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Long-time behaviour for a model of porous-medium equations
with variable coefficients
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Cau Giay, Hanoi, Vietnam, ®Department of Applied Mathematics, National Sun Yat-sen
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By analysing the uniform attractor for multi-valued processes, we study the
long-time behaviour of the solutions of a model of non-autonomous
porous-medium equations. The result is obtained by using the a priori
estimates and suitable compactness arguments.

Keywords: porous-medium equations; degenerate parabolic equations;
non-autonomous; uniform attractors

AMS Subject Classifications: 35B40; 35B41; 35B45; 35D05

1. Introduction

Let Q be a bounded domain in RY (N > 2) with a smooth boundary 8. We consider
the following problem

% — div(p(x)Ve(u)) + f(t,u) = g(x,1), x€Q, t>T1, (1.1)
Uiy = ur(x), x€Q, (1.2)
ulse =0, (1.3)

where 7 € R, and the functions p, ¢, f and g satisfy some conditions specified later.

The equation of type (1.1) represents the motion of gas through a porous medium
where u(x, 7) stands for the gas density. The original model was established by the
mass conservation law as follows. Let V be the velocity. Then

u; + div(uV) = f(u), (1.4)

where f(u) models the effects of reaction or absorption. In the case of a
non-homogeneous medium, V= —p(x)VP(u). Here, P is the pressure and p is a
given function.
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There are literature works with different views on this type of equation. In many
works, it is usually assumed that P(u) = uu” with u and m as constants and then
Equation (1.4) assumes the form

P div(p(0) Val ) = £ (1),
m—+ 1

For a systematic investigation in the case of p=1, we refer the readers to [23]. In
addition, for the problem with f=0, there are several studies in the situation when
m — +00, in relation to the Hele-Shaw problem. See [3-5,10,12] and related works.
Recently, many works have been carried out for the problem with variants of
nonlinearity f. Let us introduce some relevant studies in [7,15,19], among others. For
more generalized equations, when m is a variable exponent, see [2,20]. Using an
approach similar to that in [1], we study, in this article problem (1.1)—~(1.3) when the
derivative ¢ is a generalization of homogeneous function, p may have zeros at some
points in  and the nonlinearity of f has the form of a power without upper bound.
Precisely, we assume that

Uy —

(H1) The function g€ C'(R) and satisfies m|ul’? < ¢'(u) < M|u’~2, where
m, M>0 and p>2.

(H2) pe L] () such that lim inf,_..|x —z|~¥p(x) >0 for some « € (0, 2) and for
every z € Q.

(H3) f:RxR—R is a continuous function and |f{(z,u)| < Cf(|u|‘Fl +1) for
Cr>0, ¢ = p and for all reR.

(H4) There exists M,>0 such that flu)u > M (|u|’—1).
For the external force g, we impose a restriction that

(H5) The function ge L (R; L*(2)) and satisfies

loc

t+1
Il ll7: := sup f 1&(, )1 72gyds < +oc.
J teR J¢

The class of functions satisfying (H1) includes the functions such that their
derivatives are homogeneous of order p—2, ¢/(u)=|ul’~? and some generalized
forms, such as ¢/(1) = |u|”$(u) where ¢(u) is bounded, m < ¢(u) < M for all ueR.

Hypothesis (H2) is motivated by the work [6] in which a semi-linear elliptic
problem was studied. It ensures that p has at most finite zeros in Q. In various
processes, p(x)~ |x|* It is worth noting that the degeneracy made by p prevents us
from using the regularization method as in [2] to get the existence result. Moreover,
since ¢ has no upper bounds, we may have a set of solutions to (1.1)—(1.3)
corresponding to each initial datum from the phase space. That makes our problem,
in general, generating a multi-valued process (M VP). The aim of our work is to prove
the existence result for (1.1)—(1.3) and study the asymptotic behaviour of solutions
over a large amount of time. To this end, we employ the notion of uniform attractors
for MVPs, with respect to the symbol (f,g). For the analysis details, see [13,17,18]
and a similar approach in [8]. This framework can be seen as an extension for the
theory of global attractors which was developed in [9,11,21].

In order to study the problem (1.1)—(1.3), we introduce some weighted Sobolev
spaces. By Dé’z(Q, p) we denote the closure of C§°(€2) with respect to the norm

1

3
— 2
”v”Dll)’z(Q,p) = </S;p(x)| V| )
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and let 7 be the space of all functions w € L?(2) satisfying

w|,o =0 and %<p§—;z)ey(sz); i=1,...,,N, (1.5)
equipped with the norm
Iwlly = (/Q |div(,oVw)|p>[%. (1.6)
Putting

aw§) = [ POV, for eV, (1.7)

one can write ’
atw.8) == [ wdivirve), (1.8)
ot = [ o @IV (1.9)

One observes from (H1) that |p(u)| < |ul’~' +]¢(0)], and a(u, £) is well-defined if
uel(Q)and Ec V.
Denoting

() = /0 Jo'()ds (1.10)

for ueR, it is obvious that 5 is an increasing function. Furthermore, it follows
from (H1) that

Vmlul? < () < v Muf. (1.11)
From (1.9) and (1.10), we have

(i, 1) = fg () V()P (1.12)

Definition 1.1 We say that a function u(x, t) is a weak solution of (1.1)—(1.3) in
Q. 7= x[r,T] if and only if
ue LYQ.r) N C([z, T]; L (Q)),
1(u) € Dy (2. p).
W1 @ T V) + L Q).
Uy = u; a.e.in 2,
and

/fa(u,é)dt:/ (g(x, £ — f(t,u) —%)gdxdt (1.13)

T,

for every test functions § € L(z, T; V)N LYQ..7).
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Equation (1.1) can be seen as an equation in L7 (t, T; V') 4+ LY (Q.. 7). Here V' is
the dual space of V; p’ and ¢’ are the conjugate exponents of p and ¢, respectively. In
this definition, we assume that n(u)eD(l)‘z(Q, p) since we need the definiteness of
a(u, u), which is important for our arguments in Section 2.

We first show some compactness results for our purposes in Section 2. In the last
section, we state and prove the main results.

2. Preliminaries
We recall the results of Caldiroli and Musina [6] related to the space Dé’z(Q, 0).

PROPOSITION 2.1  Assume that Q is a bounded domain in RN, N > 2, and p satisfies
(H2). Then the following embeddings hold:

(1) D(I)’Z(Q, p) — L*%(R) continuously,
(i1) D(l]'z(Q, p) = L'(2) compactly if re[1,2}),

v D% 2N
where 2, = 355 .

By Proposition 2.1, ||| in (1.6) is the well-defined norm. Indeed, it suffices to
check that if ||w|;;=0 then w=0. For we V, we have

; 12 12 ~ 2
— /Q wdiv(pVw) = /S;p|Vw| = ||””Df)~2(sz,p) = Cilwllzxq)-
In addition

—/ wdiv(pVw) < [[wll 2l div(oVw)ll 12(q)
Q

< Gl 2@l Aiv(eVW) Il (o)

for some (~?1, 52 > 0. Thus

~

G
Iwlly = = Wl z2()-
2

The following is the important tools for our arguments.

ProrosiTION 2.2 Let {v,} be a sequence such that a(v,,v,) < C, for some C>0, and
for all neN. Then {v,} is precompact in LF(Q2).

Proof From (1.12), we have
o) = [ o0V
Q

Then we observe that the sequence {7(v,)} is bounded in Dé’z(Q, 0). By Proposition
2.1, {n(v,)} is precompact in L#(Q) for all B satisfying 1 < B < 2% and then n(v,) — x
strongly in L#(Q), by replacing with a subsequence if necessary. This ensures that
n(v,) — x a.e. in Q. In addition, by the boundedness of {n(v,)} in Lﬁ(Qﬂ) and (1.11),
we see that {v,} is bounded in LpTﬂ(Q). It follows that v,— v in L7T(Q). By the
monotonicity of 7, we deduce that v,— n~'(x)=v a.e. in Q.
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For any €>0, by Egorov’s theorem, there exists a subset £C 2 with measure
|E| <€, such that v, — v uniformly in Q\E. Taking r < ”Tﬂ, we have

/ |Vn_v|r=/ |Vn_V|r+/‘|Vn_V|r
Q Q\E E
B o 2r
< / v, —v|" + </ |v,,—v|7) €70 with o = =—.
Q\E E B

The last inequality shows that v,— v strongly in L'(2). Choosing B such that
2 < B < 2! and then taking r=p, we get the conclusion. ]

The next two propositions can be proved by using the arguments as in [16,
Section 12, Chapter 1] with some slight modifications. In what follows, we denote by
Vi =V'+ L7 (Q).

ProposiTiON 2.3 For any €>0, there exists C.>0 such that
e = vl < elau, u) + a(v, )] + Cellu — vl
for all u,ve S ={w | n(w) € D(l)’z(Q, )}

Proof Assume on contrary that there exist ¢y>0 and two sequences u,,v,€ S
such that

”un - Vn'llzﬂ(g) > EO[a(una un) + a(vna vn)] + n”un - Vn”?/*-

Putting

~ un ~ Vn
U, = v, =

1 n — 19
[a(utn, tn) + a(vp, vi)J [a(utn, tn) + a(vy, vo)l

we have
N2, — v;l”?j(ﬂ) > o + nlli, — ’17;1”[;* (2.1)

Noting that
a(tu, ) = |1 f P30 ()| Vul> < M]1l? f P2V
Q Q
M
<M patu,u
m
for all re R, we get

~ ~ M ~ ~
a(ul’la un) < b a(vl’la Vl’l) < .
m m

Therefore, by Proposition 2.2, there exist two subsequences #,, and 7, such that
Uy, —> U, ¥, — V strongly in L7(2).

Since p>2 and VcCL?(Q), it follows that L7(Q)CL”(Q)CV’'. Moreover,
since ¢ = p, one has L(Q)CL’(Q)cL!(Q). This implies that L/(Q)cC V™.
By (2.1) we have || —V||;» =0, and therefore # =7. Then ||z — 7||U7(m = 0, which
contradicts (2.1). |
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ProrosiTION 2.4 Assume that f a(uy (1), u,(1))dt < C and {%} is bounded in
LP (v, T; V') + LY(Q..7). Then {u,} is precompact in L’(Q-.7).

Proof From Proposition 2.3, we have

T T T
[ e = ey < € [ ot + i)+ e [ e = .
T T T

Hence it suffices to show that the sequence {u,} contains a subsequence, which is a
Cauchy sequence in L’(z, T; V™).
We will prove a stronger claim: There exists a subsequence u,, such that

u, - u in C([t, T]; V7). (2.2)

By the hypotheses, there exists a set Z C [z, T] with measure |Z] =0 such that, for
telt, T\Z,

aluy(1), un(1)) < Ky < 0.
Hence for any t¢ Z, there exists a subsequence (dependent of ¢) such that
up(t) — u(t) strongly in V™. (2.3)

Now let {71, 15, ...} be a sequence which is dense in [z, T], and ¢;¢ Z. Using (2.3) and
a diagonal procedure, we can extract a subsequence u,, such that

u,(t;) — u(t;) strongly in V™" for all 7. (2.4)
Noting that L”/(r, T, V") +Lq/(QI’T) C Lq/(l', T: V™), for all ¢t €[z, T], we have

(1) — 1w (D)l = H / ' (5)ds
t |4

1
t; ru
/ 1
<( / ||u,;(s)||‘cds) i = i < Clty "
!

||uu+r(t) - uu(l)” V= < “up.-‘rr(t) - uu-&-r(li)” V*
+ ||up.+r([z') - u;/.(li)” V* + ”uu(ll) - ”/L(l)” Vs
1
< () — (8 e + 2C12 — 1]

Then

for all 1€[r, T]. By the density of {#;} in [z, T], it follows that {u,} is a Cauchy
sequence in V™ uniformly in ¢ €[z, T]. The proof is complete. ]

We use the next proposition, which makes the initial condition in problem
(1.1)—(1.3) meaningful.

du
ProposiTioN 2.5 Ifuel’(z, T; VYN LYQ..7) andd— e’ (t,T: V') + LY (Qv.1) then
ue C([z, T]; LA()).

For the proof, we refer the readers to [14].
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3. Main results
3.1. Existence of a global solution

Tueorem 3.1  Under the assumptions (H1)—(HS), the problem (1.1)—(1.3) has at least
one weak solution for each u, € L*(Q).

Proof Consider the approximating solution u,(¢) in the form
uy(1) = Z Ui (1)ey,
k=1

where {e;}%°, is a basis of Dy*(%2, p) N L7(K), which is orthogonal in L*(£2). We get u,,
from solving the problem

du, .
<d_ut’ek> = —(Auy, ex) — (f(un), ex) + (g, ex),

(uﬂ(r)i ek) = (uta ek)a

where Au=div(p(x)¢'(u)Vu).
Since f, ¢’ € C(R), the Peano theorem ensures the local existence of u,. We now
establish some a priori estimates for u,. We have

e+ ot + [ S = [ .
2 dl nllr2(Q) ns Un n)ln o n
Using hypothesis (H4) and the Cauchy inequality, we get
L gy + )+Mff |
nilr2 ns Un n
2d¢ S o
1 2 1 2
< M/|Q| +§”g”LZ(Q)+§”uﬂ”L2(Q)‘ (3.1)
It follows that
d 2 2 2
& ”un”Ll(Q) < ||un||L2(Q) =+l g”LZ(Q) + 2A/Mf|Q|-
Then
d 2 — 2
5(6 ”“n”LZ(Q)) <e (|l g”LZ(Q) + 2Mf|Q|)-
Integrating the last inequality from 7 to ¢, we get
1
lun(D 172y < € lun(DlI7 ) + / Il g )72 gy ds +2Mp(e ™" = 1)
T
< T un(D)l17 ) + 2My |2 = 1)
T+1 T+2
+ / 3[_5” g(, S)“il(g)ds + / et_S” g(,5)||iz(9)ds + -
T +1
< M un(OlI 7o) + 2Mr QU T =D+ T e+ e ) g||i%

f*t

e’ T”un(f)”y(g)+2Mf|Q|(et f— 1)+ e ”g”L
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This allows us to state that {u,} is bounded in L>(z, T; L*(2)), thanks to the fact that

w22y < llutell o). Integrating (3.1) on [z, T'], we have

T
IOy +2 [ e+ 200 W,
T
! 2 2
< (Dl 220 +/ Il gC, S)”L?(Q)ds + ”u””LZ(Qpr) + 2My|QUT — 7).
T

The last inequality implies that

{u,} 1s bounded in LY(Q; 1), (3.2)

T
{/ a(u(1), un(t))dt} is bounded. (3.3)

Taking (H3) into account, we get the estimate

q g—1\q’ q
/Qt~r|f(un)| </ (1 + i) </ 1 + unl?).

Ocr Ocr
Then {f{u,)} is bounded in LY (Q, ;) and
fl) = x in LY(Qr.1). (3.4)
On the other hand, we rewrite the equation as

du

d—t" = aluy, -) — f(t, un) + g(x, 1)

and implement the following estimates:

/TT a(uy, v)dl' =

T
< / dr /Q (™" + 1(O)))] div(o V)

T
f dr / ol1,) div(p(x) V)
T Q

r 2
<C [ (g + 1) vl
T
P

< C(””nl Z(QT.T) + 1) ”V”U(r,T;V)v
[{f (), v)
[{g, )

| < ||f(un)||Lq’(Q,_T)||V||L61(Q,AT)=
| < ”g”LLN(Q,_T)”V”L‘I(qu)

for all veL”(r,T:V)NLYQ,7). Then it follows that {%} is bounded in
L' (z, T; V') + LY(Q..7). Combining this with (3.3) and using Proposition 2.4 we

conclude that {u,} is precompact in L”(Q. ). Hence we can assume that

e u,— u strongly in L”(Q. 1),
o u,—uae. in Q.
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Since f€ C(R), it follows that f{u,) — f(u) a.e. in Q. . Thanks to (3.4), one has

f(uy) = f(u)  weakly in LY (Q-.7). (3.5)

Analogously, since {u,} is bounded in Z(Q, ), one can see that {¢(u,)} is bounded
in L '(QT,T) c L7 (0, T; V'). Therefore ¢(u,) — ® weakly in L7'(0, T; V’). Putting this
together with the fact that ¢(u,,) — ¢(u) a.e in Q. 7, we have ¢(u,) — (1) = ® weakly
in L7 (0, T: V").

Finally, passing to the limit as » — oo in the relation

/ o + / "ar | et diviovn + [ Ca [ rar= [ "ar e

for ve L?(z, T; V)N LY(Q, 1), and using Proposition 2.5 we conclude that u is a weak
solution of (1.1)—(1.3). |

3.2. Existence of the uniform attractor

Let us recall some definitions and related results. The pair of functions (f{s,-),
g(-,8)) =o(s) is called a symbol of (1.1). We consider (1.1) with a family of symbols
including the shifted forms o(s+h)=(f(s+h,-), g(-,s+h)) and the limits of some

—~

sequence {o(s+ h,)},en 1IN an appropriate topological space E. The family of such

—

symbols is said to be the hull of ¢ in E and is denoted by H(o), i.c.

H(o) = clg{o(s + h) | heRy}.

—

If the hull H(o) is a compact set in &, we say that o is translation compact in E.
Let E be a Banach space (which in our case will be L)), R,={(t,7)€
R?|7> 1} and P(E)={BCE | B#{}. Assume that ¥ is a subspace of Z.

Definition 3.1 A family of mappings {U, :R;x E— P(E)}scx 1s called an MVP if
there exists a continuous group {7(h): X — X},cr such that for all c€ X, x€E
we have

(1) Uy(zr,7,x)=x, for all teR;

(2) Uyst,t,x)C Uy(t,s,U(s, T, x)) forall t = s > 1
(3) Us(t+h,t+h,x) CUrup(t, 7, x) for all (z, 1) eR,, heR.

Denote by
Co =W eCR;R) : [Y(u)| < Cy(1+ |u|?"") for Cy, > 0},
[ (u)]
=Sup—m8M8.
¥ lle, ueﬂgl T

Then C, is a Banach space. We say that f, — fin the space C(R;C,) if

lim —sup || fu(s,) = f(s,)llc, =0

n—-+400 selti+r]

for all reR, r>0.
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Let fy € C(R; C,), go € L (R; LX(R2)) and

loc

H(fo) = clewie)f So(s +h) | he R},
H(gO) = ClLi;!(R;LZ(Q)){gO(S + h) | he [R}s

where the topology in le(;‘c"

g,— g in L*"(R; LA(Q)) if

loc

(R; L*(R)) is equipped by local weak convergence, i.e.

lim / ” / (gn(x,5) — g(x, $)p(x, 5)dxds =0
/ Q

n—-+00

for all reR, r>0 and ¢ € LX(Q,,..,).
Let us take ¥ =H(fo) x H(go). For each o =(f, g) € X, we define
U,(t,7,v) = {u = u(t) | uis the solution of (1.1)—(1.3), u(r) = v}.

Then {U,},cx is an MVP with respect to the translation group 7(h)o = o(- + h) by the
arguments in [22]. In addition, U, is a strict MVP, thatis U,(t, 7, x) = U(t, s, U(s, 1, X))
forallt>s>r.

Denote by

Us(t,t,v) = U Uy(t, t,v)

oeX

and Br= B(0, R), the ball in E centred at 0 with radius R.

Definition 3.2 The set Ay, C E is called a uniform attractor of MVP {U,},cx if
.AE #E and

(1) Ay is a uniformly attracting set, that is, for any R>0, for all te R,
dist(Ux(t, T, Br), Ag) — 0 as t - +o0;

(2) Asx is a minimal uniformly attracting set, that is, if Ay is a uniformly
attracting set then Ay, C clgAs.

Here the notation dist(A, B):=supgc,infy,cplla — bl g, that is the Hausdorff
semi-distance between two sets in FE.

We use the following theorem as a sufficient condition for the existence of a
uniform attractor described above. For a proof, see [18].

THEOREM 3.2 If the family of MV P {U,},cx satisfies the following conditions

(1) there exists Ry>0 such that, for all R>0, dist(Ux(z,0, Bg), Br)— 0 as
t— 400,
(2) for all R>0 and {t,|t, /' +oo}, {&, | £&,€ Us(t,,0, Br)} is precompact in E,

then {U,}sex has a uniform attractor

As = () U Uz(5,0, Bg,10),

s=01=s

which is compact in E.
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In order to deal with a uniform attractor, with respect to the family of symbols,
one usually requires the translation compact property. Let us recall some discussions
on this requirement. It is known that the hypothesis (H5) ensures that g is translation
compact in lec;‘c"([R; L*(R)), (see [8] for details). In addition, the following statement
gives a sufficient condition for the translation compact property in C(R;C,).

ProrosiTioN 3.3 [8]  The function fe C(R; C,) is translation compact if, and only if,
for all R>0 one has

(D) [, < C(R) for all teR, ve[—R, R],
2) 1/t v1) = flt, o)l < allty — to] 4+ [vi = val, R) for all t,, t; e R; v, v, €[—R, R].

Here C(R)>0 and a(s,R)— 0 as s— 07,

It is easy to see that, if fe C'(R% R) such that |/(z,v)] < C(R), | L(1,v)| < C(R)
and |Z(1,v)| < C(R) for all 1eR and for all ve[—R, R] then the hypotheses in
Proposition 3.3 are satisfied. For instance, the function f(z,u)= |u|?"*u arctan ¢ is
well-checked.

From now on, we suppose that f'is translation compact. Together with the fact
that g is translation compact in le(;‘;’([R; L?*(Q)), one has that ¥ is a compact set in

C(R; C,) x le(;‘é'(lR; L*(R2)). Then it follows from [8] that T(/) : ¥ — X is continuous

and T(h)X Cc X for all heR.
We need the following lemma to prove the dissipative property of MVP.

Lemma 3.4 If u(t) is a weak solution of (1.1)—(1.3) then

Il gll3
IOl 70y < €™ utellpae) + Mo(1 = e 7) + 17—,

where Mo= Mo(q, |S2|, My >0.
Proof From (1.1), using (H4) and Cauchy inequality, we have

d
& (D)7 2 + 2a(u, u) + 2Ml|u]) g
<2My |2 + U720y + 11 €D 720y- (3.6)
Since ¢>2, using Young’s inequality, one has
201u(1) 1220y < Clul) gy < 2Mrllu() 4,0 + Mo,
where M, > 0. Putting this into (3.6), we obtain
d
IO 2y + 1D 2@y < 2M7 120 + My + 1180

Then

d
O @ (D) 20) < €'QMIQ] + My) + €' g1y
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Taking integration over [z, t], we arrive at
(Dl 720) < € Nunll g + (1 — e QML IR + M,)

t
—(t—s 2
+ / eI g(5) 23 ds

< Nl + (1 = e NQMfIQI + M)
t—1

!
(=5 ) o ,
+ /tll eI g(S)HLz(Q)dS—}- /,72 (9 g(S)”Lz(Q)dS T
< e_(r_r)”un”%;(g) + (1 —_ e_(’_f))(ZMf|Q| + Mt])

+(4e ' +e 241 sup | 2720
te

llg ”Lz
—e 7

< e Nl + (1= QM IQ] + My) + 1

So we complete the proof. |

LemMmA 3.5  Let the hypotheses (H1)—(HY) hold. Assume that {u,},cn is a sequence of
weak solutions of (1.1)~(1.3) with respect to the sequence of symbols {0,}, cx nen
such that

(1) un(t) = ur in LA(RQ),
2) o,—>0in X%,

then there exists a solution u of (1.1)—~(1.3) with respect to the symbol o such that
w(t) = u, and u,(1*) — u(t*) in L*(Q) for any 1*>1.

Proof We will adapt the technique as in [13,22] to prove this statement. Let
0,=(fu g,). Since f satisfies (H3)—(H4) for all € R and f,, € H(f), one sees that f,,
neN also satisfies (H3)-(H4) with the same constants Cy and My From (1.1),
we have

d
3 1Ol 20 + @t t) + 2M 1y 7

<2M7 1920+ 1 a(D 220 + a3

for all > 7. Using the same arguments as in the proof of Lemma 3.4, we have

o o 1
(Dl 70y < €™ MO0y + Mo(1 =€)+ — gl -

Since {u,(r)} is bounded and ||g,,||L2 < ||g||L, we have {u,} is bounded in
L>(0, T; LX(2)) for given T>t. In particular,

uy(f) = u(f) in L*(Q) for each re[r, T] (3.7)

up to a subsequence. Now using the arguments as in the proof of Theorem 3.1,
we have

° fTT a(uy,, u,)dt is bounded,
e {u,} is bounded in LY(Q, 7),



Downloaded by [National Sun Y at-Sen University] at 06:35 15 December 2012

Optimization 721

o {/s (uy)} is bounded in L7(Q-.1), ,
e {u/} is bounded in L” (7, T; V') + LY (Q-.7).

Using Proposition 2.4, one gets that {u,} is precompact in L”(Q. r) and then, by
replacing {u,} with a subsequence if necessary, we have

o u,—uaein Q. r,
o p(u,) — () in L (7, T, V'),
o u,—u in I’'(t, T: V') + LY(Qr.).

Let 0, —> o = (£, %) in T. In order to prove that u is a weak solution of (1.1)—(1.3)
with respect to the symbol o, we need to pass to the limit in following relation:

/frw,;, )+ /fdr | e aiviovn + /,T‘” [t = /de’ fie

forve L(z, T; V)N LYQ; 7). Since g, — g in L*(t, T; L*(R)), it remains to prove that
fn(uy) = flu) in Lq/(QT,T). We have the stronger claim, that is f,(u,) — f(u) strongly
in LY (Q..7). Indeed,

T _ T _ _
/ / ultawn) — ft, )Y dxdr < 27 / [ Pt ) — F(t )Y dxdr
T Q T Q

T 7 ’
a |'ﬁ’([’ u”) _f‘(t’ un)lq q—1\q’
w2 /‘[ /sz (1 + u | H? (1 + Juy ") dx dt

T
<27 f(t,u,) — f(t, )4 dxd
< /r/Qlf(tu) F(tw)? dxds

_ q" T
+ (4 sup | f» —f|cq) / /(1 + |u,|D)dx dr.
[z.T] T JQ

Then the boundedness of {u,} in LYQ, 7) and the continuity of f guarantee our
claim. In addition, by Proposition 2.5, we get u e C([r, T']; L*(S2)). Then the initial
condition makes sense.

We are in a position to show that u,(1*) — u(t*) in L*(Q) for any ¢*> . Taking
into account of (3.7), we have to check that [, ()|l ;2)— lu(t™)| 12) in R.

Let us denote

Jn(t) = ””n(l)”%l(g) - 2/ (gn(s)a un(s))Lz(Q)dt - M|Q|(t - T)s

J0) = 0y =2 [ (260,13t = M1 =

for some M >0. Then J,, J€ C([t, T]; R). Arguing as in the proof of Lemma 3.4, u,
satisfies the estimate

d
& ”un(l)”%}(gz) < M|Q| + Z(gn(t)a un([))Lz(Q)a

and the same estimate is valid for u. Hence, J,, and J are decreasing on [z, T']. We first
show that

Ju(t) = J(t) for ae. te€[t, T]. (3.8)
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Obviously
(1) = J(2)]

!

< “Wn(f)”izm) - ||U(t)||iZ(Q)big| + 2' / (&gns Hn)Lz(Q) — (g U)LZ(Q) dt‘
T

< Nun () — u(Dl 2@y (N1un (Dl 2200) + (D] 12(2))

'
+ 2‘ / (&n»ttn — u)LZ(Q)dt‘ +2

— g, u)LZ(Q) dt'

Moreover, one has

= Wp@dt| < gl pllin = g,y — 0

as n— oo since u, — u strongly in L2(Qr’,) and {g,} is bounded in Lz(Qr,,). In
addition

!
/(gn — & W gdr — 0

as n— oo since g,—g in LZ(Q,,,). Then (3.8) is proved due to the fact that
(1) = u(r) in LX) for a.e. te(z, T).

Suppose that {t,,} is an increasing sequence in [z, T'] such that 7,, — ¢* as m — oo.
Then

o J,(t,)— J(t%) as m— oo,
e J,(t,)— J(t,) as n— oo.

So for €>0, we have eventually
Ta(1%) = J(@) < Jultm) = J(A) = Ju(tm) = J(tn) + J(tm) = J(7) <.
Similarly, J(¢*) — J,(t*)<e. Therefore J,(t*) — J(¢*) and then
letn( @) 12) —> ()l 12y as n— oo. m
The following theorem is the main result in this section.

THEOREM 3.6  Under the hypotheses (H1)-(HS), the MV P {U,},cs generated by the
problem (1.1)—(1.3) possesses a uniform attractor which is a compact set in L*(S).

Proof Note that each symbol o, =(f,, g, € X satisfies the same conditions as in
(H3)—(HS5). Furthermore, since g, € H(g), we have ||g,,||Lz < ||g||Lz Hence it follows
from Lemma 3.4 that, if u, is the weak solution of (1. 1) (1.3) with respect to the
symbol o,, one has

IIgII

|un(l)||L2(Q) e —= T)”un(T)HL"(Q) + My(1 - ei(l T)) + - 1

The last inequality ensures that, if u,(t) € By then there exists 7y = Ty(t, R) such that

u,(t) € Bg,, for all t = T,
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where

Il 2l7
Ry =2M, + 1 _hl .

That is Us(t, T, Bg) C By, for all 1 > Ty(z, R). This fulfils the first condition in
Theorem 3.2. We now verify the second condition.

Let ¢, /' +oo and §, € Ux(t,,0, Br). Then there exists a sequence of solutions {u,}
of (1.1)—(1.3) with respect to the sequence of symbols {o,} such that &, =1u,(z,). For
given >0, we have

UG,I(Z}’HOa BR) = UU,,([* + lﬂ - [*909 BR)
- on,(t* + tn - l*s tn - t*a UO‘,,(ZH - t*a 0, BR))
C U, (t"+1t,— 1", t, — 1%, Bg,)

fort,> To+1".
Hence

Uy, (14,0, Br) C Ur(t,—)5, (1%, 0, Bg,).

Now &, € Uz, (1,0, Bg,) where &, = T(t, — t*)o, € . That is, &, =v,(t") where v,
is the weak solution of (1.1)—~(1.3) with respect to the symbol &,. Suppose that
o, — o in 2. By Lemma 3.5, there exists a solution v of (1.1)—(1.3) with respect to the
symbol @, such that &, =v,(t*)— v(¢*) in L*(Q) and thus the proof completes. M
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