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1. Introduction

Let E be a Banach space. We are concerned with the following problem:

CD�uðtÞ 2Fðt, ut,r
NuÞ, t2 J :¼ ½0,T �, ð1:1Þ

rNuð0Þ ¼ U0, ð1:2Þ

uðsÞ ¼ ’ðsÞ, s2 ð�1, 0Þ, ð1:3Þ

where N� 1 is an integer, �2 (N� 1, N ], u : (�1,T ]!E is the unknown function,
CD� denotes the Caputo fractional derivative, rNu¼ (u, u0, . . . , u(N�1)) and
F : [0,T ]�B�EN

!P(E ) is a multivalued map with nonempty compact convex
values. Here P(E ) stands for the collection of all subsets of E, B is a phase space of
delays and ut2B is the history of the state function u up to the time t, that is
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ut(s)¼ u(tþ s) for s2 (�1, 0]. The initial data U0 ¼ ðeu0,eu1, . . . ,euN�1Þ are given in EN

and the initial function ’2B is such that ’ð0Þ ¼eu0.
The subject of fractional differential equations has recently received much

attention due to its important applications in modelling phenomena of science and

engineering. The employment of differential equations with fractional order allows

to deal with many problems in numerous areas including fluid flow, rheology,

electrical networks, viscoelasticity, electrochemistry, etc. For complete references, we

refer to some significant works, e.g., the monographs of Kilbas et al. [1], Kiryakova

[2], Miller and Ross [3] and Podlubny [4]. In the past few years, there has been a great

contribution in fractional differential equations. Let us refer to some relevant works

in [5–18]. With initial or boundary conditions, some particular cases of (1.1) without

delay were studied. The equation

CD�uðtÞ ¼ f ðt, uðtÞÞ

or the inclusion

CD�uðtÞ 2Fðt, uðtÞÞ

in the cases �2 (0, 1] or �2 (1, 2] were considered in [6,8–11,13]. Similar problems

with the Riemann–Liouville fractional derivatives were also investigated, for

instance, in [12,17,18]. The readers can find more works in the survey of Argawal

et al. [19].
In addition, inclusion (1.1) can be seen as a generalized model of high-order

ordinary differential equations, an example of which is the equation considered

in [20]:

uðnÞðtÞ ¼ f ðt, uðtÞ, u0ðtÞ, . . . , uðn�1ÞðtÞ, ðT uÞðtÞÞ,

where T is an integral operator.
There are several approaches that can be used to get the solvability for local,

global or extremal solutions of fractional differential equations or inclusions. One

can use the method of upper and lower solutions to obtain the results as in [9].

Another approach develops a comparison principle and iteration schemes to receive

the existence results as in [14–16]. The method that is widely used consists of

transforming problems to corresponding fixed point equations or inclusions,

followed by applying some known fixed point theorems.
Our approach is employing the fixed point theory technique for multivalued

condensing maps under assumptions expressed in terms of the measure of

noncompactness (MNC). The method used in this note allows us to solve the

problems of differential inclusions in infinite-dimensional spaces with a general form

of nonlinearity. Furthermore, by using this method, we need not impose the

Lipschitz condition on the nonlinearity. Instead of Lipschitz assumptions, we

suppose that the nonlinearity F satisfies a regularity condition expressed in terms of

the Hausdorff MNC. In the sequel, we define a suitable MNC, prove that the

solution multioperator is condensing with respect to this new MNC and find

solutions by using the fixed point theory of condensing multimaps presented in [21].
Besides [21], an employment of this approach can be found, e.g., in [17,22] and

other works. For more applications of multivalued analysis to differential equations

2 T.D. Ke et al.
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and inclusions, the readers are referred to [23–25]. The reader may also find a
complete reference to MNCs in the monographs [26,27].

The rest of this article is organized as follows. In the next section we recall some
basic facts related to fractional calculus, measures of noncompactness, multivalued
maps and the phase space for delay differential equations. Section 3 is devoted to the
formulations and proofs of the local and global existence results. In the last section,
we study the continuous dependence of the solution set of the stated problem on
initial data.

2. Preliminaries

2.1. Fractional calculus

We start this section with some notation and definitions in fractional calculus. For
the motivations of these definitions, see, for example [1–4].

Definition 2.1 The fractional integral of order �40 of a function f2L1(0,T;E ) is
defined by

I�0 f ðtÞ ¼
1

�ð�Þ

Z t

0

ðt� sÞ��1f ðsÞds,

where � is the Gamma function.

We use Bochner integral in the foregoing definition and in the rest of this work.

Definition 2.2 For a function f2CN([0,T ];E ), the Caputo fractional derivative of
order �2 (N� 1, N ] is defined by

CD�
0 f ðtÞ ¼

1

�ðN� �Þ

Z t

0

ðt� sÞN���1f ðNÞðsÞds:

It should be noted that there are some notions of fractional derivatives in which
the Riemann–Liouville and Caputo definitions have been used widely. Many
application problems, expressed by differential equations of fractional order, require
initial conditions related to u(0), u0(0), etc., and the Caputo fractional derivative
satisfies these demands. For u2CN([0,T ];E ), we have the following formulae:

CD�
0I
�
0 uðtÞ ¼ uðtÞ, ð2:1Þ

I�0
CD�

0uðtÞ ¼ uðtÞ �
XN�1
k¼0

uðkÞð0Þ

k!
tk: ð2:2Þ

2.2. Phase space

Let B be a linear space, with a seminorm j � jB, consisting of functions mapping (�1,
0] into E. The definition of the phase space B, introduced by Hale and Kato [28], can
be given by the following axioms. If v : (�1,T ]!E is such that vj[0,T ]2C([0,T ];E )
and v02B, then

(B1) vt2B for all t2 [0,T ];
(B2) the function t � vt is continuous on [0,T ];

Applicable Analysis 3
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(B3) jvtjB4K(t)sup{kv(s)kE : 04 s4 t}þM(t)jv0jB, where K, M : [0,T ]! [0,1), K

is continuous, M is bounded and they are independent of v.

We may consider the following examples of phase spaces satisfying all the above

properties.

(1) For �40, let B¼C� be the space of continuous functions  : (�1; 0]!E

having a limit lim�!�1 e�� ð�Þ with

j jB ¼ sup
�15��0

e��k ð�Þk:

(2) (Spaces of ‘fading memory’). Let B¼C� be the space of functions

 : (�1; 0]!E such that

(a)  is continuous on [�r; 0], r40;
(b)  is Lebesgue measurable on (�1; r) and there exists a nonnegative

Lebesgue integrable function � : (�1;�r)!R
þ such that � is

Lebesgue integrable on (�1; r); moreover, there exists a locally bounded

function P : (�1; 0]!R
þ such that, for all �� 0, �(�þ �)�P(�)�(�) a.e.

� 2 (�1;�r). Then,

j jB ¼ sup
�r���0

k ð�Þk þ

Z �r
�1

�ð�Þk ð�Þkd�:

A simple example of such a space is given by �(�)¼ e��, �2R.
For more examples of phase spaces, see [28].

2.3. Measures of noncompactness and multivalued maps

Let us recall some basic facts from the multivalued analysis, which will be used in this

article. Let E be a Banach space. We denote

. P(E)¼ {A�E :A 6¼ ;},

. Pv(E)¼ {A2P(E) :A is convex},

. K(E)¼ {A2P(E) :A is compact},

. Kv(E)¼Pv(E)\K(E).

We will use the following definition of the MNC (see, e.g. [21]).

Definition 2.3 Let (A,5) be a partially ordered set. A function � :P(E)!A is

called an MNC in E if

�ðco �Þ ¼ �ð�Þ for every �2PðEÞ,

where co � is the closure of the convex hull of �. An MNC � is called

(i) monotone, if �0,�12P(E), �0	�1 implies �(�0)4�(�1);
(ii) nonsingular, if �({a}[�)¼ �(�) for any a2E, �2P(E);

4 T.D. Ke et al.
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(iii) invariant with respect to union with compact set, if �(K[�)¼ �(�) for
every relatively compact set K	E and �2P(E).
If A is a cone in a normed space, we say that � is

(iv) algebraically semi-additive, if �(�0þ�1)4�(�0)þ �(�1) for any �0,
�12P(E);

(v) regular, if �(�)¼ 0 is equivalent to the relative compactness of �.

An important example of MNC is the Hausdorff MNC, which satisfies all the
above properties:

	ð�Þ ¼ inff" : � has a finite "-netg:

It should be mentioned that the Hausdorff MNC has also the following properties:

. Semihomogeneity: 	(t�)4 jtj	(�) for any �2P(E) and t2R;

. in a separable Banach space E, 	ð�Þ ¼ limm!1 supx2� d ðx, EmÞ, where {Em}
is a sequence of finite-dimensional subspaces of E such that Em	Emþ1,
m¼ 1, 2, . . . and

S1
m¼1 Em ¼ E.

Let X be a metric space.

Definition 2.4 A multivalued map (multimap) F :X!P(E) is said to be:

(i) upper semicontinuous (u.s.c) if F�1(V )¼ {x2X :F (x)	V } is an open
subset of X for every open set V	E;

(ii) closed if its graph �F ¼ {(x, y) : y2F (x)} is a closed subset of X�E;
(iii) compact if its range F (X ) is relatively compact in E;
(iv) quasicompact if its restriction to any compact subset A	X is compact.

Definition 2.5 A multimap F :X	E!K(E) is said to be condensing with respect to
an MNC � (�-condensing) if for every bounded set �	X that is not relatively
compact, we have

�ðFð�ÞÞ 64
¼
�ð�Þ:

Suppose that D	E is a nonempty closed convex subset of E and UD is a
nonempty relatively open subset of D. We denote by UD and @UD, the closure and the
boundary of UD in the relative topology of D, respectively.

Let � be a monotone nonsingular MNC in E. The application of the topological
degree theory for condensing multimaps (see, e.g. [21]) yields the following fixed
point theorems.

THEOREM 2.1 [21, Corollary 3.3.1] Let M be a bounded convex closed subset of E
and F :M!Kv(M) an u.s.c. �-condensing multimap. Then the fixed point set
FixF :¼ {x : x2F (x)} is a nonempty compact set.

The following theorem presents a version for multimaps of the classical
Leray–Schauder alternative.

THEOREM 2.2 [21, Corollary 3.3.3] Let UD be a bounded open neighbourhood of a2D
and F : UD! KvðDÞ an u.s.c �-condensing multimap satisfying the boundary condition

x� a 62 
ðFðxÞ � aÞ

for all x2 @UD and 05
4 1. Then FixF is a nonempty compact set.

Applicable Analysis 5
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Definition 2.6 Let G : [0,T ]!K(E ) be a multifunction and p5 1.Then G is said

to be

. Lp-integrable, if it admits a Bochner Lp-integrable selection. That is

there exists g : [0,T ]!E, g(t)2G(t) for a.e. t2 [0,T ] such thatR T
0 k gðsÞk

p
E ds51;

. Lp-integrably bounded, if there exists a function �2Lp([0,T ]) such that

kGðtÞk :¼ supfk gkE : g2GðtÞg4�ðtÞ for a.e. t2 ½0,T �:

The set of all Lp-integrable selections of G will be denoted by S
p
G.

The multifunction G is called measurable if G�1(V ) measurable (with respect to

the Lebesgue measure on J :¼ [0,T ]) for any open subset V of E. We say that G is

strongly measurable if there exists a sequence Gn : [0,T ]!K(E ), n¼ 1, 2, . . . of step

multifunctions such that

lim
n!1
HðGnðtÞ,GðtÞÞ ¼ 0 for a.e. t2 ½0,T �,

where H is the Hausdorff metric in K(E ).
It is known that, when E is a separable Banach space, the notion of measurable

multifunctions has some equivalences. More precisely, for a multifunction

G : [0,T ]!K(E ), the following conditions are equivalent to each other (see,

e.g. [21]):

(1) G is measurable;
(2) for every countable dense set {xn} of E, the functions ’n : [0,T ]!R,

defined by

’nðtÞ ¼ d ðxn,GðtÞÞ

are measurable;
(3) G has a Castaing presentation: there is a countable family {gn} of measurable

selections of G such that [1
n¼1

gnðtÞ ¼ GðtÞ

for a.e. t2 [0,T ];
(4) G is strongly measurable.

Furthermore, if G is measurable and Lp-integrably bounded, then it is

Lp-integrable. If G is Lp-integrable on [0, d ] for some p5 1, then G is also

L1-integrable. In this case, we have a multifunction t�
R t
0 GðsÞds defined byZ t

0

GðsÞds :¼

Z t

0

gðsÞdx : g2S1
G

� �
8t2 ½0, d �:

The following 	-estimate (	 is the Hausdorff MNC), which is similar to

[21, Theorem 4.2.3] will be used in the sequel.

LEMMA 2.3 Assume that E is a separable Banach space. Let G : [0, d ]!P(E ) be

Lp-integrable, Lp-integrably bounded multifunction such that

	ðGðtÞÞ4qðtÞ

6 T.D. Ke et al.
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for a.e. t2 [0, d]. Here, q2L
p
þð½0, d �Þ. Then

	

Z t

0

GðsÞds

� �
4
Z t

0

qðsÞds

for all t2 [0, d ]. In particular, if the multifunction G : [0, d ]!K(E ) is measurable and

Lp-integrably bounded then the function 	(G(�)) is integrable and, moreover,

	

Z t

0

GðsÞds

� �
4
Z t

0

	ðGðsÞÞds

for all t2 [0, d ].

Now we consider the multimap F : [0,T ]�B�EN
!Kv(E ) in our problem

(1.1)–(1.3).

Definition 2.7 We say that F satisfies the upper Carathéodory conditions if

(1) the multifunction F(�, �,U) : [0,T ]!Kv(E ) admits a strongly measurable

selection for each (�,U)2B�EN, and
(2) the multimap F(t, �, �) :B�EN

!Kv(E ) is u.s.c for a.e. t2 [0,T ].

The multimap F is said to be Lp-locally integrably bounded if for each r40, there

exists a function !r2L
p([0,T ]) such that

kFðt, �,UÞk ¼ supfkzkE : z2Fðt, �,UÞg4!rðtÞ

for all (�,U)2B�EN satisfying j�jB þ kUkEN4r.

Let CE(�1,T ) denote the linear topological space of functions u : (�1,T ]!E

satisfying that

u0 2B and uj½0,T � 2C
N�1ð½0,T �;E Þ,

endowed with the seminorm

kukCEð�1,TÞ ¼ ju0jB þ kukCN�1ð½0,T �;EÞ:

For u2CE(�1,T ), consider the superposition multifunction

�F : ½0,T � ! KvðE Þ, �FðtÞ ¼ Fðt, ut,r
NuðtÞÞ:

By the axioms of the phase space, we see that t � ut2B is a continuous function.

Further, the function rNu : [0,T ]!EN is continuous, too. Then �F is Lp-integrable

provided F satisfies upper Carathéodory conditions and is Lp-locally bounded. The

proof can be made in the same way as in [21, Theorem 1.3.5].
As the consequence, we can define on CE(�1,T ) the superposition multi-

operator PF by

PFðuÞ ¼ f�2L
pð0,T;EÞ : �ðtÞ 2Fðt, ut,r

NuðtÞÞ for a.e. t2 ½0,T �g:

We have the following property of weak closedness of PF, whose proof can be

proceeded as in [21, Lemma 5.1.1].

Applicable Analysis 7
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LEMMA 2.4 Let {un} be a sequence in CE(�1,T ) converging to u
 2 CE(�1,T ) and

suppose that the sequence {�n}	Lp(0,T;E ), �n2PF(un) weakly converges to a

function �
. Then �
 2PF(u

).

3. Existence results

In the sequel, let E be a separable Banach space. We give the definition of a mild

solution for (1.1)–(1.3), in accordance with formula (2.2), as follows.

Definition 3.1 For a given 
 2 (0,T ], a function u2CE(�1, 
) is called a mild

solution to problem (1.1)–(1.3) on the interval (�1, 
] if it satisfies the integral

equation

uðtÞ ¼

’ðtÞ, for t40,XN�1
k¼0

tk

k!
euk þ 1

�ð�Þ

Z t

0

ðt� sÞ��1�ðsÞds for t2 ½0, 
�,

8><>:
where �2PF(u).

We assume that the multimap F in problem (1.1)–(1.3) satisfies the following

hypotheses:

(F1) F : [0,T ]�B�EN
!Kv(E ) satisfies the upper Carathéodory conditions;

(F2) F is Lp-locally integrably bounded for p4 1
��Nþ1;

(F3) there exists a function k2Lp(0,T;E ) such that for any bounded subsets Q	B

and �j	E, j¼ 0, . . . ,N� 1, we have

	 F t,Q,
YN�1
j¼0

�j

 ! !
4kðtÞ  ðQÞ þ

XN�1
j¼0

	ð�j Þ

 !
,

where

 ðQÞ ¼ sup
�40

	ðQð�ÞÞ, ð3:1Þ

Qð�Þ ¼ fqð�Þ : q2Qg:

Remark 3.1 In the case E¼R
m, condition (F3) follows from (F2). In fact, the

Lp-locally integrably boundedness of F implies that the set Fðt,Q,
QN�1

j¼0 �j Þ is

bounded in R
m for a.e. t2 [0,T ], and hence it is a precompact set.

If dim(E )¼þ1, then a particular case of fulfilling (F3) is the following

condition:

Fðt, � , �Þ : B � EN! KvðE Þ

is completely continuous for a.e. t2 [0,T ], i.e. F(t, �, �) maps each bounded set in

B�EN into a precompact set in E.

8 T.D. Ke et al.
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For a given 
 2 (0,T ], we set

S : Lpð0, 
;E Þ ! Cð½0, 
�;E Þ,

Sð�ÞðtÞ ¼
1

�ð�Þ

Z t

0

ðt� sÞ��1�ðsÞds,
ð3:2Þ

u
ðtÞ ¼

’ðtÞ, if t40,XN�1
k¼0

tk

k!
euk, if 04t4
,

8>><>>:
and

GðuÞ ¼ u
 þ S � PFðuÞ: ð3:3Þ

One sees that u2CE(�1, 
) is a mild solution of problem (1.1)–(1.3) on interval

(�1, 
] if and only if it is a fixed point of G. From now on, we can restrict G on the

subset D
	CN�1([0, 
];E ) defined as

D
 ¼ fv2C
N�1ð½0, 
�;E Þ, vð0Þ ¼eu0 ¼ ’ð0Þg, ð3:4Þ

by setting G(v)¼G(v[’]), where

v½’�ðtÞ ¼
’ðtÞ, if t40,

vðtÞ, if 04t4
:

(
We first verify some features of S which will be used to obtain some important

properties of the multioperator G. Define the following collection of operators

Sj :L
p(0, 
;E )!C([0, 
];E ), j¼ 0, 1, . . . ,N� 1:

S0 ¼ S: ð3:5Þ

If N41 then

Sj ð�ÞðtÞ ¼
d j

dt j
Sð�ÞðtÞ ¼

1

�ð�� j Þ

Z t

0

ðt� sÞ��j�1�ðsÞds, j ¼ 1, . . . ,N� 1: ð3:6Þ

PROPOSITION 3.1 The operators Sj, j¼ 0, 1, . . . ,N� 1 have the following properties:

(S1) There exist constants Cj40, j¼ 0, 1, . . . ,N� 1, such that

kSjð�ÞðtÞ � Sjð�ÞðtÞk
p
E4C

p
j

Z t

0

k�ðsÞ � �ðsÞkpE ds, �, �2Lpð0, 
;E Þ:

(S2) For each compact set K	E and sequence {�n}	Lp(0, 
;E ) such that {�n(t)}	K

for a.e. t2 [0, 
], the weak convergence �n*�0 implies Sj(�n)!Sj(�0) in C([0, 
];E ).

Proof

(i) By using the Hölder inequality we have

kSjð�ÞðtÞ � Sjð�ÞðtÞkE4
1

�ð�� j Þ

Z t

0

ðt� sÞ��j�1k�ðsÞ � �ðsÞÞkE ds

4
1

�ð�� j Þ

h Z t

0

ðt� sÞð��j�1Þ p=ð p�1Þ ds
ip�1

p
h Z t

0

k�ðsÞ � �ðsÞkpE ds
i1
p

:

Applicable Analysis 9
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Then

kSjð�ÞðtÞ � Sjð�ÞðtÞk
p
E4C

p
j

Z t

0

k�ðsÞ � �ðsÞkpE ds,

where

Cj ¼

h p� 1

ð�� j Þ p� 1

ip�1
p T ��j�1

p

�ð�� j Þ
:

Notice that (�� j)p� 140, j¼ 0, . . . ,N� 1 since p4 1
��Nþ1.

(ii) To prove (S2), notice that, without loss of generality, {�n(t)}	E0 for all
t2 [0, 
], where E0 ¼ spK is the separable Banach space spanned by the
compact set K. Moreover, it is clear also that {Sj(�n)(t)}	E0 for all t2 [0, 
]
and j¼ 0, 1, . . . ,N� 1. Then, applying Lemma 2.3 we obtain

	 fSj �nð Þ tð Þg
� �

�
1

�ð�� j Þ

Z t

0

ðt� sÞ��j�1	ðf�nðsÞgÞds ¼ 0:

Hence, the sequence fSjð�nÞðtÞg
1
n¼1 	 E is relatively compact for every t2 [0, 
].

On the other hand, we have

kSjð�nÞðt2Þ � Sjð�nÞðt1ÞkE

¼
1

�ð�� j Þ

Z t2

0

ðt2 � sÞ��j�1�nðsÞds�

Z t1

0

ðt1 � sÞ��j�1�nðsÞds

���� ����
E

4
1

�ð�� j Þ

Z t2

t1

ðt2 � sÞ��j�1�nðsÞds

���� ����
E

þ
1

�ð�� j Þ

Z t1

0

½ðt2 � sÞ��j�1 � ðt1 � sÞ��j�1��nðsÞds

���� ����
E

:

Since {�n(s)}	K for a.e. s2 [0, 
], the right side of this inequality tends to zero as
t2! t1 uniformly with respect to n. So {Sj(�n)} is an equicontinuous set. Thus from
the Arzela–Ascoli theorem, we obtain that the sequence {Sj(�n)}	C([0, 
];E ) is
relatively compact.

Property (S1) ensures that each Sj :L
p(0, 
;E )!C([0, 
];E ), j¼ 0, . . . ,N� 1, is a

bounded linear operator. Then it is continuous with respect to the topology of weak
sequential convergence, that is the weak convergence �n*�0 ensuring Sj(�n)*Sj(�0).
Taking into account that {Sj(�n)} is relatively compact, we arrive at the conclusion
that Sj(�n)!Sj(�0) strongly in C([0, 
];E ). g

We have the following technical result, whose proof constitutes of the arguments
from [21, Theorem 4.2.1, Corollary 4.2.1, Remarks 4.2.1 and 4.2.2].

PROPOSITION 3.2 Let the sequence of functions {�n}	Lp(0, 
;E ) be Lp-integrably
bounded:

k�nðtÞkE4�ðtÞ, for all n ¼ 1, 2, . . . , and a.e. t2 ½0, 
�,

where �2Lp(0, 
). Assume that

	ðf�nðtÞgÞ4qðtÞ

10 T.D. Ke et al.
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for a.e. t2 [0, 
], where q2Lp(0, 
). Then for every �40 there exists a compact set

K�	E, a set m�	 [0, 
], meas(m�)5� and a sequence of functions G�	Lp(0, 
;E ) with

values in K�, such that for every n5 1 there exists bn2G� for which

k�nðtÞ � bnðtÞkE42qðtÞ þ �, t2 ½0, 
�nm�:

In addition, one can choose the sequence {bn} so that bn¼ 0 on m� and this sequence is

weakly compact.

Now using this result, we will prove the following proposition.

PROPOSITION 3.3 Let the sequence {�n}	Lp(0, 
;E ) satisfy the conditions of

Proposition 3.2. Then we have

	ðfSjð�nÞðtÞgÞ42Cj

Z t

0

jqðsÞjp ds

� �1
p

, j ¼ 1, . . . ,N� 1,

for any t2 [0, 
].

Proof We follow the arguments in [21, Theorem 4.2.2] with some slight

modifications. For any �40, choose �2 (0, �) such that for all m	 [0, 
], with

meas(m)5�, we have Z
m

j�ðsÞjp ds5 �:

Taking m� and {bn} corresponding to {�n} from Proposition 3.2, we have by

Proposition 3.1 that the sequences {Sj(bn)}, j¼ 0, . . . ,N� 1 are relatively compact in

C([0, 
]; X ). Furthermore

kSjð�nÞðtÞ � SjðbnÞðtÞk
p
E

4C
p
j

Z t

0

k�nðsÞ � bnðsÞk
p
E ds

4C
p
j

Z
½0,t�nm�

k�nðsÞ � bnðsÞk
p
E dsþ C

p
j

Z
½0,t�\m�

k�nðsÞk
p
E ds

4C
p
j

Z
½0,t�nm�

½2qðsÞ þ ��p dsþ C
p
j

Z
m�

j�ðsÞjp ds

4C
p
j

Z t

0

j2qðsÞ þ �jp dsþ �

� �
:

Therefore, the relatively compact set SjG�(t) forms a Cjð
R t
0 j2qðsÞ þ �j

p dsþ �Þ
1
p-net for

the set {Sj(�n)(t)}. This proves the proposition since �40 is arbitrary. g

Definition 3.2 A sequence {�n} in Lp(0, 
;E ) is called semicompact if it is

Lp-integrably bounded and the set {�n(t)} is relatively compact in E for a.e. t2 [0, 
].

PROPOSITION 3.4 Let {�n} be a semicompact sequence in Lp(0, 
;E ). Then {�n} is

weakly compact in Lp(0, 
;E ). For each 04 j4N� 1, {Sj(�n)} is relatively compact in

C([0, 
];E ). Moreover, if �n*�0 then Sj(�n)!Sj(�0), j¼ 0, . . . ,N� 1.

Proof The weak compactness of {�n} in Lp(0, 
;E ) is the consequence of the results

in [29, Corollary 3.4]. Since {�n(t)} is relatively compact in E for a.e. t2 [0, 
],
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from Proposition 3.3, we have that for each j¼ 0, . . . ,N� 1, the sequence {Sj(�n)(t)}
is relatively compact in E for a.e. t2 [0, 
].

On the other hand, from the assumptions, there exists a function �2Lp(0, 
)
such that

k�nðtÞk4�ðtÞ, for all n ¼ 1, 2, . . . , and t2 ½0, 
�:

Thanks to the Hölder inequality, one thus has

kSjð�nÞðt2Þ � Sjð�nÞðt1ÞkE

¼
1

�ð�� j Þ

Z t2

0

ðt2 � sÞ��j�1�nðsÞds�

Z t1

0

ðt1 � sÞ��j�1�nðsÞds

���� ����
E

4
1

�ð�� j Þ

Z t2

t1

ðt2 � sÞ��j�1�nðsÞds

���� ����
E

þ
1

�ð�� j Þ

Z t1

0

½ðt2 � sÞ��j�1 � ðt1 � sÞ��j�1��nðsÞds

���� ����
E

4
1

�ð�� j Þ

Z t2

t1

ðt2 � sÞð��j�1Þ p
0

ds

� � 1
p0
Z t2

t1

j�ðsÞjp ds

� �1
p

þ
1

�ð�� j Þ

Z t1

0

jðt2 � sÞ��j�1 � ðt1 � sÞ��j�1jp
0

ds

� � 1
p0
Z t1

0

j�ðsÞjp ds

� �1
p

,

where p0 is the conjugate of p. The last inequality implies that {Sj(�n)} is

equicontinuous in C([0, 
];E ), and then it is relatively compact in C([0, 
];E ).

The last conclusion follows the same lines as in the proof of Proposition 3.1. g

LEMMA 3.5 Suppose that F satisfies (F1)–(F3). Then the composition

G ¼ u
 þ S � PF

is a closed multioperator with compact values.

Proof It suffices to prove the assertions for S �PF. Let {vn} be such that vn! v
 in

D
. Assume that �n2PF(vn[’]) and zn¼S(�n)2S(PF(vn[’])), zn! z
 in

CN�1([0, 
];E ). We prove that z
 2S(PF(v

[’])). Since

f�nðtÞg 	 Fðt, ðvn½’�Þt,r
NvnðtÞÞ,

we see that {�n} is integrably bounded by (F2) and the following inequality holds

by (F3)

	ðf�nðtÞgÞ4kðtÞ  ðfðvn½’�ÞtgÞ þ
XN�1
j¼0

	ðfvð j Þn ðtÞgÞ

 !
:

For each j¼ 0, . . . ,N� 1, the sequence fvð j Þn g converges in C([0, 
];E ). Then

	ðfvð j Þn ðtÞgÞ ¼ 0 for a.e. t2 [0, 
]. On the other hand,

 ðfðvn½’�ÞtgÞ ¼ sup
�40

	ðfvn½’�ðtþ �ÞgÞ

4 sup
s2½0,t�

	ðfvnðsÞgÞ ¼ 0: ð3:7Þ

12 T.D. Ke et al.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l S
un

 Y
at

-S
en

 U
ni

ve
rs

ity
] 

at
 1

9:
51

 2
9 

Ju
ly

 2
01

2 



Thus

	ðf�nðtÞgÞ ¼ 0, for a.e. t2 ½0, 
�,

and then {�n} is a semicompact sequence. By Proposition 3.4, we may assume,

without loss of generality, that there exists �
 2Lp(0, 
;E ) such that

�n * �
 and zn ¼ Sð�nÞ ! Sð�
Þ ¼ z
:

Using Lemma 2.4, we obtain �
 2PF (v

[’]) and we deduce that

z
¼S(�
)2S(PF (v

[’])).

It remains to show that, for v2D
 and {�n} chosen in PF (v[’]), the sequence

{S(�n)} is relatively compact in CN�1([0, 
];E ). Hypotheses (F2)–(F3) imply that {�n}
is semicompact. Using Proposition 3.4, we obtain that Sj(�n), j¼ 0, . . . ,N� 1, is

relatively compact in C([0, 
];E ). Therefore, {S(�n)} is relatively compact in

CN�1([0, 
];E ). The proof is completed. g

In order to prove the u.s.c. property of S �PF, we need the following result.

THEOREM 3.6 [21] Let X and Y be metric spaces and F :X!K(Y ) a closed

quasicompact multimap. Then F is u.s.c.

LEMMA 3.7 Let the conditions of Lemma 3.5 hold. Then the multioperator G is u.s.c.

Proof In view of Theorem 3.6 and the result in Lemma 3.5, it suffices to check that

G is a quasicompact multimap. Let A	D
 be a compact set. We prove that G(A) is a

relatively compact subset of CN�1([0, 
];E ). Assume that {zn}	G(A). Then

zn¼ u
þS(�n), where �n2PF (vn[’]), for a certain sequence {vn}	A. Hypotheses

(F2)–(F3) yield the fact that {�n} is semicompact and then it is a weakly compact

sequence in Lp(0, 
;E ). Similar arguments as in the proof of Lemma 3.5 imply that

{S(�n)} is relatively compact in CN�1([0, 
];E ). Thus we have the desired

conclusion. g

We are in a position to prove that G is a condensing multioperator. We first need

an MNC constructed suitably for our problem. Denote

�:PðCN�1ð½0, 
�;E ÞÞ ! Rþ,

�ð�Þ ¼ sup
t2½0,
�

e�Lt
XN�1
j¼0

	
d j

dt j
�ðtÞ

� �
: ð3:8Þ

Here,

d j

dt j
�ðtÞ :¼

d j

dt j
vðtÞ : v2�

� �
,

and the constant L is chosen so that

‘ :¼ 4
XN�1
j¼0

Cj sup
t2 ½0,T �

Z t

0

e�Lpðt�sÞkpðsÞds

� �1
p

5 1, ð3:9Þ

where k(�) is the function from condition (F3).
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Further, consider

modC : PðCN�1ð½0, 
�;E ÞÞ ! Rþ,

modCð�Þ ¼ lim
�!0

sup
v2�

max
04j4N�1

max
jt1�t2j5�

kvð j Þðt1Þ � vð j Þðt2Þk, ð3:10Þ

which is called the modulus of equicontinuity of � in CN�1([0, 
];E ). Consider the

function

� : PðCN�1ð½0, 
�;E ÞÞ ! R
2
þ,

�ð�Þ ¼ max
D2Dð�Þ

ð�ðDÞ, modCðDÞÞ, ð3:11Þ

where D(�) is the collection of all countable subsets of � and the maximum is taken

in the sense of the ordering in the cone R
2
þ. By the same arguments as in [21], one can

see that � is well-defined. That is, the maximum archives in D(�), and � is an MNC in

the space CN�1([0, 
];E ), which fulfils all properties in Definition 2.3 (see [21,

Example 2.1.3] for details).

LEMMA 3.8 Under conditions of Lemma 3.5, the multioperator G :D
!K(D
) is

�-condensing.

Proof Let �	D
 be such that

�ðGð�ÞÞ5�ð�Þ: ð3:12Þ

We show that � is relatively compact. Let �(G(�)) be achieved on a sequence

{zn}	G(�), i.e.

�ðGð�ÞÞ ¼ ð�ðfzngÞ, modCðfzngÞÞ:

Then

zn ¼ u
 þ Sð�nÞ, �n 2PFðvn½’�Þ where fvng 	 �:

Now inequality (3.12) implies

�ðfzngÞ5�ðfvngÞ: ð3:13Þ

It follows from (F3) that

	ðf�nðsÞgÞ4kðsÞ  ðfðvn½’�ÞsgÞ þ
XN�1
j¼0

	ðfvð j Þn ðsÞgÞ

 !

for every s2 [0, 
]. In view of (3.1), we have

 ðfðvn½’�ÞsgÞ ¼ sup
�40

	ðfvn½’�ðsþ �ÞgÞ ¼ sup
�2 ½0,s�

	ðfvnð�ÞgÞ:

Then

	ðf�nðsÞgÞ4kðsÞeLs sup
�2 ½0,s�

e�L�	ðfvnð�ÞgÞ þ e�Ls
XN�1
j¼0

	ðfvð j Þn ðsÞgÞ

 !
42eLskðsÞ�ðfvngÞ:

14 T.D. Ke et al.
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Now the application of Proposition 3.3 for Sj, j¼ 0, . . . ,N� 1, yields

	ðfSjð�nÞðtÞgÞ44Cj

Z t

0

epLskpðsÞds

� �1
p

�ðfvngÞ for any t2 ½0, 
�:

Recalling that

Sjð�nÞðtÞ ¼
d j

dt j
Sð�nÞðtÞ ¼

d j

dt j
znðtÞ �

d j

dt j
u
ðtÞ ¼ zð j Þn ðtÞ �

d j

dt j
u
ðtÞ, t50,

we arrive at

e�Lt
XN�1
j¼0

	ðfzð j Þn ðtÞgÞ ¼ e�Lt
XN�1
j¼0

	 zð j Þn ðtÞ �
d j

dt j
u
ðtÞ

� �� �

¼ e�Lt
XN�1
j¼0

	ðfSjð�nÞðtÞgÞ44
XN�1
j¼0

Cj

Z t

0

e�Lpðt�sÞkpðsÞds

� �1
p

�ðfvngÞ:

Putting this relation together with (3.13), we obtain

�ðfvngÞ4�ðfzngÞ ¼ sup
t2 ½0,
�

e�Lt
XN�1
j¼0

	ðfzð j Þn ðtÞgÞ4‘�ðfvngÞ:

Therefore �({vn})¼ 0. This implies

	ðfvð j Þn ðtÞgÞ ¼ 0, j ¼ 0, . . . ,N� 1 for all t2 ½0, 
�:

Using (F2)–(F3) again, one gets that {�n} is a semicompact sequence. Then,

Proposition 3.4 ensures that {Sj(�n)} is relatively compact in C([0, 
];E ) for

j¼ 0, . . . ,N� 1. This yields that {zn} is relatively compact in CN�1([0, 
];E ). Hence

modC({zn})¼ 0. Finally,

�ð�Þ ¼ ð0, 0Þ:

g

Now we go to the main results of this section. The following assertion is the local

existence result for (1.1)–(1.3).

THEOREM 3.9 Suppose that conditions (F1)–(F3) are satisfied. Then there exists


 2 (0,T ] such that problem (1.1)–(1.3) has at least one mild solution in CE(�1, 
).

Proof We take an arbitrary number �40 and denote

�0 ¼ ðKþ 1Þ�þMj’jB, K ¼ max
t2 ½0,T �

KðtÞ, M ¼ sup
t2 ½0,T �

MðtÞ,

p0 ¼
p

p� 1
, and Q ¼

Z T

0

j!�0ðsÞj
p ds

� �1
p

,

where !�0 is given in Definition 2.7. Taking into account that p4 1
��Nþ1, it is obvious

that �� j� 1
p 4 0 for all j¼ 0, . . . ,N� 1. Thus we can take 
 2 (0,T ], which is small
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so that

1

�ð�� j Þ
Q

1

ð�� j� 1Þ p0 þ 1

	 
 1
p0


��j�
1
p4

�

N
, ð3:14Þ

for all j¼ 0, . . . ,N� 1.
Denote by B� the closed convex bounded subset of D
 defined by

B� ¼ fu2D
 : ku� u
kCN�1 � �g:

Then for u2B� and v chosen from

GðuÞ ¼ u
 þ S � PFðu½’�Þ,

we have

kvðtÞ � u
ðtÞkE4
1

�ð�Þ

Z t

0

ðt� sÞ��1kFðs, us,r
NuðsÞÞkds

4
1

�ð�Þ

Z t

0

ðt� sÞ��1!�0 ðsÞds, ð3:15Þ

for all t2 (0, 
]. Here we use assumption (F2) with a note that

jusjB þ kr
NuðsÞkEN4KðsÞkukCð½0,s�;E Þ þMðsÞj’jB þ kukCN�1ð½0, 
�;E Þ

4ðKþ 1ÞkukCN�1ð½0, 
�;E Þ þMj’jB

4�0:

An application of the Hölder inequality to (3.15) gives

kvðtÞ � u
ðtÞkE4
1

�ð�Þ

Z t

0

ðt� sÞð��1Þ p
0

ds

� � 1
p0
Z t

0

j!�0ðsÞj
p ds

� �1
p

4
1

�ð�Þ
Q
h 1

ð�� 1Þ p0 þ 1

i 1
p0

t��
1
p4

�

N
,

thanks to (3.14). Similarly, for j¼ 1, . . . ,N� 1, we have

d j

dt j
vðtÞ �

d j

dt j
u
ðtÞ

���� ����
E

4
1

�ð�� j Þ

Z t

0

ðt� sÞ��j�1!�0ðsÞds

4
1

�ð�� j Þ

Z t

0

ðt� sÞð��j�1Þ p
0

ds

� � 1
p0
Z t

0

j!�0 ðsÞj
p ds

� �1
p

4
1

�ð�� j Þ
Q

1

ð�� j� 1Þ p0 þ 1

	 
 1
p0

t��j�
1
p

4
�

N
:

So, the following estimate holds

XN�1
j¼0

sup
t2 ½0,
�

d j

dt j
vðtÞ � u
ðtÞð Þ

���� ����4�,

16 T.D. Ke et al.
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or equivalently,

kv� u
kCN�1ð½0, 
�;E Þ4�:

Therefore, G maps B� into B�. Hence, the proof is completed by invoking the

conclusion of Theorem 2.1. g

In order to get the global existence result, we need to replace assumption (F2)

with a stronger one. Precisely, we impose the assumption that
(F20) There exists a function !2Lp([0,T ]) such that

kFðt, �,UÞk :¼ supfk f kE : f 2Fðt, �,UÞg4!ðtÞ 1þ j�jB þ kUkENð Þ,

for all � 2B and U 2EN.
In addition, we need the following version of generalized Bellman–Gronwall

inequality (see, e.g. [30]).

LEMMA 3.10 Assume that f (t), g(t) and y(t) are non-negative, integrable functions on

[0,T ] satisfying the integral inequality

yðtÞ4gðtÞ þ

Z t

0

f ðsÞ yðsÞds, t2 ½0,T �:

Then we have

yðtÞ4gðtÞ þ

Z t

0

exp
n Z t

s

f ð�Þd�
o
f ðsÞ gðsÞds, t2 ½0,T �:

THEOREM 3.11 Under assumptions (F1), (F20) and (F3), the set of solutions for

problem (1.1)–(1.3) on the interval [0,T ] is nonempty and compact.

Proof We apply Theorem 2.2 to prove that FixG is a nonempty compact set.

Combining the results of Lemmas 3.5, 3.7 and 3.8, it remains to check that, if u2DT

is such that

u� u
 2 
ðGðuÞ � u
Þ

for 
2 (0, 1], then umust belong to a bounded set in CN�1([0,T ];E ). Indeed, we have

the inequality by using (F20) for j¼ 0, . . . ,N� 1

d j

dt j
uðtÞ �

d j

dt j
u
ðtÞ

���� ����
E

4



�ð�� j Þ

Z t

0

ðt� sÞ��j�1kFðs, us,r
NuðsÞÞkds

4
1

�ð�� j Þ

Z t

0

ðt� sÞ��j�1!ðsÞð1þ jusjB þ kr
NuðsÞkENÞds:

Using the fact that

jusjB þ kr
NuðsÞkEN4Mj’jB þ ðKþ 1ÞkukCN�1ð½0, s�;E Þ,

we have

d j

dt j
uðtÞ

���� ����
E

4kU0kEN

XN�1
k¼0

Tk

k!
þ
Mj’jB þ 1

�ð�� j Þ

Z t

0

ðt� sÞ��j�1!ðsÞds

þ
Kþ 1

�ð�� j Þ

Z t

0

ðt� sÞ��j�1!ðsÞkukCN�1ð½0, s�;E ÞÞds

Applicable Analysis 17
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for j¼ 0, . . . ,N� 1. By the Hölder inequality, we get

d j

dt j
uðtÞ

���� ����
E

4kU0kEN

XN�1
k¼0

Tk

k!

þ
Mj’jB þ 1

�ð�� j Þ

h 1

ð�� j� 1Þ p0 þ 1

i 1
p0

T��j�
1
p

Z T

0

j!ðsÞjp ds

� �1
p

þ
Kþ 1

�ð�� j Þ

h 1

ð�� j� 1Þ p0 þ 1

i 1
p0

T��j�
1
p

Z t

0

j!ðsÞjpkukp
CN�1ð½0, s�;E Þ

ds

� �1
p

:

Let

Cj ¼
1

�ð�� j Þ

h 1

ð�� j� 1Þ p0 þ 1

i 1
p0

T��j�
1
p,

C ¼ maxfCj : j ¼ 0, . . . ,N� 1g,

g0 ¼ NkU0kEN

XN�1
k¼0

Tk

k!
þNCðMj’jB þ 1Þ

Z T

0

j!ðsÞjp ds

� �1
p

,

f ðsÞ ¼ ½NCðKþ 1Þ�
1
p!ðsÞ, s2 ½0,T �:

Then

kukCN�1ð½0, t�;E Þ4g0 þ

Z t

0

j f ðsÞjpkuk
p
CN�1ð½0, s�;E Þ

ds

� �1
p

:

This implies

vðtÞ42pg
p
0 þ 2p

Z t

0

j f ðsÞjpvðsÞds,

where vðtÞ ¼ kuk
p
CN�1ð½0, t�;E Þ

. In accordance with Lemma 3.10, we obtain the estimate

vðtÞ ¼ kuk
p
CN�1ð½0, t�;E Þ

42pg
p
0 1þ

Z T

0

exp 2p
Z T

s

j f ð�Þjpd�

� �
j f ðsÞjp ds

� �
for all t2 [0,T ]. The last inequality leads to the fact that

kukCN�1ð½0,T �;E Þ4R0,

where

R0 ¼ 2g0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

Z T

0

exp 2p
Z T

s

j f ð�Þjpd�

� �
j f ðsÞjp ds

� �
p

s
:

Finally, taking a¼ u
 2DT and applying Theorem 2.2 for

UDT
¼ fu2DT : kukCN�1ð½0,T �;E Þ � Rg

with R4R0, we conclude that FixG is nonempty compact set. g

18 T.D. Ke et al.
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4. Properties of solution map

In this section we will study the continuous dependence of the solution set �F of
problem (1.1)–(1.3) on the initial data (’,U )2B�EN. To attain these ends we will
need two additional hypotheses on the phase space B.

It will be supposed that

(B4) there exists l40 such that k (0)k4 lk kB for all  2B;
(B5) there exists m, 04m4þ1, such that for every sequence { n}	B with
k n� 0kB! 0 the sequence { n(�)} is relatively compact in E for every � 2 [�m, 0].

It is easy to see that both spaces presented as examples in Section 2.2 satisfy these
properties. In fact, l¼ 1 in both cases, and m¼þ1 in case (1) and m¼ r in case (2).

Further, we assume that the multimap F : [0,T ]�B�EN
!Kv(E ) satisfies

conditions (F1), (F20) and the following slightly modified condition of 	-regularity:
(F30) there exists a function k2Lp(0,T;E ) such that for any bounded subsets

Q	B and �j	E, j¼ 0, . . . ,N� 1, we have

	 Fðt,Q,
YN�1
j¼0

�j Þ

 !
4kðtÞ sup

�m4�40
	ðQð�ÞÞ þ

XN�1
j¼0

	ð�j Þ

 !
:

Now, we consider in the space B�EN
�CN�1([0,T ];E ) the subset

D ¼ fð ;eu0, . . . ,euN�1; vÞ :  ð0Þ ¼eu0 ¼ vð0Þ,eu1 ¼ v0ð0Þ, . . . ,euN�1 ¼ vðN�1Þð0Þg,

which is closed by (B4). We define a family of multioperators

� : D! PðCN�1ð½0,T �;E ÞÞ

by

�ð ;eu0, . . . ,euN�1; vÞ ¼eu
 þ S � PFðv½ �Þ,

where

eu
ðtÞ ¼XN�1
k¼0

tk

k!
euk, 04t4T:

It is clear that v2�ð ;eu0, . . . ,euN�1; vÞ implies that the function v[ ]2CE(�1,T )
belongs to the solution set �F ( ,U ), where U ¼ ðeu0, . . . ,euN�1Þ:
LEMMA 4.1 The multioperator � is closed, i.e., for any sequences {( n,Un, vn)}	D
and wn2�( n,Un, vn), the conditions k n� 0kB! 0, kUn �U0kEN ! 0,
kvn � v0kCN�1 ! 0, and kwn � w0kCN�1 ! 0 imply w02�( 0,U0, v0).

Proof Consider a sequence { fn}	Lp(0,T;E ) such that fn2PF (vn[ n]) and

wn ¼eu
n þ Sð fnÞ: ð4:1Þ

Here,

eu
nðtÞ ¼XN�1
k¼0

tk

k!
ðeukÞn, 04t4T,

and ðeukÞn, k¼ 0, . . . ,N� 1 are the components of Un.

Applicable Analysis 19
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From hypothesis (B3) it follows that the sequence {vn[ n]t} is uniformly bounded

with respect to t2 [0,T ]. Then (F20) implies that the sequence { fn} is Lp-integrably

bounded.
Further, from condition (F30) we get for a.e. t2 [0,T ]:

	 f fnðtÞgð Þ4	 F t,fvn½ n�tg,fUng
� �� �

4kðtÞ sup
�m4�40

	 fvn½ n�tð�Þg
� �

þ
XN�1
j¼0

	 fðeuj Þng� � !
¼ kðtÞ sup

�m4�40
	 fvn½ n�tð�Þg
� �

¼
kðtÞmax

n
sup04
4t	 fvnð
Þgð Þ, supt�m4
040	 f nð


0Þgð Þ

o
, if 04t5m,

kðtÞ sup
t�m4
4t

	 fvnð
Þgð Þ, ifm4t:

8<:
Applying hypothesis (B5), we conclude that both values are vanishing and so the

sequence { fn} is semicompact. By Proposition 3.4 and Lemma 2.4, we may assume,

with loss of generality, that fn* f0, where f02PF (v0[ 0]). Applying again

Proposition 3.4, and passing to the limit in (4.1), we obtain

w0 ¼eu
0 þ Sð f0Þ,

concluding the proof. g

Now we are in position to prove the main result of this section. Denote by � the

closed subset of the space B�EN defined by

� :¼ fð ,U Þ ¼ ð ;eu0, . . . ,euN�1Þ :  ð0Þ ¼eu0g:
For (’,U)2�, let �F (’,U)	CE(�1,T ) be the set of solutions of problem

(1.1)–(1.3).

THEOREM 4.2 Under conditions (B1)–(B5), (F1), (F20) and (F30), the multimap

�F : �! PðCEð�1,T ÞÞ

is upper semicontinuous.

Proof At first, we prove the upper semicontinuity of the multimap

� :�!K(CN�1([0,T ];E )) defined as

�ð’,U Þ ¼ fv2�ð’,U, vÞg:

Suppose to the contrary that there exist "0, and sequences {(’n,Un)}	�, with

k’n� ’0kB! 0, kUn �U0kEN ! 0, {vn}	CN�1([0,T ];E ), vn2�(’n,Un) such that

vn 62 W"0ð�ð’0,U0ÞÞ, n � 1, ð4:2Þ

where W"0 denotes the "0-neighbourhood of a set. We have

vn 2�ð’n,Un, vnÞ, n � 1, ð4:3Þ

i.e.,

vn ¼eu
n þ Sð fnÞ,

20 T.D. Ke et al.
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where

eu
nðtÞ ¼XN�1
k¼0

tk

k!
ðeukÞn, 04t4T,

and fn2PF (vn[’n]).
Applying the same reasoning as in the proof of Theorem 3.11, we may conclude

that the sequence {vn} is bounded. Now, using condition (F30) and hypothesis (B5)
we obtain the following estimate for a.e. s2 [0, t]:

	 f fnðsÞgð Þ4	 Fðs, fvn½’n�sg, fUng
� �

4kðsÞ sup
�m4�40

	 fvn½’n�sð�Þg
� �

¼ kðsÞ sup
04
4s

	 fvnð
Þgð Þ:

From this we obtain, as in the proof of Lemma 3.8, that �({vn})¼ 0, and the set
{ fn(t)} is relatively compact for a.e. t2 [0,T ].

From the boundedness of the sequences {’n}, {Un} and {vn}, by condition (F20), it

follows easily that the sequence { fn} is Lp-integrably bounded and hence,
semicompact. Then from Proposition 3.4 it follows that the sequence {vn} is
relatively compact and so we may assume, without loss of generality, that
vn! v02C

N�1([0,T ];E ). But then from Lemma 4.1 and (4.3) it follows that

v0 2�ð’0,U0, v0Þ,

contrary to (4.2).
Now note that the multimap �F may be presented as the composition of the

multimap 	 :�!P(D),

	ð’,U Þ ¼ f’g � fUg ��ð’,U Þ,

and the continuous map � :D!CE(�1,T ), �(’,U, v)¼ v[’]. From Theorem 3.11 we
know that each value �(’,U ) is compact. Applying the continuity properties of
multimaps (see, e.g. [21]), we finally deduce that the multimap �F is u.s.c. g
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