1

0

(−3x2 + 2x)(−x3 + x2) sin(−x3 + x2)dx > 0.

Consequently, 〈A1u1 − A1u2, u1 − u2〉 < 0 and so A1 is not monotone.

3 Existence results for GVIs

This section is devoted to deriving some solution existence theorems for GVIs.

Let us recall the definition of upper semicontinuous multifunctions. A multifunction

F : X → 2Z from a topological space X to a topological space Z is said to be upper

semicontinuous (u.s.c. for brevity) on X if for any x0 ∈ X and open set V in Z such

that F (x0) ⊂ V , there exists a neighborhood U of x0 satisfying F (x) ⊂ V for all x ∈ U .

As an auxiliary result, we will use the following well-known existence theorem for

GVIs in finite dimensional spaces. For the convenience of the reader we provide below

another proof which is based on approximate selections.

Theorem 3.1 Let K be a convex and compact set in Rn and F : K → Rn be a

multifunction which is u.s.c with compact convex values. Then problem GVI(F, K) has

a solution.

Proof. For the proof, we will use a lemma which is due to Cellina.

Lemma 3.2 ([[1], Theorem 1, p. 84]) Let X and Y be Banach space, M ⊂ X and

T : M → 2Y be an u.s.c multifunction with closed and convex values. Then for each

ε > 0 there exists a continuous map fε : M → Y such that for all x ∈ M one has

fε(x) ∈ T ((x + εBX) ∩M) + εBY , (3.1)

where BX and BY are open unit balls of X and Y respectively.
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We choose a sequence {εn} such that εn → 0+. By Lemma 2.1, for each n there

exists a continuous function fεn such that condition (3.1) is satisfied. We now consider

VI(fεn , K). By Theorem 3.1 in [[11], p. 12], there exists xn ∈ K such that

〈fεn(xn), y − xn〉 ≥ 0 ∀ y ∈ K. (3.2)

From (3.1), there exists yn, ‖yn‖ = 1 and zn ∈ T (xn + εnyn) such that ‖fεn(xn)− zn‖ ≤
εn. Since K is a compact set, we can assume that xn → x0 ∈ K. Consequently,

xn + εnyn → x0. Since F (K) is a compact set and F (xn + εnyn) ⊂ F (K), we can

assume further that zn → z0 and so fεn(xn) → z0. By the upper semicontinuity of F

we have z0 ∈ F (x0). Fixing any y ∈ K and letting n →∞, we obtain from (3.2) that

〈z0, y − x0〉 ≥ 0.

This implies that x0 is a solution of GVI(F, K). The proof is complete. �

We are ready to state and prove existence theorems for GVIs in reflexive Banach

spaces.

Theorem 3.3 Let X be a reflexive Banach space, K be a nonempty closed convex and

bounded set in X and T : K → 2X∗
be an operator. Assume that T ∈ BK and the

following conditions are satisfied:

(i) T is upper semicontinuous from each finite dimensional subspace of X to the weak

topology on X∗;

(ii) for each x ∈ K, T (x) is a closed convex and bounded set.

Then problem GVI(K, T ) has a solution.

Proof. We shall use the scheme as in the proof of Theorem 2.1.

Let us denote by F the set of all subspaces L of X such that L ∩ K 6= ∅. Fix a

subspace L ∈ F and consider a mapping αL : X∗ → L∗ defined by 〈αLx∗, y〉 = 〈x∗, y〉
for all y ∈ L. Put KL = K ∩ L and define the mapping TL : KL → 2L∗

by the formula

TL(x) = {αLx∗ : x∗ ∈ T (x)}.

It is easy to see that TL is upper semicontinuous on KL. We now consider problem

GVI(TL, KL). By (i) and (ii), conditions of Theorem 3.1 are fulfilled for GVI(TL, KL).

According to Theorem 3.1, there exists xL ∈ KL and z∗L ∈ TL(xL) such that

〈z∗L, y − xL〉 ≥ 0 ∀ y ∈ KL.

Since z∗L = αLx∗ for some x∗ ∈ T (xL), we get

〈x∗, y − xL〉 ≥ 0 ∀ y ∈ KL.
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Hence we obtain

sup
x∗∈T (xL)

〈x∗, y − xL〉 ≥ 0 ∀ y ∈ KL. (3.3)

For each Y ∈ L we denote by SY the set of all x̂ ∈ K such that there exists a subspace

L ⊇ Y with the property that x̂ ∈ KL and

sup
x∗∈T (x̂)

〈x∗, y − x̂〉 ≥ 0 ∀ y ∈ KL.

We claim that the family {SY } has the finite intersection property. Indeed, for each

Y ∈ F , by putting L = Y , we have from (3.3) that xY ∈ SY . Hence SY is nonempty.

Take subspaces L1, L2, ..., Ln ∈ L and put M = span{L1, L2, . . . , Ln}. Then we have

M ∈ L and

SM ⊂
n⋂

i=1

SLi
.

This implies that

∅ 6= SM ⊆ SM ⊆
n⋂

i=1

SLi
⊆

n⋂
i=1

SLi
.

The claim is proved.

Since SY ⊂ K and K is weakly compact, we obtain⋂
Y ∈F

SY 6= ∅.

This means that there exists a point x0 ∈ K such that x0 ∈ SY for all Y ∈ F . Fix any

y ∈ K and choose Y ∈ F such that Y contains y and x0. Since x0 ∈ SY , there exists

a sequence xn ∈ SY such that xn ⇀ x0. By the definition of SY we have

sup
x∗∈T (xn)

〈x∗, v − xn〉 ≥ 0 ∀ v ∈ KY .

Hence

inf
v∈KY

sup
x∗∈T (xn)

〈x∗, v − xn〉 ≥ 0.

By the Sion minimax theorem (see [17]), we obtain

sup
x∗∈T (xn)

inf
v∈KY

〈x∗, v − xn〉 = inf
v∈KY

sup
x∗∈T (xn)

〈x∗, v − xn〉 ≥ 0.

Since the function x∗ 7→ infv∈KY
〈x∗, v− xn〉 is u.s.c., there exists x∗n ∈ T (xn) such that

inf
v∈KY

〈x∗n, v − xn〉 ≥ 0.
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Hence

〈x∗n, v − xn〉 ≥ 0 ∀ v ∈ KY .

In particular

〈x∗n, y − xn〉 ≥ 0 and 〈x∗n, x0 − xn〉 ≥ 0. (3.4)

From this we get lim supn→∞〈x∗n, xn − x0〉 ≤ 0. By the pseudomonotonicity of T and

(3.4), there exists x∗ ∈ T (x0) such that

〈x∗, x0 − y〉 ≤ lim inf
n→∞

〈x∗n, xn − y〉 ≤ 0.

This implies that 〈x∗, y − x0〉 ≥ 0. Thus we have shown that

inf
y∈K

sup
x∗∈T (x0)

〈x∗, y − x0〉 ≥ 0.

Using the Sion minimax theorem again, we can prove that there exists x∗0 ∈ T (x0) such

that

〈x∗0, y − x0〉 ≥ 0 ∀ y ∈ K.

The proof is complete. �

Let us present some corollaries of Theorem 3.1.

Corollary 3.4 ([[4], Theorem 15]) Let X be a reflexive Banach space and K be a

nonempty closed convex set of X with 0 ∈ K. Let T : K → 2X∗
be an operator of class

BK such that conditions (i) and (ii) of Theorem 2.6 are fulfilled. Assume further that T

is coercive on K, i.e. that there exists a function c(r) from R+ into R with c(r) → +∞
as r →∞, such that for each u ∈ K, w ∈ Tu, we have 〈w, u〉 ≥ c(‖u‖)‖u‖.

Then for each f0 ∈ X∗, there exists u0 ∈ K and w0 ∈ Tu0 such that

〈w0 − f0, u− u0〉 ≥ 0 for all u ∈ K. (3.5)

Proof. Put Tf0 = T − f0. From the coercive condition, for each u ∈ K, w ∈ Tu we

have

〈w − f0, u〉 ≥ (c(‖u‖)− ‖f0‖)‖u‖.

Hence there exists a number γ > 0 such that for all u ∈ K satisfying ‖u‖ ≥ γ and

w ∈ Tu, one has 〈w − f0, u〉 > 0. Since 0 ∈ K, it follows that if (u0, w0) satisfies

(3.5) then ‖u0‖ < γ. Put Kγ = K ∩ B(0, γ) and consider the problem GVI(Tf0 , Kγ).

According to Theorem 2.6, there exists u0 ∈ Kγ such that

inf
w∈Tf0

(u0)
〈w, u− u0〉 ≥ 0 for all u ∈ Kγ. (3.6)
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Fix any u ∈ K. Since ‖u0‖ < γ, we have u0 +λ(u−u0) ∈ Kγ for λ > 0 and sufficiently

small. Hence (3.6) implies

inf
w∈Tf0

(u0)
〈w, λ(u− u0)〉 ≥ 0.

Thus we have proved that

inf
w∈Tf0

(u0)
〈w, u− u0〉 ≥ 0 for all u ∈ K.

Using the Sion minimax theorem we can show that there exists a point w0 ∈ Tu0 such

that

〈w0 − f0, u− u0〉 ≥ 0 for all u ∈ K.

�

Corollary 3.5 ([14], Theorem 3.1) Let K be a nonempty weakly compact convex subset

of a reflexive Banach space X and T : K → 2X∗
. Assume conditions:

(i) Tx is nonempty closed and convex for each x ∈ K;

(ii) T is bounded and upper semicontinuous on finite-dimensional subspaces;

(iii) if xn converges weakly to x, wn ∈ Txn, and lim sup〈wn, xn − x〉 ≤ 0 then xn → x

and {wn} has a subsequence converging weakly to some w ∈ Tx.

Then GVI(K, T ) has a solution.

Proof. It is sufficient to show that T is of class BK , i.e., if {(un, u
∗
n)} is a sequence

such that u∗n ∈ T (un), un ⇀ u and lim supn→∞〈u∗n, un − u〉 ≤ 0, then for each v ∈ K,

there exists v∗ ∈ T (u) satisfying

〈v∗, u− v〉 ≤ lim inf
n→∞

〈u∗n, un − v〉.

Suppose that T is not of class BK . Then there exists v ∈ K such that

inf
v∗∈T (u)

〈v∗, u− v〉 > lim inf
n→∞

〈wn, un − v〉

By passing to an subsequence, we may assume that

inf
v∗∈T (u)

〈v∗, u− v〉 > lim
n→∞

〈wn, un − v〉.

By (iii), without loss of generality we can assume that wn ⇀ w ∈ Tu and un → u.

Hence we obtain

inf
v∗∈T (u)

〈v∗, u− v〉 > lim
n→∞

〈wn, un − v〉 = 〈w, u− v〉,

a contradiction. �
The following theorem gives another version on the solution existence of GVIs to

the case of unbounded sets.

13



Theorem 3.6 Let X be a reflexive Banach space, K be a nonempty closed convex

set of X and T : K → 2X∗
be an operator. Assume that T ∈ BK and the following

conditions are satisfied:

(i) T is upper semicontinuous on finite dimensional subspaces of X;

(ii) for each x ∈ K, T (x) is a closed convex and bounded set;

(iii) there exists xref ∈ K such that the set

L≤(T, xref) :=

{
x ∈ K : inf

x∗∈T (x)
〈x∗, x− xref〉 ≤ 0

}
is bounded (possibly empty).

Then problem GVI(K,T ) has a solution.

Proof. The proof of the theorem proceeds analogously to the proof of Theorem 3.3,

where instead of using Theorem 3.1 we use

Lemma 3.7 ([[12], Theorem 2.3]) Let K ⊂ Rn be a closed convex set and Φ : K ⇒
Rn be a upper semicontinuous multifunction with nonempty compact convex values.

Assume that there exists xref ∈ K such that the set

L≤(Φ, xref) :=

{
x ∈ K : inf

x∗∈Φ(x)
〈x∗, x− xref〉 ≤ 0

}
is bounded (possibly empty).

Then problem GVI(K, Φ) has a solution.

�

In summary, we showed that under certain conditions of operators T ∈ BK , VI(K, T )

and GVI(K, T ) have a solution. It is interesting that the obtained results not only cover

preceding results but also contain existence result for the case of finite dimensional

spaces as a special case. Namely, by Proposition 27. 6 (d) in [22], every continuous op-

erators in finite dimensional spaces are pseudomonotone in the sense of Brézis. Hence

we obtain Theorem 3.1 in [[11], p.12] from Theorem 2.2 when X = Rn. Meanwhile

we can not obtain such result from Theorem 1.1 and Theorem 1.4 in [[11], p. 84]

because the continuous operators in finite dimensional spaces, are not necessary to be

pseudomonotone in the sense of Karamardian. In other word, the existence theorems

of VIs and GVIs in infinite dimensional spaces with monotone operators or operators

of class KK , extend existence theorems in finite dimensional spaces but these results

can not be derived from existence results in the case of infinite dimensional spaces.

This says that, the conditions imposed on class BK for the solution existence of VIs

and GVIs, are more natural and intrinsic than conditions imposed on class KK .
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