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Abstract. An existence theorem for a fixed point of an α-nonexpansive mapping of a
nonempty bounded, closed and convex subset of a uniformly convex Banach space is recently
established by Aoyama and Kohsaka with a non-constructive argument. In this paper, we
show that appropriate Ishihawa iterate algorithms ensure weak and strong convergence to a
fixed point of such a mapping. Our theorems are also extended to CAT(0) spaces.
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1. Introduction

The purpose of this paper is to study fixed point theorems of α-nonexpansive mappings
of CAT(0) spaces. A metric space X is a CAT(0) space if it is geodesically connected, and if
every geodesic triangle in X is at least as ‘thin’ as its comparison triangle in the Euclidean
plane (see Section 4 for the precise definition). Our approach is to prove firstly weak and
strong convergence theorems for Ishikawa iterations of α-nonexpansive mappings in uniformly
convex Banach spaces. Then, we extend the results to CAT(0) spaces.

Here are the details. Let E be a (real) Banach space and let C be a nonempty subset
of E. Let T : C → E be a mapping. Denote by F (T ) the set of fixed points of T , i.e.,
F (T ) = {x ∈ C : Tx = x}. We say that T is nonexpansive if ‖Tx−Ty‖ ≤ ‖x− y‖ for all x, y
in C, and that T is quasi-nonexpansive if F (T ) 6= ∅ and ‖Tx − y‖ ≤ ‖x − y‖ for all x in C
and y in F (T ).
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The concept of nonexpansivity of a map T from a convex set C into C plays an important
role in the study of the Mann-type iteration given by

xn+1 = βnTxn + (1− βn)xn, x1 ∈ C. (1.1)

Here, {βn} is a real sequence in [0, 1] satisfying some appropriate conditions, which is usually
called a control sequence. A more general iteration scheme is the Ishikawa iteration, given by{

yn = βnTxn + (1− βn)xn,
xn+1 = γnTyn + (1− γn)xn,

(1.2)

where the sequences {βn} and {γn} satisfy some appropriate conditions. In particular, when
all βn = 0, the Ishikawa iteration (1.2) becomes the standard Mann iteration (1.1). Let T
be nonexpansive and let C be a nonempty closed and convex subset of a uniformly convex
Banach space E satisfying the Opial property. Takahashi and Kim [1] proved that, for any
initial data x1 in C, the iterates {xn} defined by the Ishikawa iteration (1.2) converges weakly
to a fixed point of T , with appropriate choices of control sequences {βn} and {γn}.

Following Aoyama and Kohsaka [2], a mapping T : C → E is said to be α-nonexpansive
for some real number α < 1 if

‖Tx− Ty‖2 ≤ α‖Tx− y‖2 + α‖Ty − x‖2 + (1− 2α)‖x− y‖2, ∀x, y ∈ C.

Clearly, 0-nonexpansive maps are exactly nonexpansive maps. Moreover, T is Lipschitz con-
tinuous whenever α ≤ 0. An example of a discontinuous α-nonexpansive mapping (with
α > 0) has been given in [2]. See also Example 3.6(b) below.

An existence theorem for a fixed point of an α-nonexpansive mapping T of a nonempty
bounded, closed and convex subset C of a uniformly convex Banach space E is established in
[2] with a non-constructive argument. In Section 3, we show that, under mild conditions on
the control sequences {βn} and {γn}, the fixed point set F (T ) is nonempty if and only if the
sequence {xn} obtained by the Ishikawa iteration (1.2) is bounded and lim inf

n→∞
‖Txn−xn‖ = 0.

In this case, {xn} converges weakly or strongly to a fixed point in F (T ).

In Section 4, together with other elementary generalizations we establish the existence
result, Theorem 4.7, of fixed points of an α-nonexpansive mapping in a CAT(0)-space in
parallel to [2]. In Section 5, we extend the convergence theorems for Ishikawa iterations
obtained in Section 3 to the case of CAT(0) spaces, as we plan.

2. Preliminaries

Let E be a (real) Banach space with norm ‖ · ‖ and dual space E∗. Denote by xn → x the
strong convergence of a sequence {xn} to x in E, and by xn ⇀ x the weak convergence. The
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modulus δ of convexity of E is denoted by

δ(ε) = inf

{
1− ‖x + y‖

2
: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}
for every ε with 0 ≤ ε ≤ 2. A Banach space E is said to be uniformly convex if δ(ε) > 0
for every 0 < ε ≤ 2. Let S = {x ∈ E : ‖x‖ = 1}. The norm of E is said to be Gâteaux
differentiable if for each x, y in S, the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

(2.1)

exists. In this case, E is called smooth. If the limit (2.1) is attained uniformly in x, y in S,
then E is called uniformly smooth. A Banach space E is said to be strictly convex if ‖x+y

2
‖ < 1

whenever x, y ∈ S and x 6= y. It is well-known that E is uniformly convex if and only if E∗ is
uniformly smooth. It is also known that if E is reflexive, then E is strictly convex if and only
if E∗ is smooth; for more details, see [3].

A Banach space E is said to satisfy the Opial property [4] if for every weakly convergent
sequence xn ⇀ x in E we have

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖

for all y in E with y 6= x. It is well known that all Hilbert spaces, all finite dimensional
Banach spaces and the Banach spaces lp (1 ≤ p < ∞) satisfy the Opial property, while the
uniformly convex spaces Lp[0, 2π] (p 6= 2) do not; see, for example, [4, 5, 6].

Let {xn} be a bounded sequence in a Banach space E. For any x in E, we set

r(x, {xn}) = lim sup
n→∞

‖x− xn‖.

The asymptotic radius of {xn} relative to a nonempty closed and convex subset C of E is
defined by

r(C, {xn}) = inf{r(x, {xn}) : x ∈ C}.

The asymptotic center of {xn} relative to C is the set

A(C, {xn}) = {x ∈ C : r(x, {xn}) = r(C, {xn})}.

It is well known that if E is uniformly convex then A(C, {xn}) consists of exactly one point;
see [7, 8].

Lemma 2.1. Let C be a nonempty subset of a Banach space E. Let T : C → E be an
α-nonexpansive mapping for some α < 1 such that F (T ) 6= ∅. Then T is quasi-nonexpansive.
Moreover, F (T ) is norm closed.
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Proof. Let x ∈ C and z ∈ F (T ). Then we have

‖Tx− z‖2 = ‖Tx− Tz‖2

≤ α‖Tx− z‖2 + α‖Tz − x‖2 + (1− 2α)‖x− z‖2

= α‖Tx− z‖2 + α‖z − x‖2 + (1− 2α)‖x− z‖2

= α‖Tx− z‖2 + (1− α)‖x− z‖2.

Therefore,
‖Tx− z‖ ≤ ‖x− z‖.

This inequality ensures the closedness of F (T ). �

Lemma 2.2. Let C be a nonempty subset of a Banach space E. Let T : C → E be an
α-nonexpansive mapping for some α < 1. Then the following assertions hold.

(i) If 0 ≤ α < 1, then

‖x−Ty‖2 ≤ 1 + α

1− α
‖x−Tx‖2+

2

1− α
(α‖x−y‖+‖Tx−Ty‖)‖x−Tx‖+‖x−y‖2, ∀x, y ∈ C.

(ii) If α < 0, then

‖x−Ty‖2 ≤ ‖x−Tx‖2+
2

1− α
[(−α)‖Tx−y‖+‖Tx−Ty‖]‖x−Tx‖+‖x−y‖2, ∀x, y ∈ C.

Proof. (i) Observe

‖x− Ty‖2 = ‖x− Tx + Tx− Ty‖2

≤ (‖x− Tx‖+ ‖Tx− Ty‖)2

= ‖x− Tx‖2 + ‖Tx− Ty‖2 + 2‖x− Tx‖‖Tx− Ty‖
≤ ‖x− Tx‖2 + α‖Tx− y‖2 + α‖x− Ty‖2 + (1− 2α)‖x− y‖2

+ 2‖x− Tx‖‖Tx− Ty‖
≤ ‖x− Tx‖2 + α(‖Tx− x‖+ ‖x− y‖)2

+ α‖x− Ty‖2 + (1− 2α)‖x− y‖2 + 2‖x− Tx‖‖Tx− Ty‖
≤ ‖x− Tx‖2 + α‖Tx− x‖2 + α‖x− y‖2

+ 2α‖Tx− x‖‖x− y‖+ α‖x− Ty‖2

+ (1− 2α)‖x− y‖2 + 2‖x− Tx‖‖Tx− Ty‖
= (1 + α)‖x− Tx‖2 + 2α‖Tx− x‖‖x− y‖+ α‖x− Ty‖2

+ (1− α)‖x− y‖2 + 2‖x− Tx‖‖Tx− Ty‖.

This implies that

‖x− Ty‖2 ≤ 1 + α

1− α
‖x− Tx‖2 +

2

1− α
(α‖x− y‖+ ‖Tx− Ty‖)‖x− Tx‖+ ‖x− y‖2.
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(ii) Observe

‖x− Ty‖2 = ‖x− Tx + Tx− Ty‖2

≤ (‖x− Tx‖+ ‖Tx− Ty‖)2

= ‖x− Tx‖2 + ‖Tx− Ty‖2 + 2‖x− Tx‖‖Tx− Ty‖
≤ ‖x− Tx‖2 + α‖Tx− y‖2 + α‖x− Ty‖2 + (1− 2α)‖x− y‖2

+ 2‖x− Tx‖‖Tx− Ty‖
= ‖x− Tx‖2 + α‖Tx− y‖2 + α‖x− Ty‖2

+ (1− α)‖x− y‖2 − α‖x− y‖2 + 2‖x− Tx‖‖Tx− Ty‖
≤ ‖x− Tx‖2 + α‖Tx− y‖2 + α‖x− Ty‖2

+ (1− α)‖x− y‖2 − α[‖x− Tx‖2 + ‖Tx− y‖2 + 2‖x− Tx‖‖Tx− y‖]
+ 2‖x− Tx‖‖Tx− Ty‖

= (1− α)‖x− Tx‖2 + α‖x− Ty‖2

+ (1− α)‖x− y‖2 − 2α‖x− Tx‖‖Tx− y‖+ 2‖x− Tx‖‖Tx− Ty‖
= (1− α)‖x− Tx‖2 + α‖x− Ty‖2

+ (1− α)‖x− y‖2 + 2[(−α)‖Tx− y‖+ ‖Tx− Ty‖]‖x− Tx‖.
This implies that

‖x− Ty‖2 ≤ ‖x− Tx‖2 +
2

1− α
[(−α)‖Tx− y‖+ ‖Tx− Ty‖]‖x− Tx‖+ ‖x− y‖2.

�

Proposition 2.3 (Demiclosedness Principle). Let C be a subset of a Banach space E
with the Opial property. Let T : C → C be an α-nonexpansive mapping for some α < 1. If
{xn} converges weakly to z and limn→∞ ‖Txn − xn‖ = 0, then Tz = z. That is, I − T is
demiclosed at zero, where I is the identity mapping on E.

Proof. Since {xn} converges weakly to z and limn→∞ ‖Txn − xn‖ = 0, both {xn} and {Txn}
are bounded. Let M1 = sup{‖xn‖, ‖Txn‖, ‖z‖, ‖Tz‖ : n ∈ N} < ∞. If 0 ≤ α < 1 then, in
view of Lemma 2.2(i),

‖xn − Tz‖2

≤ 1 + α

1− α
‖xn − Txn‖2 +

2

1− α
(α‖xn − z‖+ ‖Txn − Tz‖)‖xn − Txn‖+ ‖xn − z‖2

≤ 1 + α

1− α
‖xn − Txn‖2 +

4M1(1 + α)

1− α
‖xn − Txn‖+ ‖xn − z‖2.

If α < 0 then, in view of Lemma 2.2(ii),

‖xn − Tz‖2

≤ ‖xn − Txn‖2 +
2

1− α
[(−α)‖Txn − z‖+ ‖Txn − Tz‖]‖xn − Txn‖+ ‖xn − z‖2

≤ ‖xn − Txn‖2 + 4M1‖xn − Txn‖+ ‖xn − z‖2.
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These imply
lim sup

n→∞
‖xn − Tz‖ ≤ lim sup

n→∞
‖xn − z‖.

From the Opial property, we obtain Tz = z. �

The following result has been proved in [9].

Lemma 2.4. Let r > 0 be a fixed real number. If E is a uniformly convex Banach space,
then there exists a continuous strictly increasing convex function g : [0, +∞) → [0, +∞) with
g(0) = 0 such that

‖λx + (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)g(‖x− y‖),

for all x, y in Br(0) = {u ∈ E : ‖u‖ ≤ r} and λ ∈ [0, 1].

Recently, Aoyama and Kohsaka [2] proved the following fixed point theorem for α-nonexpansive
mappings of Banach spaces.

Lemma 2.5. Let C be a nonempty closed and convex subset of a uniformly convex Banach
space E. Let T : C → C be an α-nonexpansive mapping for some α < 1. Then the following
conditions are equivalent.

(i) There exists x in C such that {T nx}∞n=1 is bounded.

(ii) F (T ) 6= ∅.

3. Fixed Point and Convergence Theorems in Banach Spaces

Lemma 3.1. Let C be a nonempty closed and convex subset of a Banach space E. Let
T : C → C be an α-nonexpansive mapping for some α < 1. Let a sequence {xn} with x1 in
C be defined by the Ishikawa iteration (1.2) such that {βn} and {γn} are arbitrary sequences
in [0, 1]. Suppose that the fixed point set F (T ) contains an element z. Then the following
assertions hold.
(1) max{‖xn+1 − z‖, ‖yn − z‖} ≤ ‖xn − z‖ for all n = 1, 2, . . ..
(2) limn→∞ ‖xn − z‖ exists.
(3) limn→∞ d(xn, F (T )) exists, where d(x, F (T )) denotes the distance from x to F (T ).
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Proof. In view of Lemma 2.1, we conclude that

‖yn − z‖ = ‖βnTxn + (1− βn)xn − z‖
≤ βn‖Txn − z‖+ (1− βn)‖xn − z‖
≤ βn‖xn − z‖+ (1− βn)‖xn − z‖
= ‖xn − z‖.

Consequently,

‖xn+1 − z‖ = ‖γnTyn + (1− γn)xn − z‖
≤ γn‖Tyn − z‖+ (1− γn)‖xn − z‖
≤ γn‖yn − z‖+ (1− γn)‖xn − z‖
≤ γn‖xn − z‖+ (1− γn)‖xn − z‖
= ‖xn − z‖.

This implies that {‖xn−z‖} is a bounded and nonincreasing sequence. Thus, limn→∞ ‖xn−z‖
exists.

In the same manner, we see that {d(xn, F (T ))} is also a bounded nonincreasing real se-
quence, and thus converges. �

Theorem 3.2. Let C be a nonempty closed and convex subset of a uniformly convex
Banach space E. Let T : C → C be an α-nonexpansive mapping for some α < 1. Let {βn}
and {γn} be sequences in [0, 1], and let {xn} be a sequence with x1 in C defined by the Ishikawa
iteration (1.2).

1. If {xn} is bounded and lim inf
n→∞

‖Txn − xn‖ = 0, then the fixed point set F (T ) 6= ∅.

2. Assume F (T ) 6= ∅. Then {xn} is bounded, and the following hold.

Case 1: 0 < α < 1.

(a) lim inf
n→∞

‖Txn − xn‖ = 0 when lim sup
n→∞

γn(1− γn) > 0.

(b) limn→∞ ‖Txn − xn‖ = 0 when lim inf
n→∞

γn(1− γn) > 0.

Case 2: α ≤ 0.

(a) lim inf
n→∞

‖Txn − xn‖ = 0 when{
lim inf
n→∞

γn(1− γn) > 0,

lim inf
n→∞

βn < 1,
or

 lim sup
n→∞

γn(1− γn) > 0,

lim sup
n→∞

βn < 1.
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(b) limn→∞ ‖Txn − xn‖ = 0 when lim inf
n→∞

γn(1− γn) > 0 and lim sup
n→∞

βn < 1.

Proof. Assume that {xn} is bounded and lim inf
n→∞

‖Txn − xn‖ = 0. There is a bounded

subsequence {Txnk
} of {Txn} such that limk→∞ ‖Txnk

− xnk
‖ = 0. Suppose A(C, {xnk

}) =
{z}. Let M1 = sup{‖xnk

‖, ‖Txnk
‖, ‖z‖, ‖Tz‖ : k ∈ N} < ∞. If 0 ≤ α < 1, then, by Lemma

2.2 (i), we have

‖xnk
− Tz‖2

≤ 1 + α

1− α
‖xnk

− Txnk
‖2 +

2

1− α
(α‖xnk

− z‖+ ‖Txnk
− Tz‖)‖xnk

− Txnk
‖+ ‖xnk

− z‖2

≤ 1 + α

1− α
‖xnk

− Txnk
‖2 +

4M1(1 + α)

1− α
‖Txnk

− xnk
‖+ ‖xnk

− z‖2.

This implies that

lim sup
k→∞

‖xnk
− Tz‖2

≤ 1 + α

1− α
lim sup

k→∞
‖xnk

− Txnk
‖2 +

4M1(1 + α)

1− α
lim sup

k→∞
‖Txnk

− xnk
‖+ lim sup

k→∞
‖xnk

− z‖2

= lim sup
k→∞

‖xnk
− z‖2.

If α < 0, then, by Lemma 2.2 (ii), we have

‖xnk
− Tz‖2

≤ ‖xnk
− Txnk

‖2 +
2

1− α
[(−α)‖Txnk

− z‖+ ‖Txnk
− Tz‖)‖xnk

− Txnk
‖+ ‖xnk

− z‖2

≤ 1 + α

1− α
‖xnk

− Txnk
‖2 +

4M1(1 + α)

1− α
‖Txnk

− xnk
‖+ ‖xnk

− z‖2.

This implies again that

lim sup
k→∞

‖xnk
− Tz‖2

≤ 1 + α

1− α
lim sup

k→∞
‖xnk

− Txnk
‖2 +

4M1(1 + α)

1− α
lim sup

k→∞
‖Txnk

− xnk
‖+ lim sup

k→∞
‖xnk

− z‖2

= lim sup
k→∞

‖xnk
− z‖2.

Thus, we have in all cases

r(Tz, {xnk
}) = lim sup

n→∞
‖xnk

− Tz‖

≤ lim sup
n→∞

‖xnk
− z‖

= r(z, {xnk
}).
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This means that Tz ∈ A(C, {xnk
}). By the uniform convexity of E we conclude that Tz = z.

Conversely, let F (T ) 6= ∅ and let z ∈ F (T ). It follows from Lemma 3.1 that limn→∞ ‖xn−z‖
exists and hence {xn} is bounded. In view of Lemmas 2.1 and 2.4, we obtain a continuous
strictly increasing convex function g : [0, +∞) → [0, +∞) with g(0) = 0 such that

‖xn+1 − z‖2 = ‖γnTyn + (1− γn)xn − z‖2

≤ γn‖Tyn − z‖2 + (1− γn)‖xn − z‖2 − γn(1− γn)g(‖Tyn − xn‖)
≤ γn‖yn − z‖2 + (1− γn)‖xn − z‖2 − γn(1− γn)g(‖Tyn − xn‖)
≤ γn‖xn − z‖2 + (1− γn)‖xn − z‖2 − γn(1− γn)g(‖Tyn − xn‖)
= ‖xn − z‖2 − γn(1− γn)g(‖Tyn − xn‖).

(3.1)

In view of (3.1), we conclude with Lemma 3.1 that

γn(1− γn)g(‖Tyn − xn‖) ≤ ‖xn − z‖2 − ‖xn+1 − z‖2

→ 0, as n →∞.

It follows that

lim inf
n→∞

g(‖Tyn − xn‖) = 0 whenever lim sup
n→∞

γn(1− γn) > 0.

From the property of g we deduce that

lim inf
n→∞

‖Tyn − xn‖ = 0 in case lim sup
n→∞

γn(1− γn) > 0. (3.2)

In the same manner, we also obtain that

lim
n→∞

‖Tyn − xn‖ = 0 in case lim inf
n→∞

γn(1− γn) > 0. (3.3)

On the other hand, from (1.2) we get

Txn − yn = (1− βn)(Txn − xn), xn − yn = βn(xn − Txn). (3.4)

Observing (3.4), we see that the assertions about the case α ≤ 0 follow from (3.2) and (3.3).

In the following, we discuss the case 0 < α < 1. Assuming first lim inf
n→∞

γn(1 − γn) > 0.

By Lemma 2.1 and (3.3) we see that M2 := sup{‖Txn‖, ‖Tyn‖ : n ∈ N} < ∞. Since T is
α-nonexpansive, in view of (3.4), we obtain

‖Txn − xn‖2

= ‖Txn − Tyn + Tyn − xn‖2

≤ (‖Txn − Tyn‖+ ‖Tyn − xn‖)2

= ‖Txn − Tyn‖2 + ‖Tyn − xn‖2 + 2‖Txn − Tyn‖‖Tyn − xn‖
≤ α‖Txn − yn‖2 + α‖Tyn − xn‖2 + (1− 2α)‖xn − yn‖2 + ‖Tyn − xn‖2 + 4M2‖Tyn − xn‖
≤ α‖(1− βn)(Txn − xn)‖2 + (α + 1)‖Tyn − xn‖2 + (1− 2α)‖βn(xn − Txn)‖2 + 4M2‖Tyn − xn‖
≤ [α(1− βn)2 + (1− 2α)β2

n]‖Txn − xn‖2 + (α + 1)‖Tyn − xn‖2 + 4M2‖Tyn − xn‖. (3.5)
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Case (i): If 0 < α < 1
2
, then (3.5) becomes

‖Txn − xn‖2

≤ [α(1− βn)2 + (1− 2α)β2
n]‖Txn − xn‖2 + (α + 1)‖Tyn − xn‖2 + 4M2‖Tyn − xn‖

= (1− α)‖Txn − xn‖2 + (α + 1)‖Tyn − xn‖2 + 4M2‖Tyn − xn‖,

since all βn are in [0, 1]. We then derive from (3.3) that

‖Txn − xn‖2 ≤ 1+α
α
‖Tyn − xn‖2 + 4M2

α
‖Tyn − xn‖ → 0, as n →∞. (3.6)

Case (ii): If 1
2
≤ α < 1, then (3.5) becomes

‖Txn − xn‖2

≤ [α(1− βn)2 + (1− 2α)β2
n]‖Txn − xn‖2 + (α + 1)‖Tyn − xn‖2 + 4M2‖Tyn − xn‖

≤ α‖Txn − xn‖2 + (α + 1)‖Tyn − xn‖2 + 4M2‖Tyn − xn‖.

We then derive from (3.3) again that

‖Txn − xn‖2 ≤ 1+α
1−α

‖Tyn − xn‖2 + 4M2

1−α
‖Tyn − xn‖ → 0, as n →∞. (3.7)

Finally, we assume lim sup
n→∞

γn(1 − γn) > 0 instead. By (3.2) we have subsequences {xnk
}

and {ynk
} of {xn} and {yn}, respectively, such that

lim
k→∞

‖Tynk
− xnk

‖ = 0.

Replacing M2 by the number sup{‖Txnk
‖, ‖Tynk

‖ : k ∈ N} < ∞ and dealing with the
subsequences {xnk

} and {ynk
} in (3.6) and (3.7), we will arrive at the desired conclusion that

limk→∞ ‖Txnk
− xnk

‖ = 0. This gives lim inf
n→∞

‖Txn − xn‖ = 0. �

Theorem 3.3. Let C be a nonempty closed and convex subset of a uniformly convex Banach
space E with the Opial property. Let T : C → C be an α-nonexpansive mapping with a
nonempty fixed point set F (T ) for some α < 1. Let {βn} and {γn} be sequences in [0, 1], and
let {xn} be a sequence with x1 in C defined by the Ishikawa iteration (1.2).

Assume that lim inf
n→∞

γn(1 − γn) > 0, and assume, in addition, lim sup
n→∞

βn < 1 if α ≤ 0.

Then {xn} converges weakly to a fixed point of T .

Proof. It follows from Theorem 3.2 that {xn} is bounded and limn→∞ ‖Txn − xn‖ = 0.
The uniform convexity of E implies that E is reflexive; see, for example, [3]. Then, there
exists a subsequence {xni

} of {xn} such that xni
⇀ p ∈ C as i →∞. In view of Proposition

2.3, we conclude that p ∈ F (T ). We claim that xn ⇀ p as n →∞. Suppose on contrary that
there existed a subsequence {xnj

} of {xn} converging weakly to some q in C with p 6= q. By
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Proposition 2.3, we see that q ∈ F (T ). Lemma 3.1 says that limn→∞ ‖xn − z‖ exists for all z
in F (T ). The Opial property then implies

limn→∞ ‖xn − p‖ = limi→∞ ‖xni
− p‖ < limi→∞ ‖xni

− q‖
= limn→∞ ‖xn − q‖ = limj→∞ ‖xnj

− q‖
< limj→∞ ‖xnj

− p‖ = limn→∞ ‖xn − p‖.

This is a contradiction. Thus p = q, and the desired assertion follows. �

Theorem 3.4. Let C be a nonempty compact and convex subset of a uniformly convex Banach
space E. Let T : C → C be an α-nonexpansive mapping for some α < 1. Let {βn} and {γn}
be sequences in [0, 1].

When 0 < α < 1, we assume lim sup
n→∞

γn(1− γn) > 0. When α ≤ 0, we assume either

{
lim inf
n→∞

γn(1− γn) > 0,

lim inf
n→∞

βn < 1,
or

 lim sup
n→∞

γn(1− γn) > 0,

lim sup
n→∞

βn < 1.

Let {xn} be a sequence with x1 in C defined by the Ishikawa iteration (1.2). Then {xn}
converges strongly to a fixed point z of T .

Proof. Since C is bounded, it follows from Lemma 2.5 that the fixed point set F (T ) of T is
nonempty. In view of Theorem 3.2, the sequence {xn} is bounded and lim inf

n→∞
‖Txn−xn‖ = 0.

By the compactness of C, there exists a subsequence {xnk
} of {xn} converging strongly to

some z in C, and limk→∞ ‖Txnk
− xnk

‖ = 0. In particular, {Txnk
} is bounded. Let M3 =

sup{‖xnk
‖, ‖Txnk

‖, ‖z‖, ‖Tz‖ : k ∈ N} < ∞. If 0 ≤ α < 1 then, in view of Lemma 2.2(i), we
obtain

‖xnk
− Tz‖2

≤ 1+α
1−α

‖xnk
− Txnk

‖2 + 2
1−α

(α‖xnk
− z‖+ ‖Txnk

− Tz‖)‖xnk
− Txnk

‖+ ‖xnk
− z‖2

≤ 1+α
1−α

‖xnk
− Txnk

‖2 + 4M3(1+α)
1−α

‖Txnk
− xnk

‖+ ‖xnk
− z‖2.

Therefore,

lim sup
k→∞

‖xnk
− Tz‖2

≤ 1+α
1−α

lim sup
k→∞

‖xnk
− Txnk

‖2 +
4M3(1 + α)

1− α
lim sup

k→∞
‖Txnk

− xnk
‖+ lim sup

k→∞
‖xnk

− z‖2.

If α < 0 then, in view of Lemma 2.2(ii), we obtain

‖xnk
− Tz‖2

≤ ‖xnk
− Txnk

‖2 + 2
1−α

[(−α)‖Txnk
− z‖+ ‖Txnk

− Tz‖]‖xnk
− Txnk

‖+ ‖xnk
− z‖2

≤ ‖xnk
− Txnk

‖2 + 4M3(1−α)
1−α

‖Txnk
− xnk

‖+ ‖xnk
− z‖2.

11



Therefore,

lim sup
k→∞

‖xnk
− Tz‖2

≤ lim sup
k→∞

‖xnk
− Txnk

‖2 + 4M3 lim sup
k→∞

‖Txnk
− xnk

‖+ lim sup
k→∞

‖xnk
− z‖2.

It follows limk→∞ ‖xnk
− Tz‖ = 0. Thus we have Tz = z. By Lemma 3.1, limn→∞ ‖xn − z‖

exists. Therefore, z is the strong limit of the sequence {xn}. �

Let C be a nonempty closed and convex subset of a Banach space E. A mapping T : C → C
is said to satisfy condition (I) [10] if

there exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and
f(r) > 0 for all r > 0 such that

d(x, Tx) ≥ f(d(x, F (T ))), ∀x ∈ C.

Using Theorem 3.2, we can prove the following result.

Theorem 3.5. Let C be a nonempty closed and convex subset of a uniformly convex Banach
space E. Let T : C → C be an α-nonexpansive mapping with a nonempty fixed point set F (T )
for some α < 1. Let {βn} and {γn} be sequences in [0, 1]. When 0 < α < 1, we assume
lim sup

n→∞
γn(1− γn) > 0. When α ≤ 0, we assume either

{
lim inf
n→∞

γn(1− γn) > 0,

lim inf
n→∞

βn < 1,
or

 lim sup
n→∞

γn(1− γn) > 0,

lim sup
n→∞

βn < 1.

Let {xn} be a sequence with x1 in C defined by the Ishikawa iteration (1.2). If T satisfies
condition (I), then {xn} converges strongly to a fixed point z of T .

Proof. It follows from Theorem 3.2 that

lim inf
n→∞

‖Txn − xn‖ = 0.

Therefore, there is a subsequence {xnk
} of {xn} such that

lim
k→∞

‖Txnk
− xnk

‖ = 0.

Since T satisfies condition (I), with respect to the sequence {xnk
}, we obtain

lim
k→∞

d(xnk
, F (T )) = 0.
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This implies that, there exist a subsequence of {xnk
}, denoted also by {xnk

}, and a sequence
{zk} in F (T ) such that

d(xnk
, zk) <

1

2k
, ∀k ∈ N. (3.8)

In view of Lemma 3.1, we have

‖xnk+1
− zk‖ ≤ ‖xnk

− zk‖ <
1

2k
, ∀k ∈ N.

This implies
‖zk+1 − zk‖ ≤ ‖zk+1 − xnk+1

‖+ ‖xnk+1
− zk‖

≤ 1
2(k+1) + 1

2k

< 1
2(k−1) , ∀k = 1, 2, . . . .

Consequently, {zk} is a Cauchy sequence in F (T ). Due to the closedness of F (T ) in E
(see Lemma 2.1), we deduce that limk→∞ zk = z for some z in F (T ). It follows from (3.8)
that limk→∞ xnk

= z. By Lemma 3.1, we see that limn→∞ ‖xn − z‖ exists. This forces
limn→∞ ‖xn − z‖ = 0. �

The following examples explain why we need to impose some conditions on the control
sequences in previous theorems.

Examples 3.6 (a) Let T : [−1, 1] → [−1, 1] be defined by Tx = −x. Then T is a 0-
nonexpansive (i.e. nonexpansive) mapping. Setting all βn = 1, the Ishikawa iteration (1.2)
provides a sequence

xn+1 = γnT
2xn + (1− γn)xn = xn, ∀n = 1, 2, . . . ,

no matter how we choose {γn}. Unless x1 = 0, we can never reach the unique fixed point 0 of
T via {xn}.

(b) Let T : [0, 4] → [0, 4] be defined by

Tx =

{
0 if x 6= 4,
2 if x = 4.

Then T is a 1
2
-nonexpansive mapping. Indeed, for any x in [0, 4) and y = 4, we have

|Tx− Ty|2 = 4 ≤ 8 +
1

2
|x− 2|2 =

1

2
|Tx− y|2 +

1

2
|x− Ty|2.

The other cases can be verified similarly. It is worth mentioning that T is neither nonexpansive
nor continuous. Setting all βn = 1, the Ishikawa iteration (1.2) provides a sequence

xn+1 = γnT
2xn + (1− γn)xn, ∀n = 1, 2, . . . .
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For any arbitrary starting point x1 in [0, 4], we have T 2xn = 0 and

xn+1 = (1− γn)xn

= (1− γ1)(1− γ2)...(1− γn)x1

=
∏n

k=1(1− γk)x1, ∀n = 1, 2, ....

Consider two possible choices of the values of γn:

Case 1. If we set γn = 1
2
, ∀n = 1, 2, ..., then limn→∞ γn(1− γn) = 1/4 > 0, and xn → 0, the

unique fixed point of T .

Case 2. If we set γn = 1
(n+1)2

, ∀n = 1, 2, ..., then limn→∞ γn(1− γn) = 0, and xn = n+2
2n+2

x1 →
x1/2. Unless x1 = 0, we can never reach the unique fixed point 0 of T via xn.

4. Preliminaries on CAT(0) Spaces

Let (X, d) be a metric space. A geodesic path joining x to y in X (or briefly, a geodesic
from x to y) is a map c from a closed interval [0, l] ⊂ R into X such that c(0) = x, c(l) = y,
and d(c(t), c(t′)) = |t − t′| for all t, t′ in [0, l]. In particular, c is an isometry and d(x, y) = l.
The image α of c is called a geodesic (or metric) segment joining x and y. When it is unique,
this geodesic is denoted by [x, y]. The space (X, d) is said to be a geodesic space if every two
points of X are joined by a geodesic, and X is said to be a uniquely geodesic if there exists
exactly one geodesic joining x and y for each x, y in X. A subset Y of X is said to be convex
if Y includes every geodesic segment joining any two of its points.

A geodesic triangle ∆(x1, x2, x3) in a geodesic space (X, d) consists of three points x1, x2, x3

in X (the vertices of ∆), together with a geodesic segment between each pair of vertices (the
edges of ∆). A comparison triangle for a geodesic triangle ∆(x1, x2, x3) in a geodesic space
(X, d) is a triangle ∆̄(x1, x2, x3) := ∆(x̄1, x̄2, x̄3) in the Euclidean plane E2 together with a
one-to-one correspondence x 7→ x̄ from ∆ onto ∆̄ such that it is an isometry on each of the
three segments. A geodesic space X is said to be a CAT(0) space if all geodesic triangles ∆
satisfy the CAT(0) inequality :

d(x, y) ≤ dE2(x̄, ȳ), ∀x, y ∈ ∆.

It is easy to see that a CAT(0) space is uniquely geodesic.

It is well known that any complete, simply connected Riemannian manifold having non-
positive sectional curvature is a CAT(0) space. Other examples include inner product spaces,
R-trees (see, for example [11]), Euclidean building (see, for example [12]), and the complex
Hilbert ball with a hyperbolic metric (see, for example [8]). For a thorough discussion of other
spaces and of the fundamental role they play in geometry, see, for example, [12, 13, 14].

14



We collect some properties in CAT(0) spaces. For more details, we refer the readers to
[15, 16, 17].

Lemma 4.1 ([16]). Let (X, d) be a CAT(0) space. Then the following assertions hold.
(i) For x, y in X and t in [0, 1], there exists a unique point z in [x, y] such that

d(x, z) = td(x, y) and d(y, z) = (1− t)d(x, y). (4.1)

We use the notation (1− t)x⊕ ty for the unique point z satisfying (4.1).
(ii) For x, y in X and t in [0, 1], we have

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z).

The notion of asymptotic centers in a Banach space can be extended to a CAT(0) space
as well, by simply replacing the distance defined by ‖ · − · ‖ with the one by the metric d(·, ·).
In particular, in a CAT(0) space, A(C, {xn}) consists of exactly one point whenever C is a
closed and convex set and {xn} is a bounded sequence; see [18, Proposition 7].

Definition 4.2 ([19, 20]). A sequence {xn} in a CAT(0) space X is said to ∆-converge to x
in X if x is the unique asymptotic center of {xnk

} for every subsequence {xnk
} of {xn}. In

this case, we write ∆− limn→∞ xn = x, and we call x the ∆-limit of {xn}.

Lemma 4.3 ([19]). Every bounded sequence in a complete CAT(0) space X always has a
∆-convergent subsequence.

Lemma 4.4 ([21]). Let C be a closed and convex subset of a complete CAT(0) space X.
If {xn} is a bounded sequence in C, then the asymptotic center of {xn} is in C.

Lemma 4.5 ([22]). Let X be a complete CAT(0) space and let x ∈ X. Suppose that
0 < b ≤ tn ≤ c < 1, and xn, yn ∈ X for n = 1, 2, . . .. If for some r ≥ 0 we have

lim sup
n→∞

d(xn, x) ≤ r, lim sup
n→∞

d(yn, x) ≤ r, and lim
n→∞

d(tnxn ⊕ (1− tn)yn, x) = r,

then limn→∞ d(xn, yn) = 0.

Recall that the Ishikawa iteration in CAT(0) spaces is described as follows: for any initial
point x1 in C, we define the iterates {xn} by{

yn = βnTxn ⊕ (1− βn)xn,
xn+1 = γnTyn ⊕ (1− γn)xn,

(4.2)

where the sequences {βn} and {γn} satisfy some appropriate conditions.
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We introduce the notion of α-nonexpansive mappings of CAT(0) spaces.

Definition 4.6. Let C be a nonempty subset of a CAT(0) space X and let α < 1. A
mapping T : C → X is said to be α-nonexpansive if

d(Tx, Ty)2 ≤ αd(Tx, y)2 + αd(x, Ty)2 + (1− 2α)d(x, y)2, ∀x, y ∈ C.

The following is the CAT(0) counterpart to Lemma 2.5. However, we do not know if the
compactness assumption can be removed from the negative α case.

Theorem 4.7. Let C be a nonempty closed and convex subset of a complete CAT(0) space X.
Let T : C → C be an α-nonexpansive mapping for some α < 1. In case 0 ≤ α < 1, we have
F (T ) 6= ∅ if and only if {T nx}∞n=1 is bounded for some x in C. If C is compact, we always
have F (T ) 6= ∅.

Proof. Assume first that 0 ≤ α < 1. The necessity is obvious. We verify the sufficiency.
Suppose that {T nx}∞n=1 is bounded for some x in C. Set xn := T nx for n = 1, 2, . . .. By
the boundedness of {xn}∞n=1, there exists z in X such that A(C, {xn}) = {z}. It follows from
Lemma 4.4 that z ∈ C. Furthermore, we have

d(xn, T z)2 ≤ αd(xn, z)2 + αd(xn−1, T z)2 + (1− 2α)d(xn−1, z)2, ∀n = 1, 2, . . . .

This implies

lim sup
n→∞

d(xn, T z)2 ≤ α lim sup
n→∞

d(xn, z)2 + α lim sup
n→∞

d(xn−1, T z)2 + (1− 2α) lim sup
n→∞

d(xn−1, z)2.

Thus,
lim sup

n→∞
d(xn, T z) ≤ lim sup

n→∞
d(xn, z).

Consequently, Tz ∈ A({xn}) = {z}, ensuring that F (T ) 6= ∅.

Next, we assume α < 0 and C is compact. In particular, T is continuous and the sequence
of xn := T nx for any x in C is bounded. In the following, we adapt the arguments in [1] with
slight modifications.

Let µ be a Banach limit, i.e., µ is a bounded unital positive linear functional of `∞ such
that µ ◦ s = µ. Here, s is the left shift operator on `∞. We write µn an for the value of µ(a)
with a = (an) in `∞ as usual. In particular, µn an+1 = µ(s(a)) = µ(a) = µn an. As showed in
[1, Lemmas 3.1 and 3.2], we have

µn d(xn, T y)2 ≤ µn d(xn, y)2, ∀y ∈ C, (4.3)
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and
g(y) := µn d(xn, y)2

defines a continuous function from C into R.

By compactness, there exists y in C such that g(y) = inf g(C). Suppose that there were
another z in C such that g(z) = g(y). Let m be the midpoint in the geodesic segment joining
y to z. In view of Lemma 4.1, we see that g is convex. Thus, g(m) = g(y) too. Observing the
comparison triangles in E2, we have

d(xn, y)2 + d(xn, z)2 ≥ 2d(xn, m)2 +
1

2
d(y, z)2, ∀n = 1, 2, . . . .

Consequently,

µn d(xn, y)2 + µn d(xn, z)2 ≥ 2µn d(xn, m)2 +
1

2
µn d(y, z)2.

This amounts to say

g(y) + g(z) ≥ 2g(m) +
1

2
d(y, z)2.

Since g(y) = g(z) = g(m), we have y = z. Finally, it follows from (4.3) that g(Ty) ≤ g(y) =
inf g(C). By uniqueness, we have Ty = y ∈ F (T ). �

The proofs of the following results are similar to those in Sections 2 and 3.

Lemma 4.8. Let C be a nonempty subset of a CAT(0) space X. Let T : C → X be an
α-nonexpansive mapping for some α < 1 such that F (T ) 6= ∅. Then T is quasi-nonexpansive.

Lemma 4.9. Let C be a nonempty closed and convex subset of a CAT(0) space X. Let
T : C → X be an α-nonexpansive mapping for some α < 1. Then the following assertions
hold.
(i) If 0 ≤ α < 1, then

d(x, Ty)2 ≤ 1+α
1−α

d(x, Tx)2 + 2
1−α

(αd(x, y) + d(Tx, Ty))d(x, Tx) + d(x, y)2, ∀x, y ∈ C.

(ii) If α < 0, then

d(x, Ty)2 ≤ d(x, Tx)2 +
2

1− α
[(−α)d(Tx, y) + d(Tx, Ty)]d(x, Tx) + d(x, y)2, ∀x, y ∈ C

Lemma 4.10. Let C be a nonempty closed and convex subset of a CAT(0) space X. Let
T : C → C be an α-nonexpansive mapping for some α < 1. Let a sequence {xn} with x1 in C
be defined by (4.2) such that {βn} and {γn} are arbitrary sequences in [0, 1]. Let z ∈ F (T ).
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Then the following assertions hold.
(1) max{d(xn+1, z), d(yn, z)} ≤ d(xn, z) for n = 1, 2, . . ..
(2) limn→∞ d(xn, z) exists.
(3) limn→∞ d(xn, F (T )) exists.

Lemma 4.11 ([15]). Let C be a nonempty convex subset of a CAT(0) space X, and let
T : C → C be a quasi-nonexpansive map whose fixed point set is nonempty. Then F (T ) is
closed, convex and hence contractible.

The following result is deduced from Lemmas 4.8 and 4.11.

Lemma 4.12. Let C be a nonempty convex subset of a CAT(0) space X, and let T : C → C
be an α-nonexpansive mapping with a nonempty fixed point set F (T ) for some α < 1. Then
F (T ) is closed, convex, and hence contractible.

Lemma 4.13. Let C be a nonempty closed and convex subset of a complete CAT(0) space X
and let T : C → C be an α-nonexpansive mapping for some α < 1. If {xn} is a sequence in C
such that d(Txn, xn) → 0 and ∆− limn→∞ xn = z for some z in X, then z ∈ C and Tz = z.

Proof. It follows from Lemma 4.4 that z ∈ C.

Let 0 ≤ α < 1. By Lemma 4.9(i), we deduce that

d(xn, T z)2 ≤ 1+α
1−α

d(xn, Txn)2 + 2
1−α

(αd(xn, z) + d(Txn, T z))d(xn, Txn) + d(xn, z)2

for all n in N. Thus we have

lim sup
n→∞

d(xn, T z) ≤ lim sup
n→∞

d(xn, z).

Let α < 0. Then, by Lemma 4.9(ii), we have

d(xn, T z)2 ≤ d(xn, Txn)2 +
2

1− α
[(−α)d(Txn, z) + d(Txn, T z)]d(xn, Txn) + d(xn, z)2

for all n in N. This implies again that

lim sup
n→∞

d(xn, T z) ≤ lim sup
n→∞

d(xn, z).

By the uniqueness of asymptotic centers, Tz = z. �

5. Fixed Point and Convergence Theorems in CAT(0) Spaces

In this section, we extend our results in Section 3 to CAT(0) spaces.
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Theorem 5.1. Let C be a nonempty closed and convex subset of a complete CAT(0) space
X and let T : C → C be an α-nonexpansive mapping for some α < 1. Let {βn} and {γn}
be sequences in [0, 1] such that 0 < lim inf

k→∞
γnk

≤ lim sup
k→∞

γnk
< 1 for a subsequence {γnk

} of

{γn}. In case α ≤ 0, we assume also that lim sup
k→∞

βnk
< 1. Let {xn} be a sequence with x1

in C defined by (4.2). Then the fixed point set F (T ) 6= ∅ if and only if {xn} is bounded and
lim
k→∞

d(Txnk
, xnk

) = 0.

Proof. Suppose that F (T ) 6= ∅ and z in F (T ) is arbitrarily chosen. By Lemma 4.10,
limn→∞ d(xn, z) exists and {xn} is bounded. Let

lim
n→∞

d(xn, z) = l. (5.1)

It follows from Lemmas 4.8 and 4.1(ii) that

d(Tyn, z) ≤ d(yn, z)
= d(βnTxn ⊕ (1− βn)xn, z)
≤ βnd(Txn, z) + (1− βn)d(xn, z)
≤ βnd(xn, z) + (1− βn)d(xn, z)
= d(xn, z).

Thus, we have

lim sup
n→∞

d(Tyn, z) ≤ lim sup
n→∞

d(yn, z) ≤ lim sup
n→∞

d(xn, z) = l. (5.2)

On the other hand, it follows from (4.2) and (5.1) that

lim
n→∞

d(γnTyn ⊕ (1− γn)xn, z) = lim
n→∞

d(xn+1, z) = l. (5.3)

In view of (5.1)-(5.3) and Lemma 4.5, we conclude that

lim
k→∞

d(Tynk
, xnk

) = 0.

By simply replacing ‖ ·− ·‖ with d(·, ·) in the proof of Theorem 3.2, we have the desired result
limk→∞ d(Txnk

, xnk
) = 0. The proof of the other direction follows similarly. �

Theorem 5.2. Let C be a nonempty closed and convex subset of a complete CAT(0) space
X, and let T : C → C be an α-nonexpansive mapping for some α < 1. Let {βn} and {γn}
be sequences in [0, 1] such that 0 < lim inf

k→∞
γnk

≤ lim sup
k→∞

γnk
< 1 for a subsequence {γnk

} of

{γn}. In case α ≤ 0, we assume also that lim sup
k→∞

βnk
< 1. Let {xn} be a sequence with x1 in

C defined by (4.2). If F (T ) 6= ∅, then {xnk
} ∆-converges to a fixed point of T .
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Proof. It follows from Theorem 5.1 that {xn} is bounded and limk→∞ d(Txnk
, xnk

) = 0.
Denote by ωw(xnk

) := ∪A(C, {un}), where the union is taken over all subsequences {un}
of {xnk

}. We prove that ωw(xnk
) ⊂ F (T ). Let u ∈ ωw(xnk

). Then there exists a subse-
quence {un} of {xnk

} such that A(C, {un}) = {u}. In view of Lemmas 4.3 and 4.4, there
exists a subsequence {vn} of {un} such that ∆ − limn→∞ vn = v for some v in C. Since
limn→∞ d(Tvn, vn) = 0, Lemma 4.13 implies that v ∈ F (T ). By Lemma 4.10, limn→∞ d(xn, v)
exists. We claim that u = v. For else, the uniqueness of asymptotic centers implies that

lim sup
n→∞

d(vn, v) < lim sup
n→∞

d(vn, u) ≤ lim sup
n→∞

d(un, u)

< lim sup
n→∞

d(un, v) = lim sup
n→∞

d(xn, v) = lim sup
n→∞

d(vn, v),

which is a contradiction. Thus, we have u = v ∈ F (T ) and hence ωw(xnk
) ⊂ F (T ).

Now, we prove that {xnk
}∆-converges to a fixed point of T . It suffices to show that ωw(xnk

)
consists of exactly one point. Let {un} be a subsequence of {xnk

}. In view of Lemmas 4.3
and 4.4, there exists a subsequences {vn} of {un} such that ∆ − limn→∞ vn = v for some v
in C. Let A(C, {un}) = {u} and A(C, {xnk

}) = {x}. By the argument mentioned above we
have u = v and v ∈ F (T ). We show that x = v. If it is not the case, then the uniqueness of
asymptotic centers implies that

lim sup
n→∞

d(vn, v) < lim sup
n→∞

d(vn, x) ≤ lim sup
n→∞

d(xn, x)

< lim sup
n→∞

d(xn, v) = lim sup
n→∞

d(vn, v),

which is a contradiction. Thus we have the desired result. �

Theorem 5.3. Let C be a nonempty compact convex subset of a complete CAT(0) space
X, and let T : C → C be an α-nonexpansive mapping for some α < 1. Let {βn} and {γn}
be sequences in [0, 1] such that 0 < lim inf

k→∞
γnk

≤ lim sup
k→∞

γnk
< 1 for a subsequence {γnk

} of

{γn}. In case α ≤ 0, we assume also that lim sup
k→∞

βnk
< 1. Let {xn} be a sequence with x1 in

C defined by (4.2). Then {xn} converges in metric to a fixed point of T .

Proof. Using Theorem 4.7 and Lemma 4.9, and replacing ‖ · − · ‖ with d(·, ·) in the proof
of Theorem 3.4, we conclude the desired result. �

As in the proof of Theorem 3.5, we can verify the following result.

Theorem 5.4. Let C be a nonempty compact convex subset of a complete CAT(0) space
X, and let T : C → C be an α-nonexpansive mapping for some α < 1. Let {βn} and {γn}
be sequences in [0, 1] such that 0 < lim inf

k→∞
γnk

≤ lim sup
k→∞

γnk
< 1 for a subsequence {γnk

} of

{γn}. In case α ≤ 0, we assume also that lim sup
k→∞

βnk
< 1. Let {xn} be a sequence with x1 in
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C defined by (4.2). If T satisfies condition (I), then {xn} converges in metric to a fixed point
of T .
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