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Abstract

In this paper, we introduce some new iterative schemes based on the extragradient method
(and the hybrid method) for finding a common element of the set of solutions of a generalized
equilibrium problem, the set of fixed points of a family of nonexpansive mappings, and the set of
solutions of the variational inequality for a monotone, Lipschitz continuous mapping in Hilbert
spaces. We obtain some strong convergence theorems and weak convergence theorems. The
results in this paper generalize, improve and unify some well-known convergence theorems in
the literature.
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1 Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H with inner product 〈·, ·〉 and
induced norm ‖ · ‖. Let F be a bifunction from C × C into the real line R and let B : C → H be
a nonlinear mapping. Moudafi [5], Moudafi and Thera [6], Peng and Yao [11–13], and Takahashi
and Takahashi [18] considered the following generalized equilibrium problem:

Find x ∈ C such that F (x, y) + 〈Bx, y − x〉 ≥ 0, ∀y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by GEP (C,F,B).

If B = 0, the generalized equilibrium problem (1.1) reduces to the so-called equilibrium problem.
If F = 0, then (1.1) becomes the variational inequality problem, i.e., to find x ∈ C such that

〈Bx, y − x〉 ≥ 0, ∀y ∈ C.
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The set of solutions of the variational inequality problem is denoted by V I(C,B).

The problem (1.1) is very general in the sense that it includes, as special cases, optimization
problems, variational inequalities, minimax problems, Nash equilibrium problem in noncooperative
games; see for instance, [1, 5, 6, 11–13, 18] and the references therein.

Recall that a mapping S : C → H is nonexpansive if there holds that

‖Sx− Sy‖ ≤ ‖x− y‖ for all x, y ∈ C.

We denote the set of fixed points of S by Fix(S).

Several algorithms have been proposed for finding the solution of problem (1.1). Moudafi [5]
introduced an iterative scheme for finding a solution of problem (1.1), which is also a fixed point of
a nonexpansive mapping, and proved a weak convergence theorem. Moudafi and Thera [6] intro-
duced an auxiliary scheme for finding a solution of problem (1.1) and obtained a weak convergence
theorem. Peng and Yao [11–13] introduced some iterative schemes for finding a common solution of
problem (1.1) and the variational inequality for a monotone, Lipschitz-continuous mapping, which
is also a fixed point of a family of nonexpansive mappings. Takahashi and Takahashi [18] introduced
an iterative scheme for finding a common element of the set of solutions of problem (1.1) and the
set of fixed points of a nonexpansive mapping in a Hilbert space, and proved a strong convergence
theorem. Some methods also have been proposed to solve the equilibrium problem when B = 0 in
(1.1) ; see, for instance, [2–4, 10, 14–17, 20] and the references therein.

Recently Nakajo, Shimoji and Takahashi [8], and Takahashi, Takeuchi and Kubota [19] intro-
duced and studied some iterative methods for finding a common fixed point of a family of nonex-
pansive mappings satisfying the so-called NST-condition (I), and obtained some strong convergence
theorems in a Banach space or a Hilbert space.

Inspired by the ideas in the [2–6, 8, 10–20] and the references therein, we introduce some
new iterative schemes based on the extragradient method (and the hybrid method) for finding a
common element of the set of solutions of a generalized equilibrium problem, the set of fixed points
of a family of nonexpansive mappings and the set of solutions of the variational inequality for a
monotone, Lipschitz-continuous mapping. We obtain both strong convergence theorems and weak
convergence theorems for the sequences generated by the corresponding processes. The results in
this paper generalize, improve and unify some well-known convergence theorems in the literatures.

2 Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H with inner product 〈·, ·〉 and
norm ‖ · ‖. Let symbols → and ⇀ denote strong and weak convergence, respectively. For any
x ∈ H, there exists a unique nearest point in C, denoted by PC(x), such that

‖x− PC(x)‖ ≤ ‖x− y‖ for all y ∈ C.

The mapping PC is called the metric projection of H onto C. We know that PC is a nonexpansive
mapping from H onto C. Moreover,

z = PC(x) if and only if 〈x− z, z − y〉 ≥ 0, ∀y ∈ C.
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A mapping A : C −→ H is called monotone if

〈Ax−Ay, x− y〉 ≥ 0, for all x, y ∈ C;

A is called α-inverse strongly monotone if α > 0 and

〈x− y, Ax−Ay〉 ≥ α‖Ax−Ay‖2, for all x, y ∈ C;

A is called k-Lipschitz continuous if k > 0 and

‖Ax−Ay‖ ≤ k‖x− y‖, for all x, y ∈ C.

For solving the equilibrium problem, let us assume that the bifunction F satisfies the following
conditions:

(A1) F (x, x) = 0 for all x ∈ C;

(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for any x, y ∈ C;

(A3) for each x, y, z ∈ C,

lim
t↓0

F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for each x ∈ C, the scalar function y 7→ F (x, y) is convex and lower semicontinuous.

Motivated by Nakajo, Shimoji and Takahashi [8] and Takahashi, Takeuchi and Kubota [19], we
give the following definitions: Let {Sn} and Γ be two families of nonexpansive mappings of C into
itself such that ∅ 6= Fix(Γ) = ∩∞n=iFix(Sn), where Fix(Γ) is the set of all common fixed points of
mappings in Γ. Then, {Sn} is said to satisfy the NST-condition (I) with Γ if for each bounded
sequence {tn} ⊆ C,

lim
n→∞

‖tn − Sntn‖ = 0 implies that lim
n→∞

‖tn − Ttn‖ = 0 for all T ∈ Γ.

In particular, if Γ = {T}, i.e., Γ consists of exactly one mapping T , then {Sn} is said to satisfy the
NST-condition (I) with T .

3 Main results

We now present the strong convergence of an iterative algorithm based on extragradient method
and hybrid method which solves the problem of finding a common element of the set of solutions
of a generalized equilibrium problem, the fixed point set of a family of nonexpansive mappings and
the set of solutions of the variational inequality for a monotone, Lipschitz continuous mapping in
a Hilbert space.

In the following, we always assume that C is a nonempty closed convex subset of a real Hilbert
space H. Let F be a bifunction from C × C into R satisfying (A1)-(A4), let A be a monotone
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and k-Lipschitz continuous mapping of C into H, and let B be an α-inverse strongly monotone
mapping of C into H. Let {Sn} and Γ be families of nonexpansive mappings of C into itself such
that

Ω = ∩∞i=1Fix(Si) ∩ V I(C,A) ∩GEP (C,F,B) 6= ∅
and ∩∞i=1Fix(Si) = Fix(Γ). Assume also that {Sn} satisfies the NST-condition (I) with Γ.

Theorem 3.1 Suppose {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ), {αn} ⊂ [0, c] for some c ∈ (0, 1), and

{rn} ⊂ [γ, e] for some γ, e ∈ (0, 2α). Pick any x1 = x ∈ C and set C1 = C. Let {xn}, {un}, {yn}
and {zn} be sequences generated by the scheme

F (un, y) + 〈Bxn, y − un〉+ 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),
zn = αnxn + (1− αn)SnPC(un − λnAyn),
Cn+1 = {z ∈ Cn : ‖zn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x

(3.1)

for every n = 1, 2, . . .. Then, {xn}, {un}, {yn} and {zn} converge strongly to w = PΩ(x).

Proof. First we note that under assumptions (A1)-(A4), it is held that for any r > 0 and
x ∈ H there is a unique q in C such that

F (u, y) +
1
r
〈y − u, u− x〉 ≥ 0, ∀y ∈ C

(see, e.g., [1, 18]). In particular, if we put r = rn and x = xn − rnBxn then we can solve for un.

It is obvious that Cn is closed for every n = 1, 2, . . .. Since

Cn+1 = {z ∈ Cn : ‖zn − xn‖2 + 2〈zn − xn, xn − z〉 ≤ 0},

we also have that Cn is convex for every n = 1, 2, . . ..

Next, we show by induction that Ω ⊆ Ci for i = 1, 2, . . .. From C1 = C, we have Ω ⊆ C1.
Suppose that Ω ⊆ Cn for some positive integer number n. Let u ∈ Ω and let {Trn} be a sequence of
mappings defined as in Lemma 2.2 in [17]. As u ∈ GEP (C,F,B), we have u = Trn(u− rnBu), and
as u ∈ V I(C,A), we have u = PC(u−λnAu). Putting tn = PC(un −λnAyn) for every n = 1, 2, . . ..
From un = Trn(xn − rnBxn) ∈ C and the proof of Theorem 3.1 in [13], we have

‖un − u‖2 ≤ ‖xn − u‖2 + rn(rn − 2α)‖Bxn −Bu‖2 ≤ ‖xn − u‖2, (3.2)

‖un − u‖2 ≤ ‖xn − u‖2 − ‖xn − un‖2 + 2rn〈Bxn −Bu, xn − un〉 − r2
n‖Bxn −Bu‖2, (3.3)

and

‖tn − u‖2 ≤ ‖un − u‖2 − ‖un − yn‖2 − ‖yn − tn‖2 + 2λnk‖un − yn‖‖tn − yn‖
≤ ‖un − u‖2 − ‖un − yn‖2 − ‖yn − tn‖2 + λn

2k2‖un − yn‖2 + ‖tn − yn‖2

= ‖un − u‖2 + (λn
2k2 − 1)‖un − yn‖2. (3.4)

Therefore from (3.2), (3.4), zn = αnxn + (1− αn)Sntn and u = Snu, we have

‖zn − u‖2 ≤ αn‖xn − u‖2 + (1− αn)‖Sntn − u‖2
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≤ αn‖xn − u‖2 + (1− αn)‖tn − u‖2

≤ αn‖xn − u‖2 + (1− αn)[‖un − u‖2 + (λn
2k2 − 1)‖un − yn‖2]

≤ ‖xn − u‖2 + (1− αn)(λn
2k2 − 1)‖un − yn‖2

≤ ‖xn − u‖2, (3.5)

for every n = 1, 2, . . ., and hence u ∈ Cn+1. So, Ω ⊂ Ci for every i = 1, 2, . . ..

Let l0 = PΩx. From xn = PCnx and l0 ∈ Ω ⊂ Cn, we have

‖xn − x‖ ≤ ‖l0 − x‖ (3.6)

for every n = 1, 2, . . .. Therefore, {xn} is bounded. From (3.2), (3.4) and (3.5), we also obtain that
{un}, {tn} and {zn} are bounded. Since xn+1 ∈ Cn+1 ⊆ Cn and xn = PCnx, we have

‖xn − x‖ ≤ ‖xn+1 − x‖

for every n = 1, 2, .... Therefore, limn→∞ ‖xn − x‖ exists.

Since
‖xn+1 − xn‖2 = ‖xn+1 − PCnx‖2 ≤ ‖xn+1 − x‖2 − ‖xn − x‖2

for every n = 1, 2, .... This implies that

lim
n→∞

‖xn+1 − xn‖ = 0.

Since xn+1 ∈ Cn+1, we have ‖zn − xn+1‖ ≤ ‖xn − xn+1‖ and hence

‖xn − zn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − zn‖ ≤ 2‖xn − xn+1‖

for every n = 1, 2, .... From limn→∞ ‖xn+1 − xn‖ = 0, we have ‖xn − zn‖ → 0.

For u ∈ Ω, from (3.5) we obtain

‖un − yn‖2 ≤ 1
(1− αn)(1− λn

2k2)
(‖xn − u‖+ ‖zn − u‖)‖xn − zn‖. (3.7)

Since ‖xn − zn‖ → 0 and the sequences {xn} and {zn} are bounded, we obtain ‖un − yn‖ → 0. By
the same process as in (3.4), we also have

‖tn − u‖2 ≤ ‖un − u‖2 − ‖un − yn‖2 − ‖yn − tn‖2 + 2λnk‖un − yn‖‖tn − yn‖
≤ ‖un − u‖2 − ‖un − yn‖2 − ‖yn − tn‖2 + ‖un − yn‖2 + λn

2k2‖tn − yn‖2

= ‖un − u‖2 + (λn
2k2 − 1)‖yn − tn‖2.

Then,
‖zn − u‖2 ≤ αn‖xn − u‖2 + (1− αn)‖tn − u‖2

≤ αn‖xn − u‖2 + (1− αn)[‖un − u‖2 + (λn
2k2 − 1)‖yn − tn‖2]

≤ ‖xn − u‖2 + (1− αn)(λn
2k2 − 1)‖yn − tn‖2.

and, rearranging as in (3.7), we obtain
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‖tn − yn‖2 ≤ 1
(1− αn)(1− λn

2k2)
(‖xn − u‖+ ‖zn − u‖)‖xn − zn‖.

Since ‖xn − zn‖ → 0 and the sequences {xn} and {zn} are bounded, we obtain ‖tn − yn‖ → 0. As
A is k-Lipschitz continuous, we have ‖Ayn − Atn‖ → 0. From ‖un − tn‖ ≤ ‖un − yn‖+ ‖yn − tn‖,
we also have ‖un − tn‖ → 0.

¿From (3.5) and (3.2), we have

‖zn − u‖2 ≤ αn‖xn − u‖2 + (1− αn)[‖un − u‖2 + (λ2
nk2 − 1)‖un − yn‖2]

≤ αn‖xn − u‖2 + (1− αn)‖un − u‖2

≤ αn‖xn − u‖2 + (1− αn)[‖xn − u‖2 + rn(rn − 2α)‖Bxn −Bu‖2]

= ‖xn − u‖2 + (1− αn)rn(rn − 2α)‖Bxn −Bu‖2.

Hence, we have

(1− c)γ(2α− e)‖Bxn −Bu‖2

≤ (1− αn)rn(2α− rn)‖Bxn −Bu‖2

≤ ‖xn − u‖2 − ‖zn − u‖2

≤ (‖xn − u‖+ ‖zn − u‖)‖xn − zn‖.
Since ‖xn − zn‖ → 0 and the sequences {xn} and {zn} are bounded, we obtain ‖Bxn −Bu‖ → 0.

Then, by (3.5), (3.4) and (3.3), we get

‖zn − u‖2 ≤ αn‖xn − u‖2 + (1− αn)‖tn − u‖2

≤ αn‖xn − u‖2 + (1− αn)‖un − u‖2

≤ αn‖xn − u‖2 + (1− αn)[‖xn − u‖2 − ‖xn − un‖2

+2rn〈Bxn −Bu, xn − un〉 − r2
n‖Bxn −Bu‖2]

≤ ‖xn − u‖2 − (1− αn)‖xn − un‖2 + (1− αn)2rn‖Bxn −Bu‖‖xn − un‖.

Hence,

(1− c)‖xn − un‖2 ≤ (1− αn)‖xn − un‖2

≤ ‖xn − u‖2 − ‖zn − u‖2 + (1− αn)2rn‖Bxn −Bu‖‖xn − un‖
≤ (‖xn − u‖+ ‖zn − u‖)‖xn − zn‖+ (1− αn)2rn‖Bxn −Bu‖‖xn − un‖.

Since ‖xn − zn‖ → 0, ‖Bxn − Bu‖ → 0 and the sequences {xn} and {zn} are bounded, we obtain
‖xn − un‖ → 0. ¿From ‖zn − tn‖ ≤ ‖zn − xn‖ + ‖xn − un‖ + ‖un − tn‖ we have ‖zn − tn‖ → 0.
From ‖tn − xn‖ ≤ ‖tn − un‖+ ‖xn − un‖ we also have ‖tn − xn‖ → 0.

Since zn = αnxn + (1− αn)Sntn, we have (1− αn)(Sntn − tn) = αn(tn − xn) + (zn − tn). Then

(1− c)‖Sntn − tn‖ ≤ (1− αn)‖Sntn − tn‖ ≤ αn‖tn − xn‖+ ‖zn − tn‖

and hence ‖Sntn − tn‖ → 0. Since {Sn} satisfies the NST-condition (I) with Γ, we have for all
T ∈ Γ,

lim
n→∞

‖Ttn − tn‖ = 0.
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As {xn} is bounded, there exists a subsequence {xni} of {xn} such that xni ⇀ w. From
‖xn − un‖ → 0, we obtain that uni ⇀ w. From ‖un − tn‖ → 0, we also obtain that tni ⇀ w. Since
{uni} ⊂ C and C is closed and convex, we obtain w ∈ C.

Now, we show that w ∈ Fix(Γ). Assume w /∈ Fix(Γ). Since tni ⇀ w and w 6= Tw for some
T ∈ Γ, from the Opial condition (see [9]) we have

lim inf
i→∞

‖tni − w‖ < lim inf
i→∞

‖tni − Tw‖

≤ lim inf
i→∞

{‖tni − Ttni‖+ ‖Ttni − Tw‖}

≤ lim inf
i→∞

‖tni − w‖.

This is a contradiction. So, we get w ∈ Fix(Γ) = ∩∞i=1Fix(Si). By exactly the same argument in
the proof of Theorem 3.1 in [13] we can show w ∈ GEP (C,F,B) and w ∈ V I(C,A), which implies
w ∈ Ω.

¿From l0 = PΩx, w ∈ Ω and (3.5), we have

‖l0 − x‖ ≤ ‖w − x‖ ≤ lim inf
i→∞

‖xni − x‖ ≤ lim sup
i→∞

‖xni − x‖ ≤ ‖l0 − x‖.

So, we obtain w = l0 and
lim
i→∞

‖xni − x‖ = ‖w − x‖.

From xni − x ⇀ w− x we have xni − x → w− x and hence xni → w. This implies that xn → l0. It
is easy to see un → l0, yn → l0 and zn → l0. The proof is now complete. �

Combining the arguments in the proof of Theorem 3.1 and those in the proof of Theorem 3.1
in [12] and Theorem 3.1 in [13], respectively, we can easily obtain the following weak convergence
theorem and strong convergence theorem for the corresponding iterative algorithms based on the
extragradient method (and CQ method).

Theorem 3.2 Assume {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ), {βn} ⊂ [δ, ε] for some δ, ε ∈ (0, 1), and

{rn} ⊂ [d, e] for some d, e ∈ (0, 2α). Let {xn}, {un} and {yn} be sequences generated by the scheme
x1 = x ∈ C,

F (un, y) + 〈Bxn, y − un〉+ 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),
xn+1 = βnxn + (1− βn)SnPC(un − λnAyn)

(3.8)

for every n = 1, 2, . . .. Then, {xn}, {un} and {yn} converge weakly to w ∈ Ω, where w =
limn→∞ PΩxn.

Theorem 3.3 Assume {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ), {αn} ⊂ [0, c] for some c ∈ [0, 1] and

{rn} ⊂ [γ, e] for some γ, e ∈ (0, 2α). Let {xn}, {un}, {yn} and {zn} be sequences generated by the
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scheme 

x1 = x ∈ C,
F (un, y) + 〈Bxn, y − un〉+ 1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),
zn = αnxn + (1− αn)SnPC(un − λnAyn),
Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn

T
Qn

x

(3.9)

for every n = 1, 2, . . .. Then, {xn}, {un}, {yn} and {zn} converge strongly to w = PΩ(x).

Remark 3.4. (i) It follows from Lemmas 3.1-3.12 in [8] and Lemmas 2.1-2.4 in [19] that the
NST-condition (I) with Γ of {Sn} contains many special cases. Hence, we can easily obtain many
interesting results by using Theorems 3.1-3.3. For examples, let Sn = S for all n = 1, 2, ... in
Theorem 3.3 and 3.2, respectively, by Lemma 2.1 in [19], we get Theorem 4.4 in [11] without the
condition (B4) or (B2), and Theorem 3.1 in [12]. Let Sn = S for all n = 1, 2, ... and B = 0 in
Theorems 3.3 and 3.2, respectively, we recover Theorems 3.1 and 4.1 in [16]. Let Sn be replaced
by the W -mapping Wn generated by Sn, Sn−1, . . . , S1 and ξn, ξn−1, ..., ξ1 in Theorems 3.3 and 3.2,
respectively, by Lemma 3.6 in [8], we recover Theorems 3.1 and 4.1 in [13]. Let F (x, y) = 0 for all
x, y ∈ C, B = 0 and Sn = S for all n = 1, 2, ... in Theorem 3.3, by Lemma 2.1 in [19], we recover
Theorem 3.1 in [7].

(ii) Let F (x, y) = 0 for all x, y ∈ C, A = B = 0 in Theorems 3.1 and 3.2, respectively, we
recover Theorems 3.3 and 3.4 in [19].

(iii) Since the α-inverse strongly monotonicity of A has been weakened by the monotonicity
and Lipschitz continuity of A, Theorems 3.1-3.3 extend, generalize and improve Theorem 3.1 in [8],
Theorem 3.1 in [15], Theorem 3.1 in [14], Theorem 3.1 in [3], and Theorem 3 in [4].
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