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Abstract. In this paper we deal with the following generalized vector
variational inequality problem: let X, Y and Z be topological vector
spaces, K be a convex set in X, D be a nonempty set in Y , and C be
a closed convex cone in Z. Let T : K → 2D be a multifunction and
f : K ×D ×K → Z be a single-valued mapping. Find a point x̂ ∈ K
and ŷ ∈ T (x̂) such that

f(x̂, ŷ, z) /∈ −intC, ∀z ∈ K.

We prove some existence theorems in which T can be discontinuous,
or K can be unbounded, and a existence theorem in which T is pseu-
domonotone.

Keywords. Generalized vector equilibrium problem, generalized vec-
tor variational inequality, upper semicontinuity, C−convex, C−upper
semicontinuity, star-pseudomonotonicity.

2000 Mathematics Subject Classification: 49J30, 47H10, 47H17



GENERALIZED VECTOR VARIATIONAL INEQUALITIES 3

1. Introduction

Throughout this paper, let Z be a (Hausdorff) topological vector
space, and let C be a closed and convex cone of Z such that intC 6= ∅
and C 6= Z. Here, intC denotes the interior of C, while Ac, A and coA
denotes the complement, the closure and the convex hull of a subset A
of Z, respectively.

A vector ordering in Z is defined by setting

z1 ≤ z2 if and only if z2 − z1 ∈ C.

Write
z1 < z2 if and only if z2 − z1 ∈ intC,

and
z1 ≮ z2 if and only if z2 − z1 /∈ intC.

Let X, Y be topological vector spaces, and let K ⊆ X and D ⊆ Y
be nonempty. Let T : K → 2D be a multifunction and f : K × D ×
K → Z be a single-valued mapping. The generalized vector variational
inequality GVVI(K, T, f) is the following problem:

(V) Find x̂ ∈ K such that

∃ŷ ∈ T (x̂),∀z ∈ K, we have f(x̂, ŷ, z) ≮ 0.

Together with model (V) of GVVI(K, T, f), the following auxiliary
models is also of interest:

(W) Find x̂ ∈ K such that

∀z ∈ K, ∃ŷ ∈ T (x̂), we have f(x̂, ŷ, z) ≮ 0,

and the so-called Minty vector variational inequality :

(M) Find x̂ ∈ K such that

∀z ∈ K, ∀ŷ ∈ T (z), we have f(x̂, ŷ, z) ≮ 0.

We will denote by SV , SW and SM the solution set of problems (V ),
(W ) and (M), respectively. A point x̂ ∈ SV is called a strong solution
of GVVI(K, T, f), while a point x0 in SW is called a weak solution.

It is interesting that problem (V ) covers several generalized varia-
tional inequalities and equilibrium problems. Here are some examples.

(GVI) Put Z = R, C = R+, Y = X∗ = D and f(x, y, z) = 〈y, z − x〉.
Then (V ) reduces to the generalized variational inequality problem of
finding:

x̂ ∈ K and ŷ ∈ T (x̂) such that 〈ŷ, z − x̂〉 ≥ 0,∀z ∈ K.(1)
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(EP) Put Z = R, C = R+, Y = X = D and f(x, y, z) = g(x, z) +
h(z) − h(x) where g is a real valued function on K × K such that
g(x, x) = 0 for all x ∈ K. Then (V ) reduces to the equilibrium problem
of finding:

x̂ ∈ K such that g(x̂, z) + h(z)− h(x̂) ≥ 0,∀z ∈ K.(2)

(VI) Put Z = R, C = R+, Y = D and f(x, y, z) = φ(y, z)−φ(y, x) then
(V ) reduces to the general variational inequality problem of finding:

x̂ ∈ K and ŷ ∈ T (x̂) such that φ(ŷ, z)− φ(ŷ, x̂) ≥ 0,∀z ∈ K.(3)

Problem (VI) has been studied recently by Aussel and Luc (2005).

The existence of solutions of (GVI) has been studied by many au-
thors. See for instance Cubiotti (1997-2005), Li (2004), Yao (1992-
1994), Yen (1994, 1995), and references therein. Also, results about
the existence of weak solutions for generalized vector variational in-
equality problem were investigated by many authors. See for instance
Ansari (1999), Chen and Craven (1990), Lee et al. (1997). Very few
papers appeared in the literature discuss about the existence of strong
solution of GVVI(K, T, f), however.

The aim of this paper is to derive some existence results of strong
solutions for GVVI(K, T, f) with discontinuous operators and star-
pseudomonotone operators. Namely, we will prove some existence the-
orems in which T can be discontinuous and K can be unbounded. Our
results extends some previous results. Beside, an existence theorem
involving star-pseudomonotne operators is also established. In order
to obtain these results, we utilize the fixed point theorem due to Ky
Fan and the scalarization method.

In Section 2 we recall some auxiliary results. Section 3 is destined
for presenting existence results in the case discontinuous operators are
involved. Section 4 will be devoted to a existence result for the case
where the operators are star-pseudomonotone.

2. Preliminaries

Here are the basic setting in this paper. Let X and Y be topological
vector spaces, and let Z be a locally convex space. Let C be a closed
and convex proper cone in Z with nonempty interior. Let K be a
nonempty convex subset of X, and D be a nonempty convex subset of
Y . Let T : K → 2D be a multifunction. We denote by ΓT the graph of
T , that is, the set {(x, y) ∈ X × Y | y ∈ T (x)}.

Definition 2.1. (a) T is said to be lower semicontinuous (l.s.c.,
shortly) at x ∈ K if for any open set V in E such that V ∩T (x) 6= ∅,
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there exists a neighborhood U of x such that

V ∩ T (x) 6= ∅, ∀x ∈ U ∩K.

(b) T is said to be upper semicontinuous (u.s.c., shortly) at x ∈ K
if for any open set V in E such that T (x) ⊂ V , there exists a
neighborhood W of x with the property that

T (x) ⊂ V, ∀x ∈ W ∩K.

(c) T is said to be lower semicontinuous (resp., upper semicontinuous)
on K if it is l.s.c. (resp., u.s.c.) at every point x ∈ K.

(d) A single-valued mapping g : X → Z is said to be C−upper semi-
continuous on X if for every z ∈ Z the set g−1(z − intC) is open
in X.

Tanaka (1997) proved that g is C − upper semicontinuous on
X if and only if for each fixed x ∈ X and for any y ∈ intC, there
exists a neighborhood U of x such that

g(u) ∈ g(x) + y − intC, ∀u ∈ U.

(e) g is C-lower semicontinuous on X if for each fixed x ∈ X and for
any y ∈ intC, there exists a neighborhood U of x such that

g(x) ∈ g(u) + y − intC, ∀u ∈ U.

(f) If g is C-lower semicontinuous and C-upper semicontinuous on X
then g is called C − continuous on X.

(g) A single-valued mapping h : K → Z is called C-convex if for every
x, x′ ∈ K and t ∈ [0, 1] one has

th(x) + (1− t)h(x′)− h(tx + (1− t)x′) ∈ C.

It is called C-strongly convex if for every x, x′ ∈ K and t ∈ [0, 1]
one has

th(x) + (1− t)h(x′)− h(tx + (1− t)x′) ∈ intC ∪ {0}.
If −h is C-convex (resp., C-strongly convex) then h is said to be
C-concave (resp., C-strongly concave) on K.

We continue by recalling the scalarization method. Let Z∗ be the
topological dual of Z. The set

C∗ := {z∗ ∈ Z∗ : 〈z∗, z〉 ≥ 0 for all z ∈ C}
is the polar cone of C. Note that C∗ has a weakly-star compact base
B, that is, C∗ =

⋃
t>0 tB, and B is convex and weakly-star compact

with 0 /∈ B (see Luc, 1989). When intC 6= ∅ and z ∈ intC, z 6= 0, the
set

B = {z∗ ∈ C∗ : 〈z∗, z〉 = 1}
is a weakly- star compact convex base for C∗. We put C∗

+ = C∗\{0}.
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Note that from the bipolar theorem we have

z ∈ C ⇐⇒ [〈z∗, z〉 ≥ 0,∀z∗ ∈ C∗] ⇐⇒ [〈z∗, z〉 ≥ 0,∀z∗ ∈ B](4)

z ∈ intC ⇐⇒ [〈z∗, z〉 > 0,∀z∗ ∈ C∗
+] ⇐⇒ [〈z∗, z〉 > 0,∀z∗ ∈ B].(5)

(see Jeyakumar et al., (1993) for developments).

The following proposition is a useful tool for the scalarization
method.

Proposition 2.2. Let g be a single-valued mapping from K into Z and
u∗ ∈ C∗

+. Let φ : K → R be a mapping defined by φ(x) = 〈u∗, g(x)〉 for
all x ∈ K. Then the following assertions are valid:

(a) If g is C−convex (resp., C−concave) then φ is convex (resp., con-
cave);

(b) If g is C−upper semicontinuous (resp., C−lower semicontinuous)
then φ u.s.c. (resp., l.s.c.)

Proof. (a) Since g is C−convex, then for all x, x′ ∈ K and t ∈ [0, 1]
one has

tg(x) + (1− t)g(x′)− g(tx + (1− t)x′) ∈ C.

By (5) we have 〈u∗, tg(x) + (1− t)g(x′)− g(tx + (1− t)x′)〉 ≥ 0. Hence

t〈u∗, g(x)〉+ (1− t)〈u∗, g(x′)〉 ≥ 〈u∗g(tx + (1− t)x′)〉.
This implies that

tφ(x) + (1− t)φ(x′) ≥ φ(tx + (1− t)x′)

and so φ is convex. By a similar argument we show that if g is
C−concave then φ is concave.

(b) Let xn → x. We want to show that lim supn→∞ φ(xn) ≤ φ(x).
Choose yj ∈ intC such that yj → 0. Then for each j > 0 there exists
a neighborhood Uj of x such that

g(u) ∈ g(x) + yj − intC, ∀u ∈ Uj.

Therefore for each j there exists nj > 0 such that

g(xn) ∈ g(x) + yj − intC, ∀n > nj.

By (5) it follows that 〈u∗, g(xn)− g(x)− yj〉 < 0. Hence

φ(xn) = 〈u∗, g(xn)− g(x)− yj + g(x) + yj〉
= 〈u∗, g(xn)− g(x)− yj〉+ 〈u∗, g(x) + yj〉
< 〈u∗, g(x)〉+ 〈u∗, yj〉

for all n > nj. This implies that

lim sup
n→∞

φ(xn) ≤ 〈u∗, g(x)〉+ 〈u∗yj〉.
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Letting j →∞ and noting that 〈u∗, yj〉 → 0, we obtain

lim sup
n→∞

φ(xn) ≤ 〈u∗, g(x)〉 = φ(x).

By the same way, we obtain the second assertion of (b). �

One of the tools in deriving our results is Ky Fan theorem. We state
it below for the convenience.

Theorem 2.3 (Ky Fan). Let K be a nonempty subset of a topological
vector space X and G : K → 2X be a multifunction with closed values
such that the convex hull of every finite subset {x1, x2, ..., xn} of X is
contained in the corresponding union

⋃n
i=1 G(xi). If there exists x0 ∈ K

such that G(x0) is compact, then
⋂

x∈K G(x) 6= ∅.

We recall that the multifunction G satisfying the property in Theorem
2.3 is called a KKM mapping.

We also need the following Sion’s minimax theorem (see Jeyakumar
et al., 1993).

Theorem 2.4 (Sion). Let A and B be convex subset of some real topo-
logical vector spaces with B compact, and let p : A× B → R. If p(., b)
is lower semicontinuous and quasiconvex on A for all b ∈ B, and if
p(a, .) is upper semicontinuous and quasiconcave on B for all a ∈ A,
then

inf
a∈A

max
b∈B

p(a, b) = max
b∈B

inf
a∈A

p(a, b).

3. Existence of solutions in case of discontinuous
operators

In addition to the basic assumptions stated in the beginning of Sec-
tion 2, we further assume in this section that f : K ×D×K → Z is a
single-valued mapping satisfying some of the following conditions

(i) the set T (x) is nonempty, weakly compact, and convex for all
x ∈ K;

(ii) there exists u∗ ∈ C∗
+ such that for each z ∈ K, the set

F (z) = {x ∈ K | sup
y∈T (x)

〈u∗, f(x, y, z)〉 ≥ 0}

is closed;
(iii) for each x ∈ K and y ∈ T (x) one has f(x, y, x) = 0;
(iv) for each x ∈ K and y ∈ T (x), the function f(x, y, ·) is

C−convex and C−l.s.c. on K;
(v) for each (x, z) ∈ K × K, the function f(x, ·, z) is C−concave

and C−u.s.c. on D.



8 BUI, WONG AND YAO

Theorem 3.1. Let X be a dual Banach space and Y be a locally convex
space. Assume conditions (i), (ii), (iii), (vi), and (v) hold. Assume
further that F (z) is weakly* closed for all z in K, and

(vi) There is a bounded subset K0 of K such that for each x ∈ K\K0

there exists z ∈ K0 with f(x, y, z) < 0 for all y ∈ T (x).

Then there exists a point x̂ ∈ K0 such that

max
y∈T (x̂)

〈u∗, f(x̂, y, z)〉 ≥ 0, ∀z ∈ K.

Moreover, there exists ŷ ∈ T (x̂) such that

f(x̂, ŷ, z) ≮ 0, ∀z ∈ K.(6)

Proof. We choose r > 0 such that int Br contains K0, where Br = {x ∈
X : ‖x‖ ≤ r} is the closed ball in X with radius r. Set Ω = K ∩ Br.
We define a multifunction G : Ω → 2X by the formula

G(z) = {x ∈ Ω | sup
y∈T (x)

〈u∗, f(x, y, z)〉 ≥ 0} for z ∈ Ω.

By Proposition 2.2 , the function y 7→ 〈u∗, f(x, y, z)〉 is concave and
u.s.c. In particular, for each real number δ, the convex set {y ∈ Y :
〈u∗, f(x, y, z)〉 ≥ δ} is closed, and thus weakly closed, in the locally
convex space Y . Hence, this function is also weakly u.s.c. Since T (x)
is a weakly compact set, we have

G(z) = {x ∈ Ω | max
y∈T (x)

〈u∗, f(x, y, z)〉 ≥ 0}.

We claim that G is a KKM mapping. Indeed, by (iii) we have z ∈
G(z) for all z ∈ Ω. Hence G(z) 6= ∅ for all z ∈ Ω. Since

G(z) = F (z) ∩Br,

G(z) is a weak* compact subset of Ω, by Banach-Alaoglu’s Theorem.
Taking any z1, z2 ∈ Ω we show that co{z1, z2} ⊂ G(z1) ∪ G(z2). Let
z ∈ co{z1, z2}. Then z = tz1 +(1− t)z2 for some t ∈ [0, 1]. When t = 0
or t = 1, the claim is trivial. Consider t ∈ (0, 1), with z /∈ G(zi); i =
1, 2. Since z ∈ Ω, we obtain

max
y∈T (z)

〈u∗, f(z, y, zi)〉 < 0; i = 1, 2.

By (iv) and Proposition 2.2, the function 〈u∗, f(x, y, ·)〉 is convex. By
(iii) we have

0 = max
y∈T (z)

〈u∗, f(z, y, z)〉

≤ t max
y∈T (z)

〈u∗, f(z, y, z1)〉+ (1− t) max
y∈T (z)

〈u∗, f(z, y, z2)〉,

< 0,
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which is an absurd. Thus we must have z ∈ G(z1) ∪ G(z2) and so
co{z1, z2} ⊂ G(z1) ∪G(z2). By a similar argument we can show that

co{z1, z2, ..., zn} ⊂
n⋃

i=1

G(zi)

for any finite subset {x1, x2, ..., xn} in Ω.

By Theorem 2.3,

∃x̂ ∈ Ω such that x̂ ∈
⋂
z∈Ω

G(z).

In other words,

∃x̂ ∈ Ω, max
y∈T (x̂)

〈u∗, f(x̂, y, z)〉 ≥ 0, ∀z ∈ Ω.(7)

By (vi), we see that x̂ ∈ K0.

We need to show that

max
y∈T (x̂)

〈u∗, f(x̂, y, z)〉 ≥ 0, ∀z ∈ K.(8)

Take any z ∈ K. Since x̂ ∈ int Br we have x̂ + t(z − x̂) ∈ K ∩ int Br

for a sufficiently small t ∈ (0, 1). Then (7) implies that

max
y∈T (x̂)

〈u∗, f(x̂, y, x̂ + t(z − x̂)〉

= max
y∈T (x̂)

〈u∗, f(x̂, y, (1− t)x̂ + tz)〉 ≥ 0.(9)

By the convexity of the function 〈u∗, f(x, y, ·)〉, we obtain from (9) the
following:

0 ≤ max
y∈T (x̂)

〈u∗, f(x̂, y, (1− t)x̂ + tz)〉

≤ t max
y∈T (x̂)

〈u∗, f(x̂, y, z)〉+ (1− t) max
y∈T (x̂)

〈u∗, f(x̂, y, x̂)〉

Since f(x̂, y, x̂) = 0, it follows (8).

To complete the proof we will use the Sion’s theorem (Theorem 2.4).
Put p(z, y) = 〈u∗, f(x̂, y, z)〉. By the assumptions of the theorem and
Proposition 2.2, the function p(·, y) is l.s.c. and convex. Also, the func-
tion p(z, ·) is u.s.c. and concave, and thus weakly u.s.c. By Theorem
2.4 and (8) we get

0 ≤ inf
z∈K

max
y∈T (x̂)

p(z, y) = max
y∈T (x̂)

inf
z∈K

p(z, y).

Since y 7→ p(z, y) is weakly u.s.c., the function y 7→ infz∈K p(z, y) is
also weakly u.s.c. Hence, there exists ŷ ∈ T (x̂) such that

inf
z∈K

p(z, ŷ) = max
y∈T (x̂)

inf
z∈K

p(z, y) ≥ 0.
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It follows that 〈u∗, f(x̂, ŷ, z)〉 ≥ 0,∀z ∈ K. This is equivalent to
〈u∗,−f(x̂, ŷ, z)〉 ≤ 0,∀z ∈ K. By (5) we have −f(x̂, ŷ, z) /∈ intC for all
z ∈ K, and (6) is obtained. The proof of the theorem is complete. �

In Theorem 3.1, condition (ii) is checked for a particular element u∗ ∈
C∗

+. It seems that we do not know when such u∗ exists. Fortunately,
under certain conditions, for an example, T is upper semicontinuous
and f(·, ·, z) is C−continuous, we can choose any u∗ ∈ C∗

+.

The following example illustrates our result.

Example 3.2. Let X = R, K = [0, 1] ⊂ X, Y = R, D = [1, 4], Z = R2

and
C = R2

+ = {(x, y) | x ≥ 0, y ≥ 0}.
Let T and f be defined by

T (x) =

{
[2, 4], if x = 0;
{1}, if 0 < x ≤ 1,

and
f(x, y, z) = (f1(x, y, z), f2(x, y, z)),

where

f1(x, y, z) = y(z2 − x2) and f2(x, y, z) = y(z − x).

Then the set {0} × [2, 4] is a solution set of GVVI(K, T, f). Moreover,
T is not upper semicontinuous on [0, 1].

Proof. First we note that

C∗ = {(u, v) | u ≥ 0, v ≥ 0}; −intC = {(x, y) | x < 0, y < 0}.
Taking u∗ = (1, 0) we want to check all conditions of Theorem 3.1.

(i) It is obvious that T (x) is a nonempty compact convex set for each
x ∈ [0, 1].

(ii) For each z ∈ [0, 1] we have

{x ∈ K | sup
y∈T (x)

〈u∗, f(x, y, z)〉 ≥ 0}

= {x ∈ [0, 1] | sup
y∈T (x)

y(z2 − x2) ≥ 0}

= [0, z].

This is a closed set.

(iii) For each x ∈ M and y ∈ T (x) we have f(x, y, x) = (0, 0).

(iv) For each x ∈ K and y ∈ T (x) ⊂ [1, 4], the functions f1(x, y, ·)
and f2(x, y, ·) are convex and continuous. Hence, f is C−convex and
C−lower semicontinuous.
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(v) For each x, z ∈ K × K the functions f1(x, ., z) and f2(x, ·, z) are
linear and continuous.

(vi) is plain, as K is compact.

Thus all conditions of Theorem 3.1 are fulfilled. Taking x̂ = 0 and
ŷ ∈ T (0) = [2, 4], we have

f(0, ŷ, z) = (yz2, yz2) ≮ 0, ∀z ∈ [0, 1].

Hence the set {0} × [2, 4] is a solution set of the problem.

It is observed that T is not upper semicontinuous on K. Indeed,
xn = 1/n → 0, yn = 1 ∈ T (xn) but 1 /∈ T (0) = [2, 4]. �

Theorem 3.1 requires that X is a dual Banach space. This require-
ment guarantees the weak* compactness of weakly* closed bounded
sets. The following results relax this assumption by strengthening the
coercive condition (vi).

Theorem 3.3. Let Y be a locally convex space (resp. topological vector
space). In addition to conditions (i), (ii), (iii), (iv) and (v), suppose
further that T (x) is weakly compact (resp. compact) each x in K, F (z)
is weakly closed (resp. closed) for each z in K, and

(vi)’ there exists a weakly compact (resp. compact) K0 of K and z0 ∈
K such that for each x ∈ K\K0 one has f(x, y, z0) < 0 for all
y ∈ T (x).

Then there exists a point x̂ ∈ K and ŷ ∈ T (x̂) such that

f(x̂, ŷ, z) ≮ 0, ∀z ∈ K.

Proof. Assume that Y is locally convex. By condition (v),

F (z) = {x ∈ K | max
y∈T (x)

〈u∗, f(x, y, z)〉 ≥ 0}.

We claim that F (z0) ⊂ K0. Indeed, suppose that the claim is
false. Then there is an x ∈ F (z0) \ K0 and so x ∈ K \ K0. By
(vi), −f(x, y, z0) ∈ intC for all y ∈ T (x). By (5), it follows that
〈u∗,−f(x, y, z0)〉 > 0 for all y ∈ T (x). Hence

max
y∈T (x)

〈u∗, f(x, y, z0)〉 < 0.

This implies that x /∈ F (z0), which is absurd. Thus F (z0) is a weakly
compact set. As in the proof of Theorem 3.1, we can show that F (z) is
a KKM mapping, and the desired conclusion follows accordingly. The
case Y is not locally convex is similar. �

Theorem 3.4. Let X and Y be a topological vector spaces. Assume
conditions (i), (ii), (iii), (iv) and (v) hold. Suppose further that
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(vi)” there exist compact sets K1 ⊆ K2 in K such that K1 is finite-
dimensional, and for each x ∈ K \K2 there exists z ∈ K1 with
f(x, y, z) < 0 for all y ∈ T (x).

Then there exists a point x̂ ∈ K2 and ŷ ∈ T (x̂) such that

f(x̂, ŷ, z) ≮ 0, ∀z ∈ K.

Proof. We denote by F the set of all finite-dimensional subspaces of X
containing K1. Fix any S ∈ F and put

Ω = K ∩ S, T S = T |Ω, fS = f |Ω×D×Ω .

The task is to check that Theorem 3.1 can be applied to the problem
GVVI(Ω, T S, fS), where Ω plays a role as K in Theorem 3.1.

(a1) For each x ∈ Ω we have T (x) = T S(x) 6= ∅. Hence condition (i) of
Theorem 3.1 is valid.

(a2) For each z ∈ Ω, we have

{x ∈ Ω | sup
y∈T (x)

〈u∗, f(x, y, z)〉 ≥ 0}

= {x ∈ K | sup
y∈T (x)

〈u∗, f(x, y, z)〉 ≥ 0} ∩ S.

Since S is finite-dimensional, the set

{x ∈ Ω | sup
y∈T (x)

〈u∗, f(x, y, z)〉 ≥ 0}

is closed. This implies that condition (ii) of Theorem 3.1 is valid.

(a3) Conditions (iii)-(vi) are automatically fulfilled.

By Theorem 3.1, there exists xS ∈ Ω such that

max
y∈T S(xS)

〈u∗, fS(xS, ŷ, z)〉 ≥ 0, ∀z ∈ Ω.

Since T S(xS) = T (xS), fS(xS, ŷ, z) = f(xS, ŷ, z) we have

max
y∈T (xS)

〈u∗, f(xS, ŷ, z)〉 ≥ 0, ∀z ∈ K ∩ S.(10)

Put QS = {x ∈ K | x satisfies (10)}. Then QS 6= ∅ because xS ∈ QS.
Moreover, the family {QS : S ∈ F} has the finite intersection property.
Indeed, taking any V1, V2 ∈ F and putting M = span{V1, V2}, we have
QM ⊆ QV1 ∩QV2 . This implies that QM ⊆ QV1 ∩QV2 ⊆ QV1

∩QV2
.

By condition (vi), QS ⊂ K2, which is compact. Then one has⋂
S∈F QS 6= ∅. Thus there exists x̂ ∈ K2 such that x̂ ∈ QS for all
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S ∈ F . Fix any S ∈ F . Then there exists a net {xα}α∈Λ in QS such
that xα → x̂. By the definition of QS one has

max
y∈T (xα)

〈u∗, f(xα, y, z)〉 ≥ 0, ∀z ∈ K ∩ S.(11)

Fixing z ∈ K ∩ S and using assumption (ii), we obtain from (11) that

max
ŷ∈T (x̂)

〈u∗, f(x̂, ŷ, z)〉 ≥ 0.

In summary, we have proved that

∃x̂ ∈ K2,∀z ∈ K ∩ S, max
y∈T (x̂)

〈u∗, f(x̂, y, z)〉 ≥ 0.(12)

We now take any v ∈ K and put S ′ = span{S, v}. Since x̂ also satisfies
(12) for S ′ we have

∃x̂ ∈ K2, max
y∈T (x̂)

〈u∗, f(x̂, ŷ, v)〉 ≥ 0.

Thus we have

∃x̂ ∈ K2,∀v ∈ K, max
y∈T (x̂)

〈u∗, f(x̂, ŷ, v)〉 ≥ 0.

Using a similar argument as in the proof of Theorem 3.1, we show that
there exists ŷ ∈ T (x̂) such that f(x̂, ŷ, z) ≮ 0 for all z ∈ K. The proof
is complete. �

Theorem 3.5. Let X, Y be locally convex spaces. In addition to condi-
tions (i), (ii), (iii), (iv), (v) and (vi), suppose further that K0 is weakly
compact and F (z) is weakly closed for all z in K. Then there exists a
point x̂ ∈ K0 and ŷ ∈ T (x̂) such that

f(x̂, ŷ, z) ≮ 0, ∀z ∈ K.

Proof. For each absolutely convex weakly compact subset S of X, let
XS be the subspace of X generated by S. Namely,

XS =
⋃
t>0

tS.

Equip XS with the norm defined by the gauge of S; namely,

‖x‖ = inf{t > 0 : x ∈ tS}.
Then (XS, ‖ · ‖) is a dual Banach space by the Dixmier-Ng Theorem,
see (Dixmier, 1948) and (Ng, 1972). Indeed, the predual of (XS, ‖ · ‖)
consists of those linear functionals on X continuous on S. Hence, the
weak* topology of (XS, ‖ · ‖) is finer than the weak topology σ(XS, X ′)
of XS inherited from X. As a result, F (z) is weakly* closed in (XS, ‖·‖)
for all z in K ∩XS.
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Let F be the set of all dual Banach spaces (XS, ‖ · ‖), where S is an
absolutely convex weakly compact subset of X containing K0. We can
then proceed as in the proof of Theorem 3.4. �

We remark that in Theorem 3.5 we can assume instead that X is a
topological vector space such that X ′ separates points in X. This con-
dition is enough to ensure the conclusion of the Dixmier-Ng Theorem,
as one can check by going through the proof of Ng (1972) carefully.

4. Existence of solution in case of star-pseudomonotone
operators

We first introduce some notations on the star-pseudomonotone op-
erator.

Definition 4.1. (a) The operator T : K → 2D is called star-
pseudomonotone with respect to f and u∗ ∈ C∗

+ if for any
(x1, y1), (x2, y2) ∈ ΓT ,

〈u∗, f(x1, y1, x2)〉 ≥ 0 implies 〈u∗, f(x1, y2, x2)〉 ≥ 0.

(b) T is called star-quasimonotone with respect to f and u∗ ∈ C∗
+ if for

any (x1, y1), (x2, y2) ∈ ΓT ,

〈u∗, f(x1, y1, x2)〉 > 0 implies 〈u∗, f(x1, y2, x2)〉 ≥ 0.

(c) T is called star-properly quasimonotone with respect to f and
u∗ ∈ C∗

+ if for any finite set {x1, x2, ..., x2} in K and x ∈
co{x1, x2, ..., x2}, there exists some i ∈ {1, 2, ..., n} such that

〈u∗, f(x, y, xi)〉 ≥ 0, ∀y ∈ T (xi).

The notion of quasimonotone operators and pseudomonotone opera-
tors were first introduced by Karamardian and Schible (1990). For this
case we put Y = D = X∗, Z = R, C = R+, f(x, y, z) = 〈y, z − x〉 and
u∗ = 1. Then T is a pseudomonotone operator (resp., quasimonotone)
in the sense of theirs. While the notion of proper quasimonotonicity
was introduced by Daniilidis and Hadjisavvas (1999). Also, putting
f(x, y, z) = φ(y, z) − φ(y, x), Z = R, C = R+ and u∗ = 1 we ob-
tain the notions of φ-quasimonotone operators and φ-pseudomonotone
operators which have introduced recently by Aussel and Luc (2005).

The following are some relations among star-monotone operators.

Proposition 4.2. (a) If T is star-pseudomonotone with respect to f
and u∗ then T is also star-quasimonotone with respect to f and u∗.

(b) Suppose T is star-pseudomonotone with respect to f and u∗, and
the following conditions are fulfilled:
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(i) for each x ∈ K and each y ∈ T (x), f(x, y, x) = 0;
(ii) for each x ∈ K and for each y ∈ T (x), the function f(x, y, ·)

is C−convex.
Then T is also star-properly quasimonotone with respect to f and
u∗.

Proof. (a) is obvious. For (b), let {x1, x2, ..., xn} ⊂ K and x ∈
co{x1, x2, ..., xn}. Then x =

∑n
i=1 tixi with ti ≥ 0 and

∑n
i=1 ti = 1.

By (i) we have 〈u∗, f(x, y, x)〉 = 0 for all y ∈ T (x). Since f(x, y, ·)
is C−convex, by Proposition 2.2 the function 〈u∗, f(x, y, ·)〉 is convex.
Hence

0 = 〈u∗, f(x, y, x)〉 ≤
n∑

i=1

ti〈u∗, f(x, y, xi)〉.

It follows that there exists i ∈ {1, 2, ..., n} satisfying 〈u∗, f(x, y, xi)〉 ≥ 0
for some y ∈ T (x). Since T is star-pseudomonotone, 〈u∗, f(x, y, xi)〉 ≥
0 for all y ∈ T (xi). The proof is complete. �

Definition 4.3. T is called upper sign-continuous on K with respect
to f and u∗ ∈ C∗

+ if for all x, z in K the following is satisfied:

(∀t ∈ (0, 1), inf
y∈T (xt)

〈u∗, f(x, y, z)〉 ≥ 0) =⇒ sup
y∈T (x)

〈u∗, f(x, y, z)〉 ≥ 0,

where xt = (1− t)x + tz.

The notion of upper sign-continuous operators was first introduced
by Hadjisavvas (2003). In the above definition by putting Y = D = X∗,
Z = R, C = R+, u∗ = 1 and f(x, y, z) = 〈y, z − x〉 we also obtain the
upper sign-continuous concept in the sense of Hadjisavvas.

The following lemma is a type of Minty’s lemma.

Lemma 4.4. Suppose that Y is locally convex. Let u∗ ∈ C∗
+, x̂ ∈ K

and the following conditions hold:

(i) for each x ∈ K and y ∈ D one has f(x, y, x) = 0;
(ii) for each x ∈ K and y ∈ T (x) the function f(x, y, ·) is C−convex

and C−lower semicontinuous;
(iii) for each (x, z) ∈ K ×K, the function f(x, ·, z) is C−concave and

C−upper semicontinuous;
(iv) T is upper sign-continuous with respect to f and u∗, with weakly

compact and convex values;
(v) 〈u∗, f(x̂, y, z)〉 ≥ 0 for all z ∈ K and y ∈ T (z).

Then x̂ ∈ SV .
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Proof. Rewrite condition (v) as

∀z ∈ K, ∀y ∈ T (z), 〈u∗, f(x̂, y, z)〉 ≥ 0.(13)

Taking any z ∈ K, we have zt = (1− t)x̂+ tz ∈ K for t ∈ (0, 1). Hence
(13) implies that

〈u∗, f(x̂, y, zt)〉 ≥ 0, ∀y ∈ T (zt).(14)

We claim that

〈u∗, f(x̂, y, z)〉 ≥ 0, ∀y ∈ T (zt).(15)

Suppose, on contrary, that the assertion is false. Then there exists
t ∈ (0, 1) and yt ∈ T (zt) such that

〈u∗, f(x̂, yt, z)〉 < 0.(16)

By (ii) and Proposition 2.2 we have

t〈u∗, f(x̂, yt, z)〉+ (1− t)〈u∗, f(x̂, yt, x̂)〉 ≥ 〈u∗, f(x̂, yt, zt)〉.
Combining this and (i) we obtain

t〈u∗, f(x̂, yt, z)〉 ≥ 〈u∗, f(x̂, yt, zt)〉.
From here and (16), it follows that

〈u∗, f(x̂, yt, zt)〉 < 0,

which contradicts (14). Thus our claim is verified.

By (15) we obtain

inf
y∈T (zt)

〈u∗, f(x̂, y, z)〉 ≥ 0.

By the upper sign-continuity of T , we have

sup
y∈T (x̂)

〈u∗, f(x̂, y, z)〉 ≥ 0.

This implies that

inf
z∈K

sup
y∈T (x̂)

〈u∗, f(x̂, y, z)〉 ≥ 0.(17)

Since the function y 7→ 〈u∗, f(x̂, y, z)〉 is upper semicontinuous and
concave, it is also upper semicontinuous in the weak topology of Y .
According to the minimax theorem (Theorem 2.4) we obtain from (21)
that

max
y∈T (x̂)

inf
z∈K

〈u∗, f(x̂, y, z)〉 = inf
z∈K

max
y∈T (x̂)

〈u∗, f(x̂, y, z)〉 ≥ 0.

Hence there exists ŷ ∈ T (x̂) such that

inf
z∈K

〈u∗, f(x̂, ŷ, z)〉 ≥ 0.

This means that

〈u∗, f(x̂, ŷ, z)〉 ≥ 0, ∀z ∈ K.
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By (5) we obtain
f(x̂, ŷ, z) ≮ 0, ∀z ∈ K.

Hence x̂ ∈ SV . �

Based on Lemma 4.4, we have the following existence result of strong
solutions for GVVI(K,T, f).

Theorem 4.5. Let X be a reflexive Banach space. Let D be a
nonempty set in the locally convex space Y , K be a nonempty convex
set in X, and K0 be a weakly compact subset of K. Let T : K → 2D be
a multifunction, f : K ×D ×K → Z be a single-valued mapping and
u∗ ∈ C∗

+ be given. Assume that:

(a) for each x ∈ K and y ∈ D, f(x, y, x) = 0;
(b) for each x ∈ K and for each y ∈ T (x), the function f(x, y, ·) is

C−strongly convex and lower semicontinuous;
(c) for each z ∈ K the function f(·, ·, z) is C−concave and upper semi-

continuous;
(d) T is star-pseudomonotone and upper sign-continuous with respect

to f and u∗;
(e) for each x ∈ K, T(x) is a weakly compact and convex set;
(f) for each x ∈ K\K0 there exists z ∈ K0 such that f(x, y, z) < 0 for

all y ∈ T (x).

Then there exist x̂ ∈ K0 and ŷ ∈ T (x̂) such that f(x̂, ŷ, z) ≮ 0 for all
z ∈ K.

Proof. We choose r > 0 such that K0 ⊂ intBr where Br ⊂ X is the
closed ball with radius r. Put Ω = K ∩ Br. We next define the
multifunction G : Ω → 2X by setting

G(z) = {x ∈ Ω | 〈u∗, f(x, y, z)〉 ≥ 0,∀y ∈ T (z)}.
By Proposition 4.2, T is also star-properly quasimonotone with respect
to f and u∗. Hence for any finite subset {z1, z2, ..., zn} in Ω and for
every z ∈ co{z1, z2, ..., zn} there exists i ∈ {1, 2, .., n} such that

〈u∗, f(z, y, zi)〉 ≥ 0, ∀y ∈ T (zi).

This implies that z ∈ G(zi) and so

co{z1, z2, ..., zn} ⊆
n⋃

i=1

G(zi).

By (c) and Proposition 2.2, the mapping 〈u∗, f(·, y, z)〉 is concave and
u.s.c. on Ω. Hence G(z) is a closed convex set. Consequently, G(z) is a
weakly compact subset of Ω. Thus G is a KKM mapping. By Theorem
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2.3, there exists x̂ ∈ Ω such that x̂ ∈ G(z) for all z ∈ Ω. This implies
that

〈u∗, f(x̂, y, z)〉 ≥ 0, ∀z ∈ Ω, ∀y ∈ T (z).

By Lemma 4.4, x̂ is a strong solution of GVVI(Ω, T, f). This means
that

∃ŷ ∈ T (x̂), ∀z ∈ Ω, f(x̂, y, z) ≮ 0.(18)

Combining this and (f) we get x̂ ∈ K0 ⊂ intBr.

It remains to show that

∃ŷ ∈ T (x̂), ∀z ∈ K f(x̂, y, z) ≮ 0.(19)

Taking any z ∈ K we have zt = x̂+ t(z− x̂) ∈ Ω for a sufficiently small
t ∈ (0, 1). Hence (18) implies that

f(x̂, ŷ, zt) ≮ 0.(20)

If f(x̂, ŷ, z) < 0 then by (b) we have

tf(x̂, ŷ, z) + (1− t)f(x̂, ŷ, x̂)− f(x̂, ŷ, zt) ∈ intC ∪ {0}.
Hence

−f(x̂, ŷ, zt) ∈ −tf(x̂, ŷ, z) + intC ∪ {0}.
⊂ tintC + intC ∪ {0}.
⊂ intC + intC ∪ {0}.
= intC.

This implies that f(x̂, ŷ, zt) < 0, which contradicts (20). Thus we must
have f(x̂, ŷ, z) ≮ 0 and so (19) is fulfilled. The proof is complete. �
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