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Abstract. Let C' be a nonempty closed convex subset of a real Hilbert space H. Let
S : C — C be an asymptotically nonexpansive map in the intermediate sense with the fixed
point set F'(S). Let A: C — H be a Lipschitz continuous map, and VI(C, A) be the set of
solutions u € C' of the variational inequality

(Au,v —u) >0, YveC.

The purpose of this work is to introduce a hybrid extragradient-like approximation method
for finding a common element in F'(S) and VI(C, A). We establish some strong convergence
theorems for sequences produced by our iterative method.
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1. Introduction

Let H be a real Hilbert space with inner product (-,-) and norm || - ||, respectively. Let C
be a nonempty closed convex subset of H and let Py be the metric projection from H onto
C. A mapping A : C' — H is called monotone [7,8,9] if

(Au— Av,u —v) >0, Yu,ve C,
and A is called k-Lipschitz continuous if there exists a positive constant k such that
|Au — Av|| < k|lu — ||, Vu,veC.

Let S be a mapping of C into itself. Denote by F(S) the set of fixed points of S; that is
F(S)={u e C: Su=u}. Recall that S is nonexpansive if

|Su— Sv|| < |lu—2|, Vu,veC;

and S is asymptotically nonexpansive [4] if there exists a null sequence {v,} in [0,+00) such
that
|S"u — S™|| < (1 +n)||Ju—v|, Vu,v e Candn > 1.

We call S an asymptotically nonexpansive mapping in the intermediate sense [10] if there
exists two null sequences {7,} and {c,} in [0, +00) such that

1S™2 — S™y||> < (1 + )|z —y|* + oy, Va,y € C,¥n > 1.

Let A : C — H be a monotone and k-Lipschitz continuous mapping. The variational
inequality problem [3] is to find the elements u € C' such that

(Au,v —u) >0, YveC.

The set of solutions of the variational inequality problem is denoted by VI(C, A). The idea of
an extragradient iterative process was first introduced by Korpelevich in [6]. When S: C' — C
is a uniformly continuous asymptotically nonexpansive mapping in the intermediate sense, a
hybrid extragradient-like approximation method was proposed by Ceng, Sahu and Yao to
ensure the weak convergence of some algorithms for finding a member of F'(S) N VI(C,A)
[2, Theorem 1.1]. Meanwhile, assuming S is nonezpansive, Ceng, Hadjisavvas and Wong in
[1] introduced an iterative process and proved its strong convergence to a member of F(S) N
VI(C,A).

It is known that an asymptotically nonexpansive mapping in the intermediate sense is not
necessarily nonexpansive. Extending both [2, Theorem 1.1] and [1, Theorem 5], the main
result, Theorem 1, of this paper provides a technical method to show the strong convergence
of an iterative scheme to an element of F'(S)NVI(C, A), under the weaker assumption on the
asymptotical nonexpansivity in the intermediate sense of S.



2. Strong convergence theorems

Let C' be a nonempty closed convex subset of a real Hilbert space H. For any = in H
there exists a unique element in C', which is denoted by Pex, such that ||z — Poz|| < ||z — y|
for all y in C. We call Py the metric projection of H onto C. It is well-known that P is a
nonexpansive mapping from H onto C', and

(x — Pox,Pox —y) >0, forallz € H y € C; (1)
see for example [5]. It is easy to see that (1) is equivalent to
o = ylI* > |z = Pea|? + [ly — Pex|?, foralla e H, yeC. (2)

Let A be a monotone mapping of C' into H. In the context of variational inequality problems,
the characterization of the metric projection (1) implies that

uweVI(C,/A) <= u=Ps(u— AAu) for some A > 0.

Theorem 1. Let C be a nonempty closed convex subset of a real Hilbert spaces H. Let
A C — H be a monotone and k-Lipschitz continuous mapping. Let S : C — C be a
uniformly continuous asymptotically nonerpansive mapping in the intermediate sense with
nonnegative null sequences {~,} and {c,}. Suppose that >~ | v, < oo and F(S)NVI(C,A)
1s nonempty and bounded.

Assume that

(1) 0 < p <1, and0<a<b<%;

(ii) a <A\, <b, 2, >0,0,>0,a,+0,<1, and 3/4 <, <1, for alln > 0;
(73) limy,, o v, = 0;

(i) liminf, . 5, > 0;

(v) lim,, . 6, = 1.

Set, for alln >0,

A, = sup{|lz, —ul:ue F(S)NVI(C,A)},

d, = 2b(1— p)a,A,,

w, = b*poy, + 46726, (1 — 6,) (1 +v,),

v, = b1 — p)ay, +4b*(1 — p)?Bu(1 — 6,)(1 + ), and
Un = BovnZ + Bucn.

Let {x,}, {yn} and {z,} be sequences generated by the algorithm:

(20 € C chosen arbitrarily,

Yn = (1 - 5n)xn + 5nPC(xn - )‘n,qun - )\n(l - M)Ayn>;

Zn = (1 — ay, — Bn)xn + anyn + 5nS" Po(xn, — N Ayn), 3)
Co={2€C:|zn— 21> < |lzn = 2|I* + dull Ay || + wal| Azp I + vn || Aya I + 90}
Qn={z€C:{(x,—2z,x90—1x,) >0}

Tni1 = Pe,ng. (20), ¥Yn > 0.




Then the sequences {x,}, {yn} and {z,} in (3) are well-defined and converge strongly to
the same point ¢ = Prs)nvi(c,a)(®o)-

Proof. First note that lim, . 7, = lim, .. ¢, = 0. We will see that {A,,} is bounded,
and thus lim,,_,o d,, = lim,, o, w,, = lim,,_ o v,, = lim,,_,o, ¥,, = 0.

We divide the proof into several steps.

Step 1. We claim that the following statements hold:

(a) C, is closed and convex for all n € N;

(b) llzn — ull® < llwn — ull® + dullAyall + wall Az |[* + val| Aynl® + 9y for all n > 0 and
uwe F(S)NVIC,A);

(c) F(S)NnVI(C,A) C C, for all n € N.

It is obvious that C), is closed for all n € N. On the other hand, the defining inequality in
C, is equivalent to the inequality

(2(2 — 2n),2) < ||:Bn||2 - ||Zn||2 + dy || Ayn|| + wn||Axn||2 + UnHAynHz + U,

which is affine in z. Therefore, C,, is convex.
Let t, = Po(x, — A\ Ayy) for all n > 0. Assume that v € F(S)NVI(C, A) is arbitrary. In
view of (3), the monotonicity of A, and the fact u € VI(C, A), we conclude that

[tn — UH2
< ”zn - AnAyn - u||2 - ”xn - )‘nAyn - tn||2
= [lzn — ull® = lzn — tall® + 200 (Ayn, u — t,,)
[0 — ull* = |2 — tall? + 2\ [(Ayn — Aw, u = yn) + (Au, = yn) + (AYn, Yo — tn)]
|2 — u||2 — ||lzn — thz + 22 (AYn, Yo — tn)
|z — u||2 — ||z, — yn||2 — 2(Tn = Y, Yn — tn) — ||y — tn”2 + 200 (AYn, Yn — tn)
= llzn — ull* = |20 = yall® = llyn — tall® + 2(20 — A AYn = Yns by — Yn)-

Al

Now, using

we estimate the last term

<xn - )\nAyn — Yn, tn - yn)

= (Tn — MptAzy — Aa(1 = 1) AYy, — Yy tn — Yn) + Aopt{ AT — Ay, t — Yn)

< Axy — MpAz, — Ao(1 — p) Ay, — (1 = 6,)xn — 0, Po(zn — AaprAzy, — A(1 — ) Ayn), tn — Yn)
+ Anptl| Az — Ayn||[[tn — yall

On(Tn — MppAzy — Ay (1 — ) Ayn — Po(zn — MptAzy — Ap(1— ) Ayn), tn — yn)
- (11— (Sn))‘n<ﬂA$n + (1 — ) Ay, tn — yn> + AanHxn - ynHth - yn”'

IN

(5)



It follows from the properties (1) and (2) of the projection Po(z, — A\yuAx, — A\ (1 — 1) Ay,)
that

(xn — MptAzy, — Ay(1 — ) Ay, — Po(zn, — MapptAzy, — Mo(1— ) Ayn), t — Yn)
= (Tn — MpAz, — A(1 = p)Ayn — Po(n — AaprAzn — A (1 — ) Ayy),
tn — (1 = 8,)xy — 0nPo(xy — MNptAzy, — Ap(1 — 1) Ayn))
= (1 =00){xy — MpAzy, — A\(1 — p) Ay, — Po(xn — MptAxy — No(1 — 1) Ayy), t — )
+ 0pxy — A\uptAzxy, — A (1 — 1) Ay, — Po(xy, — Mp Az, — Ap(1 — ) Ayy),
tn — Po(wn — MappAzy — A (1 — )Ayn)>

Ay
Ay

< (1 =) {wn — ApAz, — M(1 — ) Ay — Polxn — MppAz, — Ao(1 — ) Ayn), t — 2)
< (1 =6n)l|zn — AppAxy, — Ay(1 — ) Ayn, — Po(n — AptAzy, — (1 — p)A yﬂ)H”t — T
< (1= 0n) | AapAzn + An(1 = ) Ayn) [ [0 — 20|

< (=) An(ullAzpll + (1 = @[ Ayl ([[tn — yall + [y — al])-

(6)
In view of (4)—(6), A\, < b, and the inequalities 28 < a? + 3% and (o + 3)* < 2a? + 232, we
conclude that

[tn = ull® < lzn —ull® = |20 = Yl = v — tall® + 20z — X AYn — Yns tn — Yn)
< lwn = ull? = (|20 =yl = lyn — tal]?
+ 22X [00 (1 = 6n) (pl| Az || + (1 = )| Ay D) ([tn — ynll + [[ym — 2al])
— 2(1 = 0p) A (pAzy, + (1 — ) AYp, ty — Yn) + 220tk || 20 — Yn |||t — Ynl|]
< lwn = ull? = [Jzn = yull® = lyn — tal?
+ 20n(1 = 0n)b(pl| Azl + (1 = )| Aynl) (Itn = yull + v — @)
+ 2(1 = 0,)b(pl| Az || + (1 = )| AyalDIIEn — yull + 20pk||zn — yalll[tn — yall
= ||xn_u||2_ |20 — ||2_ ||yn_tn||2
+ 20, (1 = 0,) (0 p? | Az ||* + 02 (1 — p0)? [ Ayall® + 0 = yall” + v — 0l?)
+ (1= 0n) 02| Az |I” + 02 (1 — 10)*[| Ay l” + 21 — ynll?)
+ bpk(llzn — yall® + ([t — yal®)
= [0 = ull® = 20 — yalP(1 = 20,(1 — 6,) — Dkp)
— It — yﬂ||2(25121 — Op — bkp)
+ 2(1 = 02)0°p? || Az ||* 4 2(1 — 67)0%(1 — p)?[| Aynl .
(7)

Since 2 <4, <1andb< we have from (7) for all n € N,

8k’

[tn = ull® < llzn = wll? + 4(1 = 0,)0° 02| Ay ||* + 4(1 = 6,)0%(L — )| Agnll®. (8)



In view of the fact that u € VI(A, C) and properties of Pc, we obtain

|

(

(1= 0n)llzn = ull® 4+ Onllwn — AnppAzy — An(1 — p) Ay, — ull®

(1 =0 lzn = ull® 4 On[llzn — ull® = 20AuppAzy + An(1 = 1) Ay, T — u)
+ ”/\nMAxn + A (1 - )AynH ]

= (1—=6p)[|zn — U||2 + 5n[||xn - u||2 = 2 pt{ Ay, Ty — 1) — 200 (1 = 1) (AYn, 7
+ ”)‘nﬂAajn + )‘n(l - M)AynHQ]

On)(Tn — u) + 0p(Po(rn — ApppAzy, — (1 — ) Ay,) — U)||2
)Hxn - u”2 + 5nHPC('77n — AnptAzy, — )‘n(l - M)Ayn) - PC(U)H2

[y — wl®

A IA I

(1-
1—
1-
1-

< (U= )l = ulP 1 6, — ul? + 22,1 = )| Agi s —
Al Az 3201 ) Al
< (1= 01w, — ul 4 8, [z, — ul* + 21 = A, | A

+ 07 pl| Az ||* + (1 — p) || Ay, 7]
< |z — ul]? + 0, [26(1 — ) An[[ Ayn | + *p?[| Az ||? + 0*(1 — p1)?|| Aynl?]
< [z — ull® + 20(1 — ) Al Ayn| + 0 pul| Az ||* + (1 — p) || Ayl >
(9)
Since S is asymptotically nonexpansive in the intermediate sense, in view of S™u = u, we
conclude that

|20 —ull* = [I(1 = an = Bn)Tn + nyn + S0 — ul)?
< (1= an = B)llzn — qu + anl|yn — qu + Bl S™t, — u||2
< (1 — Qp — ﬁfn)”xn - u||2
+ anfflen = ull? + 26(1 = p)An|[Ayall + Ppfl Az, |* + 0*(1 — ) [| Aynl?]
+ Bal(1+ ) lltn — u”2 + ¢
< (1= an—B)ll7n — UH2
+ agllzn —ull? +2b(1 — p)A, HAZ/nH + 0 pf| Az |12 + 0% (1 — ) | Ayl |
+ Bu(L+ y)llzn — wll® +2(1 — 6,)0% 12 | Ay [|* + 2(1 = 6,)0* (1 — )?[| Ay [|?]
+ Bncn
< Hxn - u||2 + ﬁn’YnA?z + 26(1 - :u)anAnHAynH
+ (Do, + 20717 By (1 — 0,) (1 + 7)) || Az, ||?
+ (01 = p)an + 202 (1 — 1)?B8a(1 = 00) (1 + 7)) [| Aynl|®
+ Bncn.
(10)
This implies that u € C,,. Therefore, F'(S) NV I(C,A) C C,.

Step 2. We prove that the sequence {z,} is well-defined and F(S)NVI(C,A) C C,,NQy
for all n > 0.

We prove this assertion by mathematical induction. For n = 0 we get Qo = C. Hence
by step 1 we deduce that FI(S) N VI(C,A) C Cy N Q. Assume that zy is defined and
F(S)NVI(C,A) C Cp N Qg for some k > 1. Then yi, 2 are well-defined elements of C. We
notice that C}, is a closed convex subset of C' since

Co ={2€C: ||z — x| + 2(zk — 21, 7 — 2) < do||Ayn|| + wa||Azn|]? + vn|| Ay ||* + 90}

7
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It is easy to see that @)y is closed and convex. Therefore, Cy N @y is a closed and convex
subset of C, since by the assumption we have F(S)NVI(C,A) C Cy N Qk. This means that
Pe,no,xo is well-defined.

By the definition of 11 and of Qyy1, we deduce that C, N Qr C Qpy1. Hence, F(S)N
VI(C,A) C Q41 Exploiting Step 1 we conclude that F(S)NVI(C, A) C Cri1 N Qp1-

Step 3. We claim that the following assertions hold:
(d) limy,—e0 ||zn, — @0 exists and hence {z,}, as well as {A,}, is bounded.
(e) limy,— oo ||Tns1 — xn]| = 0.
(f) limy, o0 |20 — zn|| = 0.
Let w € F(S)NVI(C,A). Since z,+1 = Po,ng,x0 and u € F(S)NVI(C,A) C C, N Qy,
we conclude that
[€n1 = woll < flu—wol|, ¥ =0. (11)

This means that {x,} is bounded, and so are {y,}, Az, and {Ay,}, because of the Lipschitz-
continuity of A. On the other hand, we have z,, = Py, x¢ and z,11 € C;,, N Q,, C Q. This
implies that
[nes = 2all? < [nss = 20l = n — 2ol Y020, (12)
In particular, ||z,11 — %ol > ||€n — zo|| hence lim,, . ||z, — xo| exists. It follows from (12)
that
limy, oo (Tpy1 — ) = 0. (13)

Since x,.1 € C,, we obtain
|2n — xn-i-l”z < ||z, — xn+1H2 + dn|| Ayn || + wnHAmnHQ + UnHAyn”2 + Un.

In view of lim,, .o v, = 0, lim,_..a, = 0, lim,_.9J, = 1 and from the boundedness of
{Az,} and {Ay,} we infer that lim,_ (2,41 — 2,) = 0. Combining with (13) we deduce that
limy, oo (2, — 2,) = 0.

Step 4. We claim that the following assertions hold:

(g) limy, oo [|Zn — ynll = 0.
(h) limy,—e0 || Sy — 2, || = 0.
In view of (3), z, = (1 — a, — Bn)Tn + @uyn + BuS™t,, and S™u = u, we obtain from (9)



and (8) that

[l
= ||(1 = an — Bn)Tn + @nlyn + B32S"t, — ul|?
< (1= an = Bn)lln — u”2 + anllyn — uH2 + Bl S™t, — uH2
< (1 —an = Bn)llon — u||2
+ anfllen = ull? + 26(1 = p) A Ayall + O*pl| Az, |* 4+ 02(1 — )] Ayn [1?]
+ Bul(1 4+ v) lltn — u||2 + ¢
< (1 — Qp — ﬁn>H$n - U||2
+ an[llzn — ull? + 26(1 — ) Apl| Ay, || + 0 pl| Ay ||* + 02 (1 — )| Aynl|?]
+ Bl )0 — wll* = (1 = 26,(1 = 0n)l|zs — yall* — Dkp1)
— (207 — 1= bkp) [ty — ynll® + 4(1 — 0,)0° || Az, |
+ 4(1 = 0)0° (1 — 10)*|| Ayal|?] + Bucn
< ln = ull? 4 BuynAl + Bucn
+ 2b(1 = p)en A || Ayn| + [0° pev, + 40212 3, (1 + 7,) (1 = 6,)] | A |2
+ 201 — o 4820 — 12,0+ 2)(1 — )] Aga
— [Ba(L + 7) (1 = 20, (1 = 0n) — V)] ||2n — 1?
— [Bu(1+ 7n)(26121 — 0 — bkp)] ||t — yn||2

Thus we have

(14)

6%(1 + ’Yn>(1 - 25n(1 - 571) - bkﬂ)Hl‘n - ynH2

< Hxn - UH2 - ||Zn - u||2 + ﬁn%zA?L + Bncn
+ 26(1 — p) o A || Ay || + [b2//“04n + 4bzﬂ26n(1 + ) (1 — 571)]”143771”2
+ [0?(1 — p)ev, + 407 (1 = p)? B (1 + 7) (1 — 6,)][| Ayn |12

< ([Jn = ull + 120 = ul) |20 = 2ll + Ba¥n AL + Bucn
+ 2b(1 — p)an An|| Ay || + [07poe, + 40217 B (1 + 7 ) (1 — 6,)]|| Az ||?
+ [0°(1 = p)ev, +46°(1 = p)* Bo(1 + 7a) (1 = )] | Ay 1>

Since bk < 3/8 and 3/4 < §,, <1 for all n > 0, we have
lim, oo |20 — ynl]? = 0.
In the same manner, from (14), we conclude that
lim,, oo [|tn — ¥ul|?> = 0.
Since A is k-Lipschitz continuous, we obtain || Ay, — Az, || — 0. On the other hand,
[zn = tall < 20 = ynll + lyn — tall,
which implies that ||z, — t,| — 0. Since 2, = (1 — o, — Bn)Tn + Qnyn + 3,S"t,, we have

Zn — Tp = —0pTy + AnlYn + Bn(Sntn - xn)



From ||z, — z,|| = 0, o, — 0, liminf, o5, > 0 and the boundedness of {z,,y,} we deduce
that [|S™t, — z,|| — 0. Thus we get [|t,, — S"t,|| — 0. By the triangle inequality, we obtain
[z = S"2ull < Nl — tall + [t = S™tall + [1S™tn — S"24||
< lwn = tall + lltn = S™tull + /(1 +70) 10 — 2all + 0 -

So ||z, — S™x,|| — 0. Since ||z, — zp41]| — 0, it follows from Lemma 2.7 of Sahu, Xu and
Yao [10] that ||z, — Sx,|| — 0. By the uniform continuity of S, we obtain ||z, — S™z,|| — 0
as n — oo for all m > 1.

Step 5. We claim that wy,(z,) C F(S)NVI(C, A), where
Wy (2y) == {r € H : 2,, — v weakly for some subsequence {z,,} of {z,}}.

The proof of this step is similar to that of [2, Theorem 1.1, step 5] and we omit it.
A similar argument as mentioned in [1, Theorem 5, Step 6] proves the following assertion.
Step 6. The sequences {z,}, {y,} and {z,} converge strongly to the same point ¢ =
Pr(s)nvi(c,a)(zo), which completes the proof. d

For v, =0, B, =1 and §,, = 1 for all n € N in Theorem 1, we get the following corollary.
Corollary 2. Let C' be a nonempty closed convex subset of a real Hilbert spaces H. Let
A C — H be a monotone and k-Lipschitz continuous mapping and let S : C' — C be
a uniformly continuous asymptotically nonexpansive mapping in the intermediate sense with
nonnegative null sequences {v,} and {c,}.

Suppose that > >~ v, < 0o and F(S)NVI(C,A) is nonempty and bounded. Set ¥, =
Ynlp + Cn. Let p be a constant in (0,1], and let {\,} be a sequence in |a,b] with a > 0 and
b < %

Let {x,}, {yn} and {z,} be sequences generated by

(29 € C chosen arbitrarily,

Yn = Po(vn — MuppAzy — A (1 — 1) Ayn),

zn = S"Po(x, — MAyn),
Co={2€C:|lzn —2|]> < |lzn — 2|I> + U0}
Qn={z€C: (v, —2z,x0—x,) >0}

Tny1 = Pe,ng. (T0), ¥Yn > 0.

(16)

\

Then the sequences {x,}, {yn} and {z,} in (16) are well-defined and converge strongly to the
same point ¢ = Ppsynvi(c,a) (o).

In Theorem 1, if we set a,, = 0 and 3,, = 1 for all n € N then the following result concerning
variational inequality problems holds.
Corollary 3. Let C' be a nonempty closed convex subset of a real Hilbert spaces H. Let A :
C — H be a monotone and k-Lipschitz continuous mapping and let S : C'— C be a uniformly
continuous asymptotically nonerpansive mapping in the intermediate sense nonnegative null
sequences {v,} and {c,}.
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Suppose that Y >° | v, < 0o and F(S)NVI(C,A) is nonempty and bounded. Let jn be a
constant in (0, 1], let {\,} be a sequence in [a,b] with a > 0 and b < %, and let {0,,} be a
sequence in [0,1] such that limy,_.o. 6, = 1 and &, > 3 for alln > 0. Set A, = sup{||z, — ul| :
uwe F(S)NVI(C,A)}, w, =401 (1 +7,)(1 = 0,), On = WAy + ¢ for alln > 0.

Let {x,}, {yn} and {z,} be sequences generated by

(20 C chosen arbitrarily,

Yn = (1 = )y + 0, Po(xy, — ApAz, — Ao (1 — ) Ayy),
zn = S"Po(x, — M Ayn),

Co={2€C:|zn — 2| < |lzn — 2|1* + wal| Az, || + 90}
Qn=A{z€C:{(x,—2z,20—x,) >0}

Tni1 = Pe,ng. (T0), ¥Yn > 0.

(17)

\

Then the sequences {x,}, {yn} and {z,} in (17) are well-defined and converge strongly to
the same point ¢ = Pr(synvic,a)(%o).

The following theorem is yet an other easy consequence of Theorem 1.

Corollary 4. Let H be a real Hilbert space. Let A : H — H be a monotone and k-Lipschitz
continuous mapping and let S : H — H be a uniformly continuous asymptotically nonexpan-
sive mapping in the intermediate sense nonnegative null sequences {v,} and {c,}.

Suppose that Y07 v, < oo and F(S) N A71(0) is nonempty and bounded. Let p be a
constant in (0,1], let {\,} be a sequence in [a,3b/4] with 0 < 4a/3 < b < %, and let {a,},
{Bn}, and {4, } be three sequences in [0, 1] satisfying the following conditions:

(i) an + B, < 1,¥n > 0;

(71) lim,, o v, = 0;

(i4i) lim inf, . (3, > 0;

() lim,, o 6, = 1 and §,, > % for alln > 0.

Set
A, = sup{||z, —ul :ue€ F(S)NA0)},
d, = 2b(1— p)a,A,,
w, = b*poy, + 46726, (1 — 6,) (1 + ),
Up = 62(1 — p)a, + 462(1 - N)2ﬁn(1 —0,)(1 + ), and
O = Banl}, + Buca,
for alln > 0.

Let {x,}, {yn} and {z,} be sequences generated by

(29 € C chosen arbitrarily,

Yn = Tp — Mt Azy — A (1 — 1) Ay,

z2n = (1 = Bn)xn — anpAx, — an\y (1 — p) Ay, + 5,5 (2, — g—:Ayn),

Co={z € C: 20— 2> < |0 — 2[I” + dul| Aynl| + wp || Azn||* + vnl| Aynl|® + 9},
Qn={z€C:{(x,—zx0—1,) >0},

Tni1 = Pe,ng, (T0), Yn > 0.

(18)
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Then the sequences {x,}, {yn} and {z,} in (18) are well-defined and converge strongly to
the same point ¢ = Pp(s)na-1(0)(20).

Proof. Replace A, by X, = 32. Then a < X, < 32X, < b < g&. For C = H, we have

On 8ku”
Po =1 and VI(C,A) = A71(0). In view of Theorem 1, the sequences {z,}, {y,} and {z,}
are well-defined and converge strongly to the same point ¢ = Pp(syna-1(0)(Zo)- 0]
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