Approximating fixed points of a-nonexpansive mappings
in uniformly convex Banach spaces and CAT(0) spaces
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Abstract. An existence theorem for a fixed point of an a-nonexpansive mapping of a
nonempty bounded, closed and convex subset of a uniformly convex Banach space is recently
established by Aoyama and Kohsaka with a non-constructive argument. In this paper, we
show that appropriate Ishihawa iterate algorithms ensure weak and strong convergence to a
fixed point of such a mapping. Our theorems are also extended to CAT(0) spaces.
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1. Introduction

The purpose of this paper is to study fixed point theorems of a-nonexpansive mappings
of CAT(0) spaces. A metric space X is a CAT(0) space if it is geodesically connected, and if
every geodesic triangle in X is at least as ‘thin’ as its comparison triangle in the Euclidean
plane (see Section 4 for the precise definition). Our approach is to prove firstly weak and
strong convergence theorems for Ishikawa iterations of a-nonexpansive mappings in uniformly
convex Banach spaces. Then, we extend the results to CAT(0) spaces.

Here are the details. Let E be a (real) Banach space and let C' be a nonempty subset
of E. Let T : C — FE be a mapping. Denote by F(T') the set of fixed points of T, i.e.,
F(T)={xz € C:Tx = x}. Wesay that T is nonezpansive if | Tx — Ty|| < ||x —y|| for all z,y
in C, and that T is quasi-nonezpansive if F(T) # 0 and [Tz — y|| < ||z — y]| for all x in C
and y in F(T).
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The concept of nonexpansivity of a map 7" from a convex set C' into C' plays an important
role in the study of the Mann-type iteration given by

Tp1 = BT, + (1 = Bn)xy, x, € C. (1.1)

Here, {5, } is a real sequence in [0, 1] satisfying some appropriate conditions, which is usually
called a control sequence. A more general iteration scheme is the Ishikawa iteration, given by

{ Yn = ﬂnTxn + (1 - ﬂn)xna

1.2
Tpt1 = VHTyn + (1 - ’Yn)xna ( )

where the sequences {f,} and {7, } satisfy some appropriate conditions. In particular, when
all 5, = 0, the Ishikawa iteration (1.2) becomes the standard Mann iteration (1.1). Let T
be nonexpansive and let C' be a nonempty closed and convex subset of a uniformly convex
Banach space E satisfying the Opial property. Takahashi and Kim [1] proved that, for any
initial data x; in C, the iterates {z, } defined by the Ishikawa iteration (1.2) converges weakly
to a fixed point of T', with appropriate choices of control sequences {3,} and {~,}.

Following Aoyama and Kohsaka [2], a mapping T : C' — E is said to be a-nonezpansive
for some real number o < 1 if

|72 = Ty|]? < a| Tx =yl + ol Ty — > + (1 - 2a) e — |2, Va,y € C.

Clearly, O-nonexpansive maps are exactly nonexpansive maps. Moreover, T" is Lipschitz con-
tinuous whenever & < 0. An example of a discontinuous a-nonexpansive mapping (with
a > 0) has been given in [2]. See also Example 3.6(b) below.

An existence theorem for a fixed point of an a-nonexpansive mapping 7' of a nonempty
bounded, closed and convex subset C' of a uniformly convex Banach space E is established in
2] with a non-constructive argument. In Section 3, we show that, under mild conditions on
the control sequences {3, } and {~,}, the fixed point set F/(T') is nonempty if and only if the
sequence {x,} obtained by the Ishikawa iteration (1.2) is bounded and liyllIl g}f | Tx, — x| = 0.

In this case, {x,} converges weakly or strongly to a fixed point in F(T).
In Section 4, together with other elementary generalizations we establish the existence
result, Theorem 4.7, of fixed points of an a-nonexpansive mapping in a CAT(0)-space in

parallel to [2]. In Section 5, we extend the convergence theorems for Ishikawa iterations
obtained in Section 3 to the case of CAT(0) spaces, as we plan.

2. Preliminaries

Let F be a (real) Banach space with norm || - || and dual space E*. Denote by x,, — z the
strong convergence of a sequence {z,} to x in E, and by x, — z the weak convergence. The
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modulus 0 of convexity of E is denoted by
) T+y
o0 =int {1 el < 1l < 1o ol 2

for every € with 0 < e < 2. A Banach space E is said to be uniformly convezx if §(e) > 0
for every 0 < € < 2. Let S = {z € F : ||z|| = 1}. The norm of E is said to be Gateaux
differentiable if for each x,y in S, the limit

ety — ]
t—0 t

(2.1)

exists. In this case, F is called smooth. If the limit (2.1) is attained uniformly in z,y in S,
then F is called uniformly smooth. A Banach space E is said to be strictly convez if || 52| < 1
whenever z,y € S and x # y. It is well-known that F is uniformly convex if and only if E* is
uniformly smooth. It is also known that if E is reflexive, then E is strictly convex if and only
if £* is smooth; for more details, see [3].

A Banach space F is said to satisfy the Opial property [4] if for every weakly convergent
sequence x,, — x in £ we have

lim sup ||z, — z|| < limsup ||z, — y||

n—oo n—oo

for all y in E with y # x. It is well known that all Hilbert spaces, all finite dimensional
Banach spaces and the Banach spaces [P (1 < p < 00) satisfy the Opial property, while the
uniformly convex spaces L,[0,27] (p # 2) do not; see, for example, [4, 5, 6].

Let {x,} be a bounded sequence in a Banach space E. For any x in E, we set

r(@, {en}) = limsup [l — 2|

n—o0

The asymptotic radius of {x,} relative to a nonempty closed and convex subset C' of E is
defined by

r(C,{x,}) = inf{r(z,{z,}) : x € C}.

The asymptotic center of {x,} relative to C'is the set

ACAz,}) ={z € C:r(zx,{z,}) =r(C,{z,})}.

It is well known that if £ is uniformly convex then A(C,{z,}) consists of exactly one point;
see [7, 8.

Lemma 2.1. Let C be a nonempty subset of a Banach space E. Let T : C — E be an
a-nonezpansive mapping for some o < 1 such that F(T) # 0. Then T is quasi-nonexpansive.
Moreover, F(T) is norm closed.



Proof. Let x € C and z € F(T'). Then we have

1Tz = 2|* =Tz - T
<a|Tz —2|* + a||Tz - z|* + (1 - 20)||lz — 2|
=a|Tz - 2> + allz — 2| + (1 - 2a) ||z — 2||?
=a|Tz -z + (1 — a)|lz — 2|
Therefore,
1Tz — 2| < [le = 2]
This inequality ensures the closedness of F/(T'). O

Lemma 2.2. Let C be a nonempty subset of a Banach space E. Let T : C — FE be an
a-nonezxpansive mapping for some a < 1. Then the following assertions hold.

(1) If 0 < a <1, then

1+«
lo=Ty|* < 5

—Tzll?
= lo—T*+

(allz=yll+Te=Ty|) le=Tz||+|z—y|*, Vz,y e C.
(i1) If a < 0, then

2
lz=Ty[” < llo=Te|*+7——[(=a)ITz=y |+ Ta=Ty|]|le=Tz|+[z—yl*, Vz.yeC.

Proof. (i) Observe

=||lxr —Tx+ Tz — Tyl
< (llz = Ta|| + || Tz — Ty||)?
= |z = To|* + [Tz — Ty|* + 2|z — T||| Tz — Ty|
< |z — T[> + a||Tx — y|* + allz — Ty|]> + (1 - 2a)||z — y||?
+ 2|z = Txf|||[ Tz — Ty|
<z =Tzl + a(|T2 — 2| + ||z — y[|)?
+allz = Ty[? + (1 - 2a)[|z — y|* + 2||z — Tz|||| Tz — Tyl
< ||z = T=|? + || Tz — 2| + allz — y||?
+ 2a||Ta — zfl||z — yl| + allz — Tyl
+ (1 =2a)[|z =yl + 2|z — Tz||| Tz — Tyl
= (1+a)llz — Tz|]?* + 2a||Tz — zf|||z — y|| + allz — Tyl
+ (1= )|z —yl* + 2|z — Tz|[|| Tz — Tyl|.

This implies that

1+«
Hx—TxH2+

—Tyl]? <
o= Ty|l* < T -

(allz = yll + 1Tz = Tyl)llz — Tzl + [lz - yl*



(ii) Observe

lo = Tyl* = |lz = T+ Te - Tyl
(lle = Tx|| + || Tz — Tyl|)*
= |lz = Tx|* + [Tz = Tyl* + 2|z — Tx||| Tz - Ty|
<z = Ta|? + ol Tz — y|* + alle = Ty[* + (1 - 20) ||z — y|*
+ 2|z = T[[[|[ T2 — Ty]|
= |lo = Tz|* + o Tz — y||* + ol — Ty||?
+ (1= a)llz —yl* = allz =yl + 2|z — Tz||| Tz — Ty|
< lw = Tl + al|Tz — y|* + ofz — Ty|*
+ (1= a)llz —yl* = of|z — Tz|? + [Tz — yl]* + 2|z — Tx||| T — yl|]
+ 2|z = Taf|[| T — Ty]|
= (1= a)llz = Tz|* + afz — Ty|*
+ (1= a)llx = yll* = 20llz - Tz|||Tz - y|| + 2|z — Tz|[| Tz — Ty||
= (1 —-a)llz = Tz|* + afz — Ty|*
+ (1 =)z —yl* + 2A(=)| Tz — yl| + | T2 = Ty}|lz — T|].

VAN

This implies that

2
lz = Tyl* < llo — Tal|* + Tl =y + [Tz - Tyl]llz — Tzl + ||z - yll*.

Proposition 2.3 (Demiclosedness Principle). Let C be a subset of a Banach space E
with the Opial property. Let T : C' — C' be an a-nonerpansive mapping for some o < 1. If
{z,} converges weakly to z and lim,_ ||Tz, — x,|| = 0, then Tz = z. That is, I — T is
demiclosed at zero, where I is the identity mapping on E.

Proof. Since {x,} converges weakly to z and lim, . ||Tx, — z,|| = 0, both {x,} and {T'z,}
are bounded. Let My = sup{||z.||, |Tz.|l, ||z|l, | T=]] : » € N} < oco. If 0 < o < 1 then, in
view of Lemma 2.2(i),

2w — T2
< O T2+ —2(allen — 2l + [ Taw — Tzl)l2n — Tl + len — 2|7
- 1l—-« 1—«o

1+« AML(1 + «
< T T OOy e — 2P

1 —« 11—«

If & < 0 then, in view of Lemma 2.2(ii),

l — T2|”

IN

2
|20 — Ty ||* + m[(—a)HT% — 2| + | Tz — Tz|]||2n — Tanl| + |20 — 2|
< lan — Tan||* + 4My ||z, — Ty + ||z, — 2|
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These imply
limsup ||z, — Tz|| < limsup ||z, — z||.

n—oo n—oo

From the Opial property, we obtain Tz = z. [l

The following result has been proved in [9].

Lemma 2.4. Let r > 0 be a fived real number. If E is a uniformly convex Banach space,

then there exists a continuous strictly increasing convex function g : [0,4+00) — [0, +00) with
g(0) = 0 such that

1Az + (1= Nyl* < Alll® + (1= Nllyll* = A1 = Ng(llz = ),

for all z,y in B,.(0) ={ue E: ||u|| <r} and X € [0,1].

Recently, Aoyama and Kohsaka [2] proved the following fixed point theorem for a-nonexpansive
mappings of Banach spaces.

Lemma 2.5. Let C be a nonempty closed and convex subset of a uniformly convexr Banach
space . Let T : C — C' be an a-nonexpansive mapping for some o < 1. Then the following
conditions are equivalent.

(i) There exists x in C such that {T"x}> | is bounded.
(i) F(T) # 0.

3. Fixed Point and Convergence Theorems in Banach Spaces

Lemma 3.1. Let C be a nonempty closed and convex subset of a Banach space E. Let
T :C — C be an a-nonexpansive mapping for some o < 1. Let a sequence {x,} with x1 in
C' be defined by the Ishikawa iteration (1.2) such that {B,} and {v,} are arbitrary sequences
in [0,1]. Suppose that the fixed point set F(T) contains an element z. Then the following
assertions hold.

(1) max{||zn1 — 2, [lyn — 2[I} < llan — 2[| for alln =1,2,.. .

(2) lim,, o ||xn — 2|| exists.

(8) lim,, oo d(x,,, F'(T)) exists, where d(x, F(T)) denotes the distance from x to F(T).



Proof. In view of Lemma 2.1, we conclude that
[y =2l = [[BaTwn + (1 = n)xn — 2|
< BullTzn — 2|+ (1 = Ba) |2 — 2|
< Bullzn — 2| + (1 = Bp)l|wn — 2|
= [lzn = 2.

Consequently,

[Ty + (1 = ) 2n — 2|

Ml Tyn = 2| + (L = )2 — 2]
Tallyn = 2l + (1 = )20 — 2]]
Yollzn — 2| + (1 = w)llzn — 2|
[ — 2.

2011 = 2]

IA A CIA

This implies that {||,, —z||} is a bounded and nonincreasing sequence. Thus, lim,,_,« ||z, — 2|
exists.

In the same manner, we see that {d(z,, F(T))} is also a bounded nonincreasing real se-
quence, and thus converges. ([l

Theorem 3.2. Let C be a nonempty closed and convex subset of a uniformly convex
Banach space E. Let T : C'— C be an a-nonexpansive mapping for some o < 1. Let {(,}
and {7y, } be sequences in [0, 1], and let {z,} be a sequence with xy in C' defined by the Ishikawa
iteration (1.2).

1. If {xz,} is bounded and liminf ||Tx, — x,|| = 0, then the fized point set F(T) # 0.

2. Assume F(T) # 0. Then {x,} is bounded, and the following hold.

Case 1: 0 <a < 1.
(a) iminf || Tz, — z,|| = 0 when limsup 7, (1 — v,) > 0.

n—oo

(b) lim, o || Tz, — || = 0 when liminf~,, (1 —~,) > 0.
Case 2: a <0.

(a) liminf || Tz, — z,|| = 0 when
liminf 7, (1 — ~,) > 0, lim sup v, (1 — ) > 0,
liminf 8, < 1, or limsup 3, < 1.



(b) lim, o || T2y — 2] = 0 when liminf ~,, (1 —7,) > 0 and limsup G, < 1.

n—oo

Proof. Assume that {z,} is bounded and liminf ||Tz,, — z,| = 0. There is a bounded

subsequence {T'z,, } of {T'z,} such that limy_ ||Txn, — 2| = 0. Suppose A(C,{x,,}) =
{z}. Let My = sup{||zn, ||, |Tzn, I, |2]l, |T2]| : & € N} < oco. If 0 < o < 1, then, by Lemma
2.2 (i), we have

[, — T|”
1+« 2

< gl - T, |I” + T @llen, =2l + | T2n, = Tz|)ljon, — Ton, |l + llon, — z||®
1+a AML (1 + «)

< 1 — a”‘rnk - TInkH2 + T||Tmnk - xnk|| + ||xnk - ZH2

This implies that

limsup ||z, — Tz|)*

k—o0

1+«

4M, (1
hmsup ||wmg - Ty*rnk“2 + M thUp ”Txnk - xnk” + limsup ||xnk - Z||2

k—oo 1— k—o0 k—oo

= limsup ||z, — 2|

k—oo

If & < 0, then, by Lemma 2.2 (ii), we have

20, — Tz
2
1+a AML (1 + «)

< ||xnk _Txnk||2+

||Txnk - xnkH + ||xnk - Z||2

l—« 1-—

This implies again that

limsup ||z, — Tz|)*

k—o0

1+«

4M,(1
limsup |2, — T2, ||* + L1+ a) limsup || T2, — 2, || + limsup ||z, — 2|

k—oo 1— k—o0 k—oo

IN

= limsup ||z, — 2|

k—oo

Thus, we have in all cases

r(Tz,{x,,}) =limsup|z,, —T%|
< hmsup ||xnk - ZH

n—oo

= (2, {n, }).
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This means that Tz € A(C,{z,,}). By the uniform convexity of £ we conclude that Tz = z.

Conversely, let F(T') # () and let z € F(T). It follows from Lemma 3.1 that lim,, ., ||z,—z||
exists and hence {z,} is bounded. In view of Lemmas 2.1 and 2.4, we obtain a continuous
strictly increasing convex function ¢ : [0, 400) — [0, +00) with ¢g(0) = 0 such that

Hxn-&-l - Z”2 = ||'7nTyn + (1 - 'Vn)xn - Z”2
< Wl Tyn = 2IIP + (1 = y) |20 — 211> = (1 = %) g (1 Tyn — znll)
< llyn = 2|17 + (1 =) llzn = 2[1> = (1 = 1) g Tyn — znl)) (3.1)
< lln = 22 4+ (1= )20 = 2117 = (1 = ) g Tyn — 0]
= [|zn — 2] = (1 = W) g(ITyn — z0]).

In view of (3.1), we conclude with Lemma 3.1 that
(L= %)g(I Ty — 2ll) < llwn = 211° = [l2nga — 2l
— 0, asn— 0.

It follows that
liminf g(||Ty, — xn||) =0 whenever limsup~,(1 —~,) > 0.

n—oo

From the property of g we deduce that
liminf | Ty, — z,|| =0 in case limsup~y,(1 —~,) > 0. (3.2)

n—oo

In the same manner, we also obtain that

lim |7y, —x,|| =0 in case liminf~,(1—,) > 0. (3.3)

On the other hand, from (1.2) we get
Tr, —yn= 1= 06,)Txy — ), Tp—Yn = Loz, —Txy,). (3.4)
Observing (3.4), we see that the assertions about the case av < 0 follow from (3.2) and (3.3).

In the following, we discuss the case 0 < o < 1. Assuming first liminf ~, (1 — 7,) > 0.

By Lemma 2.1 and (3.3) we see that My := sup{||Tx,|, |Ty.| : n € N} < oo. Since T is
a-nonexpansive, in view of (3.4), we obtain

HTIn _3771”2

Tz, — Tyn + Ty, — :anQ

< (IT2n = Tyl + 1Ty — zal)?

= T2 = Tyall* + 1Tyn — @all* + 20| T20 — Tyl Tyn — 2

< allTz — yall* + &l Ty — all* + (1 = 20) Iz — yull* + 1Ty — zal|* + AMo || Ty — 4

< al(1 = Bu) (T2 — @) + (@ + DTy — al* + (1 = 20) | Ba(wn — Twn) |* + 4Ma || Ty —
< o= B2 + (1= 20) B3I T 20 — all* + (@ + DTy — 2l + 40| Ty — @]l (3.5)

9



Case (i): If 0 < o < 5, then (3.5) becomes

| T2, — 5Un”2
< a(l=62)* + (1 =20) B2 Txn — all® + (0 + D[ Tyn — 20ll” + 4Mo|| Ty, — ||
= (1= a)|Tzn — 2ol + (0 + D Tyn — zall* + 4Ma|| Ty, — 2],

since all 3, are in [0, 1]. We then derive from (3.3) that
[Tz, — zo|* < 22Ty, — 2, ||> + 22| Ty, — 2] — 0, as n — oco. (3.6)
Case (ii): If ; < a < 1, then (3.5) becomes

HTIn - anz
[a(1 = 3,)* + (1 = 2a) B2 || Twn — 20 |* + (@ + V)| Ty — @al” + 4Ma|| Tyn — 24|

<
< af|Tzy — zal® + (@ + DI Tyn — @nll* + 40| Ty — -

We then derive from (3.3) again that

[Tz, — zo|* < 2Ty, — 2, ||> + 22| Ty, — 4]| — 0, as n — oco. (3.7)

Finally, we assume limsup v,(1 —7,) > 0 instead. By (3.2) we have subsequences {z,, }

n—oo

and {y,, } of {z,} and {y,}, respectively, such that

Replacing M, by the number sup{||Tz,,||, | Tyn,|| : ¥ € N} < oo and dealing with the
subsequences {z,, } and {y,, } in (3.6) and (3.7), we will arrive at the desired conclusion that
limy oo | T2, — xp, || = 0. This gives liminf || Tz, — z,|| = 0. O

Theorem 3.3. Let C' be a nonempty closed and convex subset of a uniformly convex Banach
space E with the Opial property. Let T : C — C' be an a-nonexpansive mapping with a
nonempty fized point set F(T) for some o < 1. Let {,} and {,} be sequences in [0,1], and
let {x,} be a sequence with x1 in C defined by the Ishikawa iteration (1.2).

Assume that liminf~,(1 — ~,) > 0, and assume, in addition, limsup 3, < 1 if a < 0.

n—oo

Then {x,} converges weakly to a fized point of T

Proof. 1t follows from Theorem 3.2 that {z,} is bounded and lim, . || Tz, — z,|| = 0.
The uniform convexity of E implies that F is reflexive; see, for example, [3]. Then, there
exists a subsequence {x,,} of {z,} such that z,, = p € C as i — oo0. In view of Proposition
2.3, we conclude that p € F(T'). We claim that =, — p as n — oo. Suppose on contrary that
there existed a subsequence {z,,} of {z,} converging weakly to some ¢ in C' with p # ¢. By

10



Proposition 2.3, we see that ¢ € F(T). Lemma 3.1 says that lim,, ., ||z, — z|| exists for all z
in F(T). The Opial property then implies

im0 [|2n — pl| - = limco |20, — p|| < limyoo [|2n, — ¢|
= limy, oo (|20 — g = lim; oo [|2n; — ]
<limj_o [[2n, —p|| = lim,—o |7, — P
This is a contradiction. Thus p = ¢, and the desired assertion follows. U

Theorem 3.4. Let C' be a nonempty compact and convez subset of a uniformly convex Banach
space E. Let T : C'— C be an a-nonexpansive mapping for some o < 1. Let {3,} and {v,}
be sequences in [0, 1].

When 0 < a < 1, we assume limsup v, (1 —~,) > 0. When o < 0, we assume either

n—oo
lim inf ~, (1 — 7,) > 0, limsup v, (1 = 7,) > 0,
liminf 3, < 1, or limsup 3, < 1.

Let {x,} be a sequence with xy in C defined by the Ishikawa iteration (1.2). Then {x,}
converges strongly to a fixed point z of T'.

Proof. Since C'is bounded, it follows from Lemma 2.5 that the fixed point set F'(T") of T" is
nonempty. In view of Theorem 3.2, the sequence {z,} is bounded and liminf |7z, — z,| = 0.

By the compactness of C, there exists a subsequence {z,, } of {x,} converging strongly to
some z in C, and limy_, [|T%,, — @, || = 0. In particular, {T'z,,} is bounded. Let M; =
sup{||zn, |, | Txn, ||; 112]], | T2]] : k € N} < oo. If 0 < o < 1 then, in view of Lemma 2.2(i), we
obtain

uxnk N TZHQ 2 2 2
< pi2llan, = Tan |+ s (allza, = 2l + 1T, =Tz, = Ton,l + llon, = =
< oy, — Ty, |2+ 285 Ty, — 2, || + |2, — 2.

Therefore,
limsup ||z, — Tz
. 4M3(1 + @)
. o) . )
< 2 limsup ||z, — Ton, || + 2 limsup || T2y, — 2, || + limsup ||z, — 2.

k—oo 11— k—o0 k—oo

If & < 0 then, in view of Lemma 2.2(ii), we obtain

o~ T2 2
< [, = Ty + 2= [( =)l Ty = 2l + | T, = Tl = Ty | + i, —

< Hxnk — Ty, ||2 + 4Mf(_1a_a)

T2, = |l + [J2n, — 2]

11



Therefore,

limsup ||z, — T2
k—o0

< limsup||zn, — T, ||* + 4Mslimsup | Tz, — 2y, || + limsup ||z, — z||*.
—00 k—o0 —00
It follows limy . ||@n, — T'2|| = 0. Thus we have Tz = z. By Lemma 3.1, lim,,_, ||z, — ||
exists. Therefore, z is the strong limit of the sequence {x,}. 0

Let C' be a nonempty closed and convex subset of a Banach space E. A mapping T : C' — C'
is said to satisfy condition (I) [10] if

there exists a nondecreasing function f : [0,00) — [0,00) with f(0) = 0 and
f(r) > 0 for all » > 0 such that

d(z, Tz) > f(d(z, F(T))), VzeC.

Using Theorem 3.2, we can prove the following result.

Theorem 3.5. Let C' be a nonempty closed and convex subset of a uniformly convex Banach
space E. Let T : C'— C' be an a-nonexpansive mapping with a nonempty fixed point set F'(T)
for some o < 1. Let {0} and {v,} be sequences in [0,1]. When 0 < a < 1, we assume
limsupv,(1 —v,) > 0. When a <0, we assume either

n—oo

liminf 7, (1 — v,) > 0, lim sup v, (1 — ) > 0,
liminf 8, < 1, or limsup 3, < 1.

n—oo

Let {z,} be a sequence with z1 in C defined by the Ishikawa iteration (1.2). If T satisfies
condition (I), then {x,} converges strongly to a fized point z of T.

Proof. 1t follows from Theorem 3.2 that
h,?l,iol.}f |\ Tx, —x,| = 0.
Therefore, there is a subsequence {x,, } of {x,} such that
khjrolo | Txp, — xn, || = 0.
Since T satisfies condition (I), with respect to the sequence {z,, }, we obtain

lim d(z,,, F(T)) = 0.

k—oo
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This implies that, there exist a subsequence of {xz,, }, denoted also by {z,, }, and a sequence
{2z} in F(T) such that

1
d(zp,,2) < =, VkeN. (3.8)

2k’

In view of Lemma 3.1, we have
1
||xnk+1 - Zk” < ||xnk - Zk” < ﬁ7 Vk € N.

This implies
||Zk+1 - Zk” < ”Zk-‘rl - xnk-i,-l” + ||:Enk+1 - Zk”

S qum +oar
< 51> Vk=1,2,....

Consequently, {z;} is a Cauchy sequence in F(T). Due to the closedness of F(T') in E
(see Lemma 2.1), we deduce that limy_o, 2 = 2z for some z in F(7T). It follows from (3.8)
that limy .. x,, = 2. By Lemma 3.1, we see that lim, . ||z, — z|| exists. This forces
lim, o0 ||z, — 2] = 0. O

The following examples explain why we need to impose some conditions on the control
sequences in previous theorems.

Examples 3.6 (a) Let T : [-1,1] — [—1,1] be defined by Tx = —x. Then T is a 0-
nonexpansive (i.e. nonexpansive) mapping. Setting all 3, = 1, the Ishikawa iteration (1.2)
provides a sequence

Tri1 = YT %20 + (1 = y)2p =20, Yn=1,2,...,

no matter how we choose {7,}. Unless z; = 0, we can never reach the unique fixed point 0 of
T via {z,}.

(b) Let T": [0,4] — [0, 4] be defined by

0 if x#4,
Tx_{ 2 if =4,

Then T is a %—nonexpansive mapping. Indeed, for any z in [0,4) and y = 4, we have
2 1 21 2 1 2
|Tx — Tyl :4§8+§|x—2| :§|Tm—y| -|—§|a:—Ty|.

The other cases can be verified similarly. It is worth mentioning that 7 is neither nonexpansive
nor continuous. Setting all 3, = 1, the Ishikawa iteration (1.2) provides a sequence

Tpt1 = /}/nTan + (1 - 'Yn)l'n, Vn = 17 2, cee

13



For any arbitrary starting point z; in [0,4], we have T?z,, = 0 and

Tn+1 = (1 - Vn)fpn
=1 —7)A—=72)..(1 = m)zs
:szl(l_'Yk)xl, Vn=1,2,...

Consider two possible choices of the values of ~,:

Case 1. If we set v, = 5, Vn = 1,2, ..., then lim, o ¥ (1 —7,) = 1/4 > 0, and z,, — 0, the
unique fixed point of T

Case 2. If we set v, = m, VYn =1,2,..., then lim, .. v,(1 —v,) =0, and z,, =

x1/2. Unless x; = 0, we can never reach the unique fixed point 0 of T via x,,.

n+2
2n—+2

xr1 —

4. Preliminaries on CAT(0) Spaces

Let (X, d) be a metric space. A geodesic path joining x to y in X (or briefly, a geodesic
from x to y) is a map ¢ from a closed interval [0,!] C R into X such that ¢(0) = z, ¢(I) =y,
and d(c(t),c(t")) = [t — /| for all ¢,¢ in [0,!]. In particular, ¢ is an isometry and d(x,y) = I.
The image « of ¢ is called a geodesic (or metric) segment joining z and y. When it is unique,
this geodesic is denoted by [z,y]. The space (X, d) is said to be a geodesic space if every two
points of X are joined by a geodesic, and X is said to be a uniquely geodesic if there exists
exactly one geodesic joining x and y for each z,y in X. A subset Y of X is said to be convex
if Y includes every geodesic segment joining any two of its points.

A geodesic triangle A(xq,x2, x3) in a geodesic space (X, d) consists of three points x1, z, 3
in X (the vertices of A), together with a geodesic segment between each pair of vertices (the
edges of A). A comparison triangle for a geodesic triangle A(zq,x9,x3) in a geodesic space
(X,d) is a triangle A(wx1, 79, 23) := A(Z1, T2, 73) in the Euclidean plane E? together with a
one-to-one correspondence = — Z from A onto A such that it is an isometry on each of the
three segments. A geodesic space X is said to be a CAT(0) space if all geodesic triangles A

satisfy the CAT(0) inequality:
d(v,y) < dg=(7,9), Yo,y € A.
It is easy to see that a CAT(0) space is uniquely geodesic.

It is well known that any complete, simply connected Riemannian manifold having non-
positive sectional curvature is a CAT(0) space. Other examples include inner product spaces,
R-trees (see, for example [11]), Euclidean building (see, for example [12]), and the complex
Hilbert ball with a hyperbolic metric (see, for example [8]). For a thorough discussion of other
spaces and of the fundamental role they play in geometry, see, for example, [12, 13, 14].

14



We collect some properties in CAT(0) spaces. For more details, we refer the readers to
[15, 16, 17].

Lemma 4.1 ([16]). Let (X,d) be a CAT(0) space. Then the following assertions hold.
(i) For z,y in X and t in [0,1], there exists a unique point z in [x,y] such that

d(z,z) =td(z,y) and d(y,z) = (1 —t)d(z,y). (4.1)

We use the notation (1 — t)x @ ty for the unique point z satisfying (4.1).
(ii) For z,y in X andt in [0, 1], we have

d(1—t)xdty,2z) < (1—t)d(z,2)+ td(y, 2).

The notion of asymptotic centers in a Banach space can be extended to a CAT(0) space
as well, by simply replacing the distance defined by || - — - || with the one by the metric d(-, -).
In particular, in a CAT(0) space, A(C,{x,}) consists of exactly one point whenever C' is a
closed and convex set and {z,} is a bounded sequence; see [18, Proposition 7).

Definition 4.2 (19, 20]). A sequence {z,} in a CAT(0) space X is said to A-converge to x
in X if x is the unique asymptotic center of {x,, } for every subsequence {x,,} of {x,}. In
this case, we write A —lim,, .o, x, = x, and we call x the A-limit of {x,}.

Lemma 4.3 ([19]). Every bounded sequence in a complete CAT(0) space X always has a
A-convergent subsequence.

Lemma 4.4 ([21]). Let C be a closed and convezr subset of a complete CAT(0) space X.
If {x,} is a bounded sequence in C, then the asymptotic center of {x,} is in C.

Lemma 4.5 (/22]). Let X be a complete CAT(0) space and let x € X. Suppose that
0<b<t,<c<l,and xp,y, € X forn=1,2,.... If for some r > 0 we have

limsup d(z,,x) <r, limsupd(y,,z) <r, and lim d(t,z, ® (1 —t,)y,,z) =71,

n—00 n—00 n—00

then limy, .o d(x,, y,) = 0.

Recall that the Ishikawa iteration in CAT(0) spaces is described as follows: for any initial
point z; in C, we define the iterates {z,} by

Tpt1 = 'YnTyn % (1 - ’yn)x’m ‘

where the sequences {3, } and {~,} satisfy some appropriate conditions.
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We introduce the notion of a-nonexpansive mappings of CAT(0) spaces.

Definition 4.6. Let C' be a nonempty subset of a CAT(0) space X and let « < 1. A
mapping T : C' — X 1is said to be a-nonexpansive if

d(Tz,Ty)* < ad(Tx,y)* + ad(z,Ty)* + (1 - 2a)d(z,y)*, Va,yeC.

The following is the CAT(0) counterpart to Lemma 2.5. However, we do not know if the
compactness assumption can be removed from the negative a case.

Theorem 4.7. Let C' be a nonempty closed and convex subset of a complete CAT(0) space X .
Let T : C'— C' be an a-nonexpansive mapping for some a < 1. In case 0 < o < 1, we have
F(T) # 0 if and only if {T"x}22, is bounded for some x in C. If C is compact, we always
have F(T) # (.

Proof. Assume first that 0 < o < 1. The necessity is obvious. We verify the sufficiency.
Suppose that {T"x}5°, is bounded for some z in C. Set z,, := T"z for n = 1,2,.... By
the boundedness of {z,,}7°,, there exists z in X such that A(C,{z,}) = {z}. It follows from
Lemma 4.4 that z € C. Furthermore, we have

d(x,,Tz)* < ad(v,,2)* + ad(r,_1,T2)* + (1 — 2a)d(z,_1,2)*, Vn=1,2,....
This implies

lim sup d(z,,, T2)* < alimsup d(z,, 2)* + alimsup d(z,_1,Tz)* + (1 — 2a) limsup d(z,_1, 2)*.

Thus,
limsup d(z,, Tz) < limsup d(z,, 2).

n—o0 n—oo

Consequently, Tz € A({z,}) = {z}, ensuring that F(T) # 0.

Next, we assume a < 0 and C'is compact. In particular, T" is continuous and the sequence
of z,, ;== T™z for any z in C is bounded. In the following, we adapt the arguments in [1] with
slight modifications.

Let i be a Banach limit, i.e., p is a bounded unital positive linear functional of /., such
that g os = p. Here, s is the left shift operator on f,. We write p, a, for the value of p(a)
with a = (a,) in ¢y as usual. In particular, u, a,+1 = u(s(a)) = p(a) = py a,. As showed in
[1, Lemmas 3.1 and 3.2], we have

i A(20, TY)?* < pi d(z0,y)?, Vy € C, (4.3)
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and
9(y) = pn d(20,y)*

defines a continuous function from C into R.

By compactness, there exists y in C' such that g(y) = inf g(C'). Suppose that there were
another z in C such that g(z) = g(y). Let m be the midpoint in the geodesic segment joining
y to z. In view of Lemma 4.1, we see that g is convex. Thus, g(m) = g(y) too. Observing the
comparison triangles in E2, we have

1
d(xna y)Q + d(ﬂ?n’ Z)2 > Qd(xna m)2 + §d(y> 2)27 Vn = 17 27 s

Consequently,

1
pin A, 9)* + pin A0, 2)* = 2t dlwn, M) + S pin dly, 2)*
This amounts to say
1
9(y) +9(2) = 29(m) + 5d(y, )"

Since g(y) = g(z) = g(m), we have y = z. Finally, it follows from (4.3) that ¢(Ty) < g(y) =
inf g(C'). By uniqueness, we have Ty =y € F(T). O

The proofs of the following results are similar to those in Sections 2 and 3.

Lemma 4.8. Let C be a nonempty subset of a CAT(0) space X. Let T : C — X be an
a-nonexpansive mapping for some o < 1 such that F(T) # (0. Then T is quasi-nonexpansive.

Lemma 4.9. Let C be a nonempty closed and conver subset of a CAT(0) space X. Let
T :C — X be an a-nonezxpansive mapping for some o < 1. Then the following assertions

hold.
(i) If 0 < a < 1, then

d(z, Ty)* < {Fod(z, T2)* + %5 (ad(2,y) + d(Tz, Ty))d(z, Tx) + d(z,y)*, Vo,y€C.

(i) If a < 0, then

d(z, Ty)?* < d(z,Tz)? + [(—a)d(Tz,y) + d(Tz, Ty)d(z, Tz) + d(z,y)?, Vz,ye€C

11—«

Lemma 4.10. Let C be a nonempty closed and convezr subset of a CAT(0) space X. Let
T :C — C be an a-nonexpansive mapping for some o < 1. Let a sequence {x,} with x1 in C
be defined by (4.2) such that {G,} and {v,} are arbitrary sequences in [0,1]. Let z € F(T).
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Then the following assertions hold.

(1) max{d(z,11,2),d(yn, 2)} < d(xp,2) forn=1,2,....
(2) limy, o0 d(xy, 2) exists.

(3) limy, oo d(xy,, F(T)) ezists.

Lemma 4.11 (/15]). Let C be a nonempty convex subset of a CAT(0) space X, and let
T :C — C be a quasi-nonexpansive map whose fized point set is nonempty. Then F(T) is
closed, convexr and hence contractible.

The following result is deduced from Lemmas 4.8 and 4.11.

Lemma 4.12. Let C be a nonempty convex subset of a CAT(0) space X, and letT : C — C
be an a-nonexpansive mapping with a nonempty fized point set F(T) for some a < 1. Then
F(T) is closed, conver, and hence contractible.

Lemma 4.13. Let C be a nonempty closed and convex subset of a complete CAT(0) space X
and let T : C' — C be an a-nonexpansive mapping for some o < 1. If {x,} is a sequence in C
such that d(Tz,, z,) — 0 and A —lim,, .o z,, = z for some z in X, then z € C and Tz = z.

Proof. 1t follows from Lemma 4.4 that z € C.
Let 0 < o < 1. By Lemma 4.9(i), we deduce that
d(2y, T2)? < 22d (2, Twn)? + 725 (0d(@, 2) + d(Tay, Tz))d(2y, Tay) + d(2y, 2)?

for all n in N. Thus we have

limsup d(z,, Tz) < limsup d(z,, 2).

n—o0o n—oo

Let o < 0. Then, by Lemma 4.9(ii), we have

[(—a)d(Txy, 2) + d(Tx,, T2)|d(2n, Txy) + d(2y, 2)?

2
d(x,, Tz)2 < d(zy, Taz:n)2 + .
—«

for all n in N. This implies again that

limsup d(z,, Tz) < limsup d(z,, 2).

n—oo n—oo

By the uniqueness of asymptotic centers, Tz = z. 0

5. Fixed Point and Convergence Theorems in CAT(0) Spaces

In this section, we extend our results in Section 3 to CAT(0) spaces.
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Theorem 5.1. Let C be a nonempty closed and convex subset of a complete CAT(0) space
X and let T : C — C be an a-nonexpansive mapping for some o < 1. Let {3,} and {v,}
be sequences in [0,1] such that 0 < llm 1nf Y < limsupy,, < 1 for a subsequence {v,,} of

k—oo
{v}. In case a < 0, we assume also that limsup B,, < 1. Let {z,} be a sequence with x;

k—o0
in C defined by (4.2). Then the fized point set F(T) # 0 if and only if {x,} is bounded and
lim d(T'zy,, z,,) = 0.

k—o00

Proof. Suppose that F(T) # () and z in F(T) is arbitrarily chosen. By Lemma 4.10,
lim,, o d(x,, ) exists and {z,} is bounded. Let

lim d(z,,2) =1l (5.1)

n—oo

It follows from Lemmas 4.8 and 4.1(ii) that

d(Tyn,2z) < d(yn, 2)
< ﬁn (Im ) (1 - 671) (ij )
= d(z,, 2).
Thus, we have
limsup d(T'yy, z) < limsup d(y,, z) < limsupd(z,, z) = L. (5.2)

On the other hand, it follows from (4.2) and (5.1) that
lim d(fynTyn @O (1—yn)zn, 2) = lim d(x,41,2) = 1. (5.3)

In view of (5.1)-(5.3) and Lemma 4.5, we conclude that

lim d(Tyn,, xn,) = 0.

k—o0
By simply replacing || - — - || with d(-, ) in the proof of Theorem 3.2, we have the desired result
limy o0 d(Txp, , xn, ) = 0. The proof of the other direction follows similarly. d

Theorem 5.2. Let C be a nonempty closed and convex subset of a complete CAT(0) space
X, and let T : C — C be an a-nonexpansive mapping for some o < 1. Let {5,} and {v,}
be sequences in [0,1] such that 0 < h;n inf v, < limsup~y,, <1 for a subsequence {v,, } of

k—o0
{7} In case a <0, we assume also that limsup 5, < 1. Let {x,} be a sequence with x; in

k—o0

C defined by (4.2). If F(T) # 0, then {x,,} A-converges to a fized point of T.
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Proof. It follows from Theorem 5.1 that {x,} is bounded and limy_,o d(T'zy, , s, ) = 0.
Denote by wy,(zy,) = UA(C,{u,}), where the union is taken over all subsequences {u,}
of {z,, }. We prove that wy(z,, ) C F(T). Let u € wy(z,, ). Then there exists a subse-
quence {u,} of {z,,} such that A(C,{u,}) = {u}. In view of Lemmas 4.3 and 4.4, there
exists a subsequence {v,} of {u,} such that A — lim, ., v, = v for some v in C. Since
limy, oo (T, v,) = 0, Lemma 4.13 implies that v € F(T'). By Lemma 4.10, lim,, ., d(x,, v)
exists. We claim that u = v. For else, the uniqueness of asymptotic centers implies that

limsup d(vy,,v) < limsupd(vy,,u) < limsup d(u,, u)

n—oo n—oo n—oo
< limsup d(uy,,v) = limsup d(z,, v) = limsup d(v,, v),
n—oo n—o0 n—oo

which is a contradiction. Thus, we have u = v € F(T') and hence w,,(z,,) C F(T).

Now, we prove that {x,, } A-converges to a fixed point of T'. It suffices to show that w,(z,, )
consists of exactly one point. Let {u,} be a subsequence of {z,, }. In view of Lemmas 4.3
and 4.4, there exists a subsequences {v,} of {u,} such that A — lim,_.,, v, = v for some v
in C. Let A(C,{u,}) = {u} and A(C,{z,,}) = {z}. By the argument mentioned above we
have u = v and v € F(T). We show that = = v. If it is not the case, then the uniqueness of
asymptotic centers implies that

limsup d(v,,,v) < limsupd(v,, ) < limsupd(z,,x)

n—oo n—oo n—oo

< limsup d(z,,v) = limsup d(v,, v),
n—oo n—oo
which is a contradiction. Thus we have the desired result. OJ

Theorem 5.3. Let C' be a nonempty compact convex subset of a complete CAT(0) space
X, and let T : C — C be an a-nonexpansive mapping for some o < 1. Let {3,} and {v,}
be sequences in [0,1] such that 0 < li;n inf v, < limsup~y,, <1 for a subsequence {v,, } of

k—o0
{7} In case a <0, we assume also that limsup 3, < 1. Let {x,} be a sequence with x; in
k—o0

C defined by (4.2). Then {x,} converges in metric to a fized point of T.

Proof. Using Theorem 4.7 and Lemma 4.9, and replacing || - — - || with d(-,-) in the proof
of Theorem 3.4, we conclude the desired result. 0

As in the proof of Theorem 3.5, we can verify the following result.

Theorem 5.4. Let C' be a nonempty compact convex subset of a complete CAT(0) space
X, and let T : C' — C be an a-nonexpansive mapping for some o < 1. Let {5,} and {v,}
be sequences in [0,1] such that 0 < li;n inf v, < limsup~y,, <1 for a subsequence {v,,} of

k—o0
{7} In case a <0, we assume also that limsup 5, < 1. Let {x,} be a sequence with x; in
k—o0
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C' defined by (4.2). If T satisfies condition (1), then {x,} converges in metric to a fixed point
of T.

References

1]

2]

[12]
[13]

[14]

W. Takahashi and G. E. Kim, Approximating fixed points of nonexpansive mappings in
Banach spaces, Math. Ipn. 48 (1998) 1-9.

K. Aoyama and F. Kohsaka, Fixed point theorem for a-nonexpansive mappings in Banach
spaces, Nonlinear Analysis, 74 (2011) 4387-4391.

W. Takahashi, Nonlinear Functional Analysis, Fixed Point Theory and Its Applications,
Yokahama Publishers, Yokahama, 2000.

7. Opial, Weak convergence of the sequence of successive approximations for nonexpansive
mappings, Bull. Amer. Math. Soc., 73 (1967) 595-597.

D. van Dulst, Equivalent norms and the fixed point property for nonexpansive mappings.
J. London Math. Soc., 25 (1982) 139-144.

J.-P. Gossez and E. Lami Dozo, Some geometric propertis related to the fixed point
theory for nonexpansive mappings, Pacific Journal of Mathematics, 40 (1972) 565-573.

K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University
Pres, Cambridge, 1990.

K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive
Mappings, Marcel Dekker, Inc., New York, 1984.

H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Analysis, 16 (1991)
1127-1138.

H. F. Senter and W. G. Dotson, Approximating fixed points of nonexpansive mappings,
Proc. Amer. Math. Soc., 44 (1974) 375-380.

M. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer-Verlag,
Berlin, Heidelberg, 1999.

K. S. Brown and Buildings, Springer-Verlag, New York, 1989.

D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geomety, in: Graduate Studies
in Math., vol. 33, Amer. Math. Soc., Providence, RI, 2001.

M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, in: Progress
in Mathematics, vol. 152., Birkhduser, Boston, 1999.

21



[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

P. Chaoha and A. Phon-on, A note on fixed point sets in CAT(0) spaces, Journal of
Mathematical Analysis and Applications, 320 (2006) 983-987.

S. Dhompongsa and B. Panyanak, On A-convergence theorems in CAT(0) spaces, Com-
puters and Mathematics with Applications, 56 (2008) 2572-2479. 65 (2006) 762-772.

B. Nanjaras, B. Panyanak and W. Phuengrattana, Fixed point theorems and convergence
theorems for Suzuki-generalized nonexpansive mappings in CAT(0) spaces, Nonlinear
Analysis, Hybrid Systems, 4 (2010) 25-31.

S. Dhompongsa, W. A. Kirk and B. Sims, Fixed points of uniformly Lipschitzian map-
pings, Nonlinear Analysis, 65 (2006) 762-772.

W. A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear
Analysis, 68 (2008) 3689-3696.

T. C. Lim, Remarks on fixed point theorems, Proc. Amer. Math. Soc., 60 (1976) 179-182.

S. Dhompongsa, W. A. Kirk and B. Panyanak, Nonexpansive set-valued mappings in
metric and Banach spaces, Journal of Nonlinear and Convex Analysis, 8 (2007) 35-45.

T. Laokul and B. Panyanak, Approximating fixed points of nonexpansive mappings in
CAT(0) spaces, Math. Ipn., 48 (1998) 1-9.

22



