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multivalued) pseudomonotone operators to pseudoconvex functions; first-order char-
acterizations of single-valued, differentiable pseudomonotone operators; application
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tion to the cutting-plane method; and the relation to the revealed preference problem
of mathematical economics.
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1 Introduction

Pseudomonotone operators were introduced back in 1976 by Karamardian [1] as a
generalization of monotone operators. Actually, before Karamardian, pseudomono-
tonicity has been used by economists to describe a property of a consumer’s demand
correspondence. But for a long time mathematicians working on generalized mono-
tonicity notions largely ignored the corresponding developments in economics.

In the 35 years following Karamardian’s definition, the theory of pseudomonotone
operators has been considerably developed and found many applications. The notion
has been generalized to multivalued operators, and applied to variational inequali-
ties. Variational inequalities were a source of inspiration for further developments:
appropriate generalizations were introduced to study vector variational inequalities
and pseudomonotone equilibrium problems. Other lines of research include finding
first-order characterizations of pseudomonotone operators, establishing the relation to
generalized convex functions, solving the revealed preference problem in economics,
etc.

This paper contains a survey of the main results in the theory and applications
of pseudomonotone operators, starting by the older ones and reaching the frontiers
of the subject. The proofs of many of these results are contained in research papers,
and in this case we will only give the reference. We will start by fixing the notation
and recalling some definitions in next section. We will then proceed by giving some
examples of pseudomonotone operators, and their link to pseudoconvex functions.
Also, we will give first-order characterizations. Section 4 is devoted to variational in-
equalities with pseudomonotone operators. We will see that a notion of equivalence
of pseudomonotone operators arises quite naturally. In Sect. 5, we will see how this
equivalence gives rise to the notion of maximal pseudomonotonicity. This in its turn
will lead in Sect. 6 to the introduction of the particular class of pseudomonotone op-
erators that are exactly those suitable to the cutting-plane method for the algorithmic
solution of the variational inequality. Section 7 is devoted to the revealed preference
problem in economics and its relation to some very recent developments in the theory
of pseudomonotone operators. The last section contains a selection of open questions.

Some generalizations will be deliberately omitted: Vector variational inequali-
ties and the corresponding pseudomonotonicity notion; pseudomonotone bifunctions;
pseudomonotonicity in the sense of Brezis, etc. We will also omit almost all other
generalized monotonicity notions, unless they are necessary to the exposition of the
theory of pseudomonotone operators.

2 Notation and Definitions

In what follows, X will be a Banach space and X∗ its topological dual. For x, y ∈ X

we set [x, y] = {tx + (1 − t)y : t ∈ [0,1]}. Given a multivalued operator T : X ⇒
X∗, we denote by D(T ) its domain and by gr(T ) its graph. Also, we will denote
by ZT the set of its zeros, i.e., ZT := T −1{0}. For the upper semicontinuity, lower
semicontinuity and other properties of multivalued operators, the reader is referred
to any standard book on nonlinear analysis such as [2]. We denote ]0,+∞[ by R++.



J Optim Theory Appl (2012) 152:1–20 3

Given a set A in a Banach space, we denote by convA its convex hull, intA its
interior, and we set R++A := ⋃

t>0 tA. For a proper, lower semicontinuous (lsc)
convex function f : X → R ∪ {+∞} we denote by ∂f the subdifferential of f in the
sense of convex analysis.

A multivalued operator T : X ⇒ X∗ is called

1. monotone, iff for every (x, x∗), (y, y∗) ∈ gr(T ),

〈y∗ − x∗, y − x〉 ≥ 0;
2. pseudomonotone, iff for every (x, x∗), (y, y∗) ∈ gr(T ) the following implication

holds:

〈x∗, y − x〉 ≥ 0 ⇒ 〈y∗, y − x〉 ≥ 0;
3. quasimonotone, iff for every (x, x∗), (y, y∗) ∈ gr(T ) the following implication

holds:

〈x∗, y − x〉 > 0 ⇒ 〈y∗, y − x〉 ≥ 0.

It is clear that every monotone operator is pseudomonotone, and every pseu-
domonotone operator is quasimonotone.

There is an important difference between monotone and pseudomonotone opera-
tors that should be mentioned. If T1 and T2 are two monotone operators, then T1 +T2
is monotone. For pseudomonotone operators, this does not hold: the sum of pseu-
domonotone operators is not pseudomonotone in general. In fact, if T is such that
T + x∗ is quasimonotone (or pseudomonotone) for all x∗ ∈ X∗, then T is monotone;
see [3, Proposition 2.1], or [4] for a stronger result. On the other hand, if T is any
operator and f : D(T ) → ]0,+∞[ is any function, then f (·)T (·) is pseudomono-
tone, if and only if T is pseudomonotone. This property does not hold for monotone
operators, and will be the starting point for the important notion of equivalence in
Sect. 4.

Another, stronger property than pseudomonotonicity is cyclic pseudomonotonic-
ity. We recall that an operator T is called cyclically monotone iff for every finite
sequence x1, x2, . . . , xn in X and any choice x∗

i ∈ T (xi) one has

n∑

i=1

〈x∗
i , xi+1 − xi〉 ≤ 0,

where we set xn+1 = x1. It is known that the subdifferential ∂f of a proper, lsc con-
vex function f is cyclically monotone and, conversely, for any cyclically monotone
operator T , there exists a proper, lsc convex function f such that gr(T ) ⊆ gr(∂f ).

An operator T will be called cyclically pseudomonotone iff for every finite se-
quence x1, x2, . . . , xn and any choice x∗

i ∈ T (xi), i = 1, . . . , n the following implica-
tion holds:

〈x∗
i , xi+1 − xi〉 ≥ 0 for all i = 1,2, . . . , n − 1 ⇒ 〈x∗

n, x1 − xn〉 ≤ 0.

By considering a sequence consisting of two elements, one sees that any cyclically
pseudomonotone operator is pseudomonotone. Obviously, a cyclically monotone op-
erator is cyclically pseudomonotone.
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3 Examples and Characterizations of Pseudomonotone Operators

The simplest class of pseudomonotone operators consists of the gradients of pseudo-
convex functions. Given an open convex set C ⊆ R

n, we recall that a differentiable
function f : C → R is called pseudoconvex iff for every x, y ∈ C, the following im-
plication holds:

〈∇f (x), y − x
〉 ≥ 0 ⇒ f (y) ≥ f (x).

Karamardian [1] has shown that a differentiable function f is pseudoconvex if and
only if its gradient ∇f is pseudomonotone. This result has been generalized in many
ways for nonsmooth functions and multivalued operators. For instance, pseudocon-
vexity may be defined by using the Clarke–Rockafellar subdifferential, as follows.
We first recall that given a lsc function f , one defines the Clarke–Rockafellar direc-
tional derivative at x0 ∈ domf in the direction d ∈ X by

f ↑(x0, d) := sup
ε>0

lim sup
x→f x0,t↘0

inf
‖d ′−d‖≤ε

f (x + td ′) − f (x)

t
.

Here, x →f x0 means that x → x0 and f (x) → f (x0). Then one defines the
Clarke–Rockafellar subdifferential of f at x0 by

∂↑f (x0) := {
x∗ ∈ X∗ : 〈x∗, d〉 ≤ f ↑(x0, d),∀d ∈ X

}
.

For x0 /∈ domf one sets ∂↑f (x0) = ∅.

Definition 3.1 A proper lsc function f : X → R ∪ {+∞} is called pseudoconvex [5]
iff for every x, y ∈ X the following implication holds:

∃x∗ ∈ ∂↑f (x) : 〈x∗, y − x〉 ≥ 0 ⇒ f (x) ≤ f (y).

In case f be a proper lsc convex function, ∂↑f is equal to the subdifferential ∂f

of convex analysis (see Theorem 5 in [6]), hence

∀x∗ ∈ ∂f (x) : 〈x∗, y − x〉 ≤ f (y) − f (x).

Consequently, a proper lsc convex function is pseudoconvex.
A proper lsc function is convex, if and only if ∂↑f is monotone [7]. The following

result of [5] (see [8] for the cyclically pseudomonotone part) relates pseudoconvexity
of a function to pseudomonotonicity of its subdifferential.

Theorem 3.1 Let f be lsc and radially continuous. Then the following are equiva-
lent:

(i) f is pseudoconvex;
(ii) ∂↑f is pseudomonotone;

(iii) ∂↑f is cyclically pseudomonotone.
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Note that, whenever f is pseudoconvex, lsc and radially continuous, it is also
quasiconvex ([5], Corollary 3.1), hence it is actually continuous ([9], Proposition 9).

Of course, there are many examples of pseudomonotone operators that are not
subdifferentials. As we remarked before, if T is any monotone or pseudomono-
tone operator and f : X → ]0,+∞[ is any function, then the operator T1 defined
by T1(x) := f (x)T (x) is pseudomonotone.

Other examples stem from the following characterization of single-valued differ-
entiable pseudomonotone operators. This deep result is the final fruit of a series of
papers by Crouzeix-Ferland, John, and Brighi. See [10] for a relatively simple proof.

Theorem 3.2 Let C ⊆ R
n be an open convex set and T : C → R

n be continuously
differentiable. Then T is pseudomonotone, if and only if the following two conditions
hold:

x ∈ C, 〈T (x),h〉 = 0 ⇒ 〈T ′(x)h,h〉 ≥ 0, (1)

x ∈ C,T (x) = 0
T ′(x)h = 0

}

⇒ ∀t̄ > 0, ∃t ∈ ]0, t̄] : 〈T (x + th), h〉 ≥ 0. (2)

We single out two special cases, where condition (1) alone is sufficient to charac-
terize pseudomonotonicity of an operator T in an open convex subset C of R

n. When-
ever T is differentiable on C and T is never zero, then obviously (2) is automatically
satisfied so (1) is a necessary and sufficient condition for T to be pseudomonotone.
Another case is when T is affine, i.e., has the form T (x) = Mx + q where M is an
n × n matrix and q ∈ R

n. Then T ′ = M so whenever T (x) = 0 and T ′(x)h = 0 hold,
one has T (x + th) = Mx + q + tMh = 0. Hence condition (2) is again satisfied.
Condition (1) becomes

x ∈ C, 〈Mx + q,h〉 = 0 ⇒ 〈Mh,h〉 ≥ 0. (3)

Consequently, condition (3) is necessary and sufficient for T to be pseudomono-
tone on C. This result was found initially in [11].

4 Variational Inequalities and Equivalence of Pseudomonotone Operators

Given a nonempty subset K of X and an operator T , the Stampacchia Variational
Inequality (VI) is to find x ∈ K such that

∀y ∈ K,∃x∗ ∈ T (x) : 〈x∗, y − x〉 ≥ 0. (VI)

Variational inequalities have found many applications in optimization and in other
applied fields, especially in mechanics.

In the special case where the values of T on K are nonempty, convex and weak∗-
compact, it is a consequence of the minimax theorem that every solution x of VI is
actually a solution of the strong Stampacchia variational inequality: find x ∈ K such
that

∃x∗ ∈ T (x) : ∀y ∈ K, 〈x∗, y − x〉 ≥ 0. (SVI)
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In the case of pseudomonotone operators, VI can be transformed to another, equiv-
alent problem, the so-called Minty Variational Inequality (MVI) consisting in finding
x ∈ K such that

∀y ∈ K,∀y∗ ∈ T (y) : 〈y∗, y − x〉 ≥ 0. (MVI)

We call T upper sign-continuous at x ∈ D(T ) iff for all v ∈ X, the following
implication holds:

inf
x∗∈T (x+tv)

〈x∗, v〉 ≥ 0,∀t ∈ ]0,1[ ⇒ sup
x∗∈T (x)

〈x∗, v〉 ≥ 0.

Upper sign-continuity is a very weak notion of continuity. For instance, any operator
whose restriction on straight lines of its domain is upper semicontinuous (usc) with
respect to the weak∗-topology on X∗, is upper sign-continuous. Any positive function
on R is upper sign-continuous.

The following proposition relates MVI to VI. Let S(T ,K) be the set of solutions
of VI, i.e., the set of all x ∈ K satisfying (VI), and let SM(T ,K) be the set of solutions
of MVI. The proof is well-known; see for instance [12] for a version of it.

Proposition 4.1 If T is pseudomonotone, then S(T ,K) ⊆ SM(T ,K). If T is upper
sign-continuous, then SM(T ,K) ⊆ S(T ,K).

Due to Proposition 4.1, in order to solve VI for a pseudomonotone, upper sign-
continuous operator, it is enough to solve MVI. A proof for the existence of solutions
of VI first appeared in [13] for single-valued pseudomonotone operators, then in [14]
for multivalued pseudomonotone operators. Here we present a version from [15],
where it was shown that actually quasimonotonicity is enough. Let Sstr(T ,K) be the
set of solutions of (SVI).

Theorem 4.1 Let K be a nonempty, closed and convex subset of a reflexive Banach
space X and T : X ⇒ X∗ be a quasimonotone operator. Assume that T is upper
sign-continuous with nonempty, convex, weakly compact values on K , and that the
following coercivity condition is satisfied:

∃ρ > 0 : ∀x ∈ K, ‖x‖ > ρ, ∃z ∈ K, ‖z‖ < ‖x‖ : ∀x∗ ∈ T (x),

〈x∗, x − z〉 ≥ 0.

Then Sstr(T ,K) �= ∅.

For quasimonotone operators, it is not true that S(T ,K) = SM(T ,K). In fact,
under the assumptions of Theorem 4.1, one has SM(T ,K) ⊆ S(T ,K). Note that
SM(T ,K) might be empty as shown by concrete examples [16]. However, whenever
K is weakly compact, it can be shown that x ∈ S(T ,K) if and only if x is locally a
solution of the MVI. This is the key of the proof of Theorem 4.1.

If T is an operator, say single-valued, and g : X →]0,+∞[ a function, then we
already remarked that T is pseudomonotone if and only if the operator T1(x) =
g(x)T (x) is pseudomonotone. Further, we note that x ∈ S(T ,K) if and only if
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x ∈ S(T1,K) for all convex subsets K . Thus, from the point of view of variational
inequalities, T and T1 are indistinguishable. One can develop this idea further by
introducing the notion of equivalence of arbitrary pseudomonotone operators [17]:

Definition 4.1 Two pseudomonotone operators T1 and T2 are equivalent iff the fol-
lowing conditions are satisfied:

(i) ZT1 = ZT2 ;
(ii) R++T1(x) = R++T2(x) for all x ∈ X\ZT1 .

This means that T1 and T2 should have the same set of zeros, and for every x that
is not a zero, every element of T1(x) is a positive multiple of an element of T2(x) and
vice versa. We denote the equivalence of T1 and T2 by T1 ∼ T2. Note that condition
(ii) in Definition 4.1 implies that T1 and T2 have the same domain: if x /∈ D(T1) then
∅ = R++T1(x) = R++T2(x); thus, x /∈ D(T2).

The term “equivalence” is justified by the fact that, under some weak conditions,
two pseudomonotone operators are equivalent if and only if the corresponding VI has
the same solutions, as the following theorem shows.

Theorem 4.2 Let T1 and T2 be two pseudomonotone operators. If T1 ∼ T2, then
S(T1,K) = S(T2,K) for all convex subsets K of X. Conversely, if S(T1,K) =
S(T2,K) for all straight line segments K of X, and T1, T2 have convex, weak∗-
compact values, then T1 ∼ T2.

Proof Assume first that T1 ∼ T2. Let K be any convex set. We show that S(T1,K) ⊆
S(T2,K). Let x ∈ S(T1,K). If x ∈ ZT1 , then x ∈ ZT2 and this obviously implies that
x ∈ S(T2,K). So assume that x /∈ ZT1 . Since x ∈ S(T1,K), for every y ∈ K there
exists x∗ ∈ T1(x) such that 〈x∗, y − x〉 ≥ 0. But T1(x) ⊆ R++T2(x) by assumption,
so there exists t > 0 such that tx∗ ∈ T2(x). Since 〈tx∗, y − x〉 ≥ 0, we obtain x ∈
S(T2,K), that is, S(T1,K) ⊆ S(T2,K). Likewise, we obtain the reverse inclusion,
consequently S(T1,K) = S(T2,K).

Now assume that S(T1, [a, b]) = S(T2, [a, b]) holds for all line segments [a, b],
and that T1, T2 have convex, weak∗-compact values. To show equality (i) in Defi-
nition 4.1, assume that x ∈ ZT1 but x /∈ ZT2 . Then 0 /∈ T2(x) and by the separation
theorem, there exists v ∈ X such that for all x∗ ∈ T2(x), one has 〈x∗, v〉 < 0. The last
inequality can be written as 〈x∗, (x + v) − x〉 < 0 for all x∗ ∈ T2(x), hence it implies
that x /∈ S(T2, [x, x +v]). On the other hand, since by assumption 0 ∈ T1(x), we infer
that x ∈ S(T1, [x, x + v]) thus arriving to a contradiction. Hence, (i) holds.

To show condition (ii), let us show first that D(T1) = D(T2). Indeed, for each x ∈
D(T1) one has S(T2, [x, x]) = S(T1, [x, x]) = {x} �= ∅, so x ∈ D(T2), hence D(T1) ⊆
D(T2) and by symmetry we have equality. Consequently, we need to show condi-
tion (ii) only for x ∈ D(T1)\ZT1 . Now assume that there exists x ∈ D(T1)\ZT1 =
D(T2)\ZT2 such that R++T1(x) �= R++T2(x), say R++T1(x) � R++T2(x). Then
there exists x∗ ∈ T1(x) such that x∗ /∈ R++T2(x). It follows that the sets R+{x∗} :=
{tx∗ : t ≥ 0} and T2(x) have an empty intersection. By the separation theorem, there
exists v ∈ X such that for all z∗ ∈ T2(x) and all t ≥ 0, 〈tx∗, v〉 > 〈z∗, v〉. It fol-
lows easily that 〈z∗, v〉 < 0 for all z∗ ∈ T2(x), and 〈x∗, v〉 ≥ 0. These imply that
x /∈ S(T2, [x, x + v]) and x ∈ S(T1, [x, x + v]), thus contradicting condition (ii). �
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The notion of equivalence is a key tool both in the theory and applications of
pseudomonotone operators, as we will see in the next sections.

5 Maximal Pseudomonotone Operators

We recall that a monotone operator T is called maximal monotone iff it has no mono-
tone extension except for itself; in other words, if S is a monotone operator such that
gr(T ) ⊆ gr(S), then S = T . A somewhat weaker notion is the following: A mono-
tone operator T is called D-maximal monotone iff it has no monotone extension
with the same domain, except for itself; that is, gr(T ) ⊆ gr(S) and D(T ) = D(S)

imply T = S.
Maximal monotone operators have many nice properties, such as:

Property P1 If T is monotone, then it has a maximal monotone extension.

Property P2 If T is D-maximal monotone, then for each x ∈ X, T (x) is weak∗-
closed and convex.

Property P3 If T is monotone, upper hemicontinuous on D(T ) with weak∗-closed
convex values and D(T ) is open, then T is D-maximal monotone. In particular, T is
usc on D(T ).

Property P4 The subdifferential of a lsc proper convex function is maximal mono-
tone.

Property P5 A D-maximal monotone operator is usc at every point of intD(T ).

These properties are related with some properties of all monotone operators:

Property P6 If T is monotone and lsc at x0 ∈ intD(T ), then T is single-valued at x0.

Property P7 If T satisfies the Aubin property1 around a point (x, x∗) of its graph,
then T is single-valued for all x in a neighborhood of x.

See for instance [2] for Properties P1–P6 and [18] for P7. If one tries to tran-
scribe these properties to pseudomonotone operators in a straightforward way, one
can see immediately that almost all of them do not hold. For instance, by anal-
ogy to Property P4 above, one would expect that the subdifferential of a pseu-
doconvex function is maximal pseudomonotone; however, if f is a continuously

1Given two Banach spaces X and Y , an operator T : X ⇒ Y is said to satisfy the Aubin property around
(x, y) ∈ grT iff there exist neighborhoods V of x, U of y and a positive real number l such that

T (v) ∩ U ⊆ T (v′) + l‖v′ − v‖BY (0,1), ∀v, v′ ∈ V,

where BY (0,1) denotes the closed unit ball of Y .
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differentiable pseudoconvex function, then one can easily check that the operator
T (x) = f ′(x) is pseudomonotone, but it has a nontrivial pseudomonotone extension,
namely T1(x) = R++{f ′(x)}. Hence, maximal pseudomonotonicity has to be de-
fined differently for Property P4 to hold. Also, the operator T : R ⇒ R defined by
T (x) := ]0,+∞[ for all x ∈ R is pseudomonotone and lsc, but not single-valued,
which is not what one would expect in view of Property P6.

A solution to this problem is provided by the notion of equivalence. As we will
see, in most cases, a result of the form “if T is monotone, then it has property A”
becomes “if T is pseudomonotone, then there exists an equivalent operator T that has
property A”. This is most welcome in VI, because we can replace the initially given
operator by another one that has better properties, and still find the same solutions;
see [19, Corollary 11] for a concrete application of this idea to an algorithm solving
a VI.

Given a pseudomonotone operator T , let [T ] be its equivalence class:

[T ] := {S : X ⇒ X∗ : S is pseudomonotone, S ∼ T }.

It is easy to check that the operator T̂ defined by T̂ (x) := ⋃
S∈[T ] S(x) is pseu-

domonotone and is equivalent to T . It is of course the maximum element of [T ], with
respect to graph inclusion. The following proposition gives an explicit construction
for T̂ .

Proposition 5.1 The operator T̂ is given by the formula:

T̂ (x) =
{

NLT,x
, if x ∈ ZT

R++T (x), if x /∈ ZT
(4)

where LT,x is the set

LT,x := {
y ∈ D(T ) : ∃y∗ ∈ T (y) : 〈y∗, y − x〉 = 0

}

and NLT,x
is the normal cone to LT,x at x:

NLT,x
:= {

x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0,∀y ∈ LT,x

}
.

Proof Let us call T1 the operator defined by the right-hand side of (4). We first show
that T1 is pseudomonotone. Let (x, x∗), (y, y∗) ∈ gr(T1) be such that 〈x∗, y −x〉 ≥ 0.
Note that there exists x∗

1 ∈ T (x) such that 〈x∗
1 , y − x〉 ≥ 0; in fact, if x ∈ ZT then we

can take x∗
1 = 0, otherwise x∗ ∈ R++T (x), so we can take x∗

1 = tx∗ for some t > 0.
Since T is pseudomonotone, it follows that 〈z∗, y − x〉 ≥ 0 for all z∗ ∈ T (y). If y /∈
ZT , then obviously 〈z∗, y − x〉 ≥ 0 for all z∗ ∈ T1(y) = R++T (y). If y ∈ ZT , then
again pseudomonotonicity of T implies that 〈x∗

1 , x − y〉 ≥ 0. Consequently, 〈x∗
1 , x −

y〉 = 0 and x ∈ LT,y . Hence for any z∗ ∈ T1(y) = NLT,y
one has 〈z∗, y − x〉 ≥ 0, and

T1 is pseudomonotone.
It is clear that T1 is equivalent to T . Let S ∈ [T ]. For all x /∈ ZT one has

S(x) ⊆ R++S(x) = R++T (x) = T1(x). Now let x ∈ ZT . We have to show that
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S(x) ⊆ NLT,x
, i.e., for each x∗ ∈ S(x) and y ∈ LT,x , 〈x∗, x − y〉 ≥ 0 holds. We con-

sider two cases: if y ∈ ZS = ZT , then 〈0, x − y〉 = 0 together with the pseudomono-
tonicity of S, imply that 〈x∗, x − y〉 ≥ 0 for all x∗ ∈ S(x). In the second case, assume
that y /∈ ZS . By definition of LT,x , there exists y∗ ∈ T (y) such that 〈y∗, y − x〉 = 0.
Since R++T (y) = R++S(y), there exists y∗

1 ∈ S(y) such that 〈y∗
1 , x − y〉 = 0 holds;

then we deduce again 〈x∗, x − y〉 ≥ 0 for all x∗ ∈ S(x). Thus, S(x) ⊆ T1(x) in all
cases, so T1 is the maximum element of [T ], i.e., it is equal to T̂ . �

Note that the definition of T̂ does not exclude that T̂ has a pseudomonotone ex-
tension with the same domain; it only says that it does not have a pseudomonotone
extension with the same domain, which is equivalent to T . We are now ready to define
maximal pseudomonotonicity:

Definition 5.1 A pseudomonotone operator T is called D-maximal pseudomonotone
iff T̂ has no pseudomonotone extension with the same domain except for itself.

There is a practical way to check maximal pseudomonotonicity, provided by the
following lemma. See [17] for the proof.

Lemma 5.1 Let T be a pseudomonotone operator. Suppose that for any (x, x∗) ∈
(D(T )\ZT ) × X∗ such that {(x, x∗)} ∪ gr(T ) is the graph of a pseudomonotone op-
erator, one has x∗ ∈ R++T (x). Then T is D-maximal pseudomonotone. The converse
is also true, provided that D(T ) is convex.

As a first application, we give the following result on the set of zeros ZT of a D-
maximal pseudomonotone operator. If T is pseudomonotone and x ∈ ZT , then it is
clear that for any (y, y∗) ∈ gr(T ), one has 〈y∗, y − x〉 ≥ 0. In fact, this is true for all
(y, y∗) ∈ gr(T̂ ) since x ∈ ZT̂ . It is interesting that for D-maximal pseudomonotone
operators, the converse also holds:

Proposition 5.2 Let T be a D-maximal pseudomonotone operator and x ∈ D(T ).
Then x ∈ ZT , if and only if

∀(y, y∗) ∈ gr(T̂ ), 〈y∗, y − x〉 ≥ 0. (5)

If in addition D(T ) is convex, then x ∈ ZT if and only if

∀(y, y∗) ∈ gr(T ), 〈y∗, y − x〉 ≥ 0. (6)

Proof If (5) holds, then for all y∗ ∈ T̂ (y) the following two implications are true:

〈0, y − x〉 ≥ 0 ⇒ 〈y∗, y − x〉 ≥ 0

〈y∗, x − y〉 ≥ 0 ⇒ 〈0, x − y〉 ≥ 0.

It follows that the operator with graph gr(T̂ ) ∪ {(x,0)} is pseudomonotone. Since
T̂ is D-maximal pseudomonotone, we deduce that 0 ∈ T (x), i.e., x ∈ ZT .
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Now assume that D(T ) is convex and (6) holds. With the same argument as be-
fore, gr(T ) ∪ {(x,0)} is the graph of a pseudomonotone operator. If we suppose that
x /∈ ZT , then it follows from Lemma 5.1 that 0 ∈ R++T (x) thus 0 ∈ T (x), a contra-
diction. �

In view of the previous proposition, the set of zeros is given by

ZT =
⋂

(y,y∗)∈gr(T̂ )

{
x ∈ D(T ) : 〈y∗, y − x〉 ≥ 0

}
. (7)

Hence, ZT is the intersection of D(T ) with a family of closed halfspaces. We deduce
the following corollary:

Corollary 5.1 If T is a D-maximal pseudomonotone operator, then ZT is closed in
D(T ). If in addition D(T ) is convex, then ZT is convex.

We now are in position to show that, in case D(T ) is convex, there is another
equivalent, but more attractive definition of D-maximal pseudomonotonicity.

Proposition 5.3 Let T be pseudomonotone with convex domain. Then T is D-
maximal pseudomonotone if and only if every pseudomonotone extension of T with
the same domain is equivalent to T .

Proof Let T be D-maximal pseudomonotone and let S be a pseudomonotone exten-
sion of T with D(S) = D(T ). We show first that ZT = ZS . Clearly, ZT ⊆ ZS since S

is an extension of T . If x ∈ ZS , then pseudomonotonicity of S implies that for every
(y, y∗) ∈ gr(S), 〈y∗, y − x〉 ≥ 0. This holds a fortiori for every (y, y∗) ∈ gr(T ), so
x ∈ ZT by Proposition 5.2, hence ZT = ZS .

Given x ∈ D(T )\ZT one has obviously R++T (x) ⊆ R++S(x). Now take any
x∗ ∈ S(x). The operator with graph gr(T ) ∪ {(x, x∗)} is a restriction of S, thus it is
pseudomonotone. Since T is D-maximal monotone, Lemma 5.1 implies that x∗ ∈
R++T (x). Accordingly, R++T (x) = R++S(x) so S ∼ T .

Conversely, assume that T is a pseudomonotone operator such that every pseu-
domonotone extension of T with the same domain is equivalent to T . If S is a pseu-
domonotone extension of T̂ with the same domain, then S is also an extension of T ,
so S ∼ T . Since T̂ is the largest element of [T ], it follows that S = T̂ . This means
that T is D-maximal monotone. �

Let us check if Properties P1–P7 of monotone operators can be modified to hold
for pseudomonotone ones. Exactly as for monotone operators, an application of
Zorn’s lemma shows that Property P1 of monotone operators has its pseudomono-
tone counterpart:

Proposition 5.4 Every pseudomonotone operator T has a D-maximal pseudomono-
tone extension with the same domain.
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Property P2 of maximal monotone operators is only partially recovered. In fact,
let T be D-maximal pseudomonotone. Then T̂ does not admit a pseudomonotone ex-
tension except for itself. However, it is easy to see that the operator conv T̂ defined by
(conv T̂ )(x) := conv(T̂ (x)) is pseudomonotone. Hence conv T̂ = T̂ and we deduce
the following property:

Proposition 5.5 If T is D-maximal pseudomonotone, then T̂ (x) is convex for all
x ∈ X.

It is not true that T̂ (x) is weak∗-closed, since for x /∈ ZT , T̂ (x) is a cone without 0.
It is not even true that T̂ (x) ∪ {0} is weak∗-closed, unless some additional conditions
are met (see, e.g., [17]).

Property P3 also has its pseudomonotone counterpart [17]:

Proposition 5.6 Let T be pseudomonotone and upper sign-continuous, D(T ) be
open and T (x) be weak∗-compact and convex for all x ∈ D(T ). Then T is D-
maximal pseudomonotone.

If f is a locally Lipschitz function, then dom(f ) is open, D(∂↑f ) = dom(f ),
∂↑f (x) is weak∗-compact and convex for all x ∈ D(∂↑f ), and ∂↑f is upper semi-
continuous in the strong-to-weak∗ topology [20]. In particular, ∂↑f is upper sign-
continuous. If in addition f is pseudoconvex, then ∂↑f is pseudomonotone. Hence,
Proposition 5.6 entails the following version of Property P4 for pseudomonotone op-
erators:

Corollary 5.2 Let f : X → R∪{+∞} be a pseudoconvex, locally Lipschitz function.
Then ∂↑f is a D-maximal pseudomonotone operator.

Property P5 cannot be recovered as it is. It is not true that for each D-maximal
pseudomonotone operator, there exists an equivalent pseudomonotone operator that
is upper semicontinuous (or even upper sign-continuous) at the interior of its domain.
However, in finite dimensions it can be shown (see [17]) that this is true in a form
similar to the one given in the second part of P3:

Theorem 5.1 Let T : R
k ⇒ R

k be pseudomonotone, upper sign-continuous on
D(T ), with compact convex values. Suppose that D(T ) is an open convex set. Then
there exists a pseudomonotone operator T1 with compact convex values which is usc
on D(T ), and such that T1 ∼ T .

Regarding Properties P6 and P7, we have the following proposition for the pseu-
domonotone case. Let us first define two operators T1 and T2 to be locally equivalent
at x0 ∈ X, iff there exists a neighborhood U of x0 such that the restrictions of T1 and
T2 on U are equivalent.

Proposition 5.7 Let T be a pseudomonotone operator and x0 ∈ intD(T ).
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(i) If T is lower semicontinuous at x0, then T (x) = {0} or T (x) ⊆ R++{x∗
0 } for

some x∗
0 ∈ T (x0).

(ii) If T is lower semicontinuous in a neighborhood of x0 /∈ ZT , then T is locally
equivalent around x0 to a single-valued, norm-to-weak∗ continuous operator.

(iii) In case X is finite dimensional, assertion (ii) is true without the assumption
x0 /∈ ZT .

Proof Part (i) was proved in Proposition 3.9 of [17]. To prove part (ii), we re-
mark that by Proposition 5.2, we know that there exists (y, y∗) ∈ gr(T̂ ) such that
〈y∗, x0 − y〉 > 0. Let U be an open neighborhood of x0 such that U ⊆ D(T ), T is
lower semicontinuous on U , and 〈y∗, x − y〉 > 0 for all x ∈ U . By pseudomono-
tonicity, we obtain 〈x∗, x − y〉 > 0 for all x∗ ∈ T (x), x ∈ U . Obviously, U does not
intersect ZT . For each x ∈ U , select F(x) ∈ R++T (x) such that 〈F(x), x − y〉 = 1.
By part (i), we know that R++T (x) = R++{F(x)}, so T is locally equivalent to the
single-valued operator F .

Now assume that {xn} is a sequence in U converging to x ∈ U . There exists λ > 0
such that F(x) = λx∗ for some x∗ ∈ T (x). From 〈F(x), y − x〉 = 1 we deduce that
λ = 1/〈x∗, x − y〉. Since T is lsc, there exist x∗

n ∈ T (xn) such limx∗
n = x∗ in the

weak∗ topology. There exist λn > 0 such that F(xn) = λnx
∗
n . Since 〈λnx

∗
n, xn − y〉 =

1 by definition of F(xn), and lim〈x∗
n, xn − y〉 = 〈x∗, x − y〉 = 1/λ, we deduce that

limλn = λ. Consequently, limF(xn) = F(x) in the weak∗ topology, and F is norm-
to-weak∗continuous.

For part (iii) we have only to consider the case x0 ∈ ZT . Let U be a closed ball
with center x0 such that U ⊆ D(T ) and T is lower semicontinuous on U . Define
F : U → X∗ as follows: if x ∈ ZT then F(x) = 0. If x /∈ ZT , then choose x∗ ∈ T (x)

and set F(x) = ρ(x) x∗
‖x∗‖ where ρ(x) is the distance of x from the closed convex

set ZT ∩ U . In view of (i), it is clear that F is equivalent to T . Also, F is obviously
continuous at every point of ZT ∩U . Continuity at points x ∈ U\ZT can be proved as
in case (ii): if the sequence {xn} in U converges to x and F(x) = ρ(x) x∗

‖x∗‖ with x∗ ∈
T (x), then by lower semicontinuity, there exist x∗

n ∈ T (xn) such that the sequence
{xn} converges to x∗. By the finite dimensionality of the space and the continuity of
ρ, we deduce that {F(xn)} converges to F(x), hence F is continuous at x. �

Note that lower semicontinuity, which we assumed in Proposition 5.7, even in the
norm×norm topology in X × X∗ is a weaker assumption than the Aubin property
assumed in P7; see [21].

6 Paramonotone and Pseudomonotone∗ Operators

Many of the algorithms used to solve problems involving monotone operators make
use of assumptions stronger than monotonicity. One of those assumptions is strict
monotonicity: An operator T : X ⇒ X∗ is called strictly monotone iff for every
(x, x∗), (y, y∗) ∈ gr(T ) with x �= y,

〈y∗ − x∗, y − x〉 > 0.
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Likewise, the operator T is called strictly pseudomonotone iff for every (x, x∗),
(y, y∗) ∈ gr(T ) with x �= y, the following implication holds:

〈x∗, y − x〉 ≥ 0 ⇒ 〈y∗, y − x〉 > 0.

Strict monotonicity and pseudomonotonicity have some important consequences;
for instance, they imply that VI has at most one solution. In search for less restrictive
assumptions, Bruck [22, 23] proposed the following property.

Definition 6.1 A monotone operator T is called paramonotone iff for every (x, x∗),
(y, y∗) ∈ gr(T ),

〈y∗ − x∗, y − x〉 = 0 ⇒ x∗ ∈ T (y) and y∗ ∈ T (x).

Obviously, strictly monotone maps are paramonotone. It can be shown [22, 23]
that the subdifferential of any proper, lsc convex function is paramonotone, so para-
monotonicity is a significantly less restrictive assumption than strict monotonicity. In
fact, the following proposition holds:

Proposition 6.1 If T : X ⇒ X∗ is cyclically monotone and maximal monotone, then
it is paramonotone. Consequently, the subdifferential of a proper, lsc convex function
is paramonotone.

The reason of the usefulness of paramonotone operators is that they possess the
“cutting-plane property” (CCP) which is stated as follows, where K is a subset of X:

x ∈ S(T ,K)

z ∈ K

〈z∗, x − z〉 ≥ 0 for some z∗ ∈ T (z)

⎫
⎬

⎭
⇒ z ∈ S(T ,K). (CPP)

CCP is useful in algorithms to solve VI for the following reason. Assume
that VI has solutions. If at the nth iteration of an algorithm we find a point xn

that is not a solution of the Stampacchia variational inequality, then CCP implies
that all solutions are contained in the intersection of K with the open halfspace
{x ∈ X : 〈x∗

n, x − xn〉 < 0}, where x∗
n is any element of xn.

A first attempt to find a notion similar to paramonotonicity, but related to pseu-
domonotone operators, was made by Crouzeix, Marcotte and Zhu [24], who intro-
duced the following definition: a multivalued operator T : X ⇒ X∗ is called2 s-
pseudomonotone∗ iff it is pseudomonotone, and for every (x, x∗), (y, y∗) ∈ gr(T )

the following implication holds:

〈x∗, y − x〉 = 〈y∗, y − x〉 = 0 ⇒ ∃k > 0 : ky∗ ∈ T (x).

It can be easily shown that s-pseudomonotone∗ operators satisfy CCP; also, every
paramonotone operator is s-pseudomonotone∗. Finally, if f is a differentiable pseu-
doconvex function, then its gradient is s-pseudomonotone∗ [24]. However, until very

2In order to avoid confusion with the notion of pseudomonotone∗ operator defined below, we follow [25]
and use “s-pseudomonotone∗” for the notion introduced in [24].
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recently, it was not known whether this can be generalized to nonsmooth pseudocon-
vex functions. An answer was given by Castellani and Giuli, who have shown by a
counterexample that the Clarke subdifferential of a locally Lipschitz pseudoconvex
function is not necessarily s-pseudomonotone∗. So this notion is not a good candi-
date to replace paramonotonicity for multivalued operators [25]. A better candidate
is given through the use of equivalence of pseudomonotone operators.

Definition 6.2 A pseudomonotone operator T is called pseudomonotone∗ [26] iff it
is pseudomonotone, and for every (x, x∗), (y, y∗) ∈ gr(T ), the following implication
holds:

〈x∗, x − y〉 = 〈y∗, x − y〉 = 0 ⇒ x∗ ∈ T̂ (y) and y∗ ∈ T̂ (x).

Pseudomonotone∗ operators have many nice properties. First, all paramonotone
and all s-pseudomonotone∗ operators are pseudomonotone∗. In fact, a single-valued
operator is s-pseudomonotone∗ if and only if it is pseudomonotone∗ [26]. This is
no longer true if we consider multivalued operators [25]. In addition, the following
proposition holds, which is a version of Proposition 6.1 adapted to pseudomonotone∗
operators.

Proposition 6.2 If T is a D-maximal pseudomonotone, cyclically pseudomonotone
operator with convex domain, then T is pseudomonotone∗. Consequently, the subdif-
ferential of a locally Lipschitz pseudoconvex function is pseudomonotone∗.

It is easy to see that if T is pseudomonotone∗ and f : X → ]0,+∞[ is any func-
tion, then the operator T1 defined by T1(·) := f (·)T (·) is pseudomonotone∗. This can
be generalized as follows [26].

Proposition 6.3 If T : X ⇒ X∗ is pseudomonotone∗ and S ∼ T , then S is
pseudomonotone∗.

It is not hard to check that pseudomonotone∗ operators have the cutting-plane
property. It is interesting that under the assumptions commonly used in varia-
tional inequalities, they are exactly the operators having the cutting-plane prop-
erty. Given K ⊆ X and an operator T , let us call T “pseudomonotone on K”
(resp., “pseudomonotone∗ on K”), iff its restriction to K is pseudomonotone (resp.,
pseudomonotone∗). The proof of the following two results can be found in [26].

Theorem 6.1 Let T : X ⇒ X∗ be pseudomonotone on a convex set K .

(i) If T is pseudomonotone∗, then CCP holds on every subset of K .
(ii) Conversely, if T has convex, w∗-compact values and has the CCP on every con-

vex, compact subset of K , then T is pseudomonotone∗ on intK .

In case T is single-valued, we can even drop the assumption of pseudomonotonic-
ity:
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Corollary 6.1 Let T : K → X∗ be hemicontinuous (i.e., weak∗-continuous along
straight lines). If T has the CCP on every convex compact subset of K , then it is
pseudomonotone on K , and pseudomonotone∗ on intK .

As expected, algorithms making use of CCP can be successfully applied to
pseudomonotone∗ operators. Three such examples can be found in [19, 26]. Another
application is the following. Consider the minimization problem

min
{
f (x) : x ∈ C

}
(8)

where C ⊆ X and f : X → R ∪ {+∞} is proper. The following well-known fact is
the so-called minimum principle: if C is convex and f is convex and continuous at
x̄ ∈ C, then x̄ is a solution of (8) if and only if ∂f (x̄) ∩ −N(x̄,C) �= ∅. In relation to
the minimum principle, Burke and Ferris [27] obtained the following result. Assume
that C is closed and convex and f is continuous and convex. For any solution x̄ of
(8), the set S of all solutions is given by

S = {
x ∈ C : ∂f (x) ∩ −N(x,C) = ∂f (x̄) ∩ −N(x̄,C)

}
. (9)

Whenever f is locally Lipschitz and pseudoconvex, the minimum principle also
holds in the following form: x̄ ∈ C is a solution of (8) if and only if ∂↑f (x̄) ∩
−N(x̄,C) �= ∅. Very recently, by using Proposition 6.2, Castellani and Giuli [25]
obtained the following result.

Proposition 6.4 Let C be closed and convex, f a locally Lipschitz pseudoconvex
function, and S the set of solutions of problem (8). If x̄ ∈ S, then

S = {
x ∈ C : ∂̂↑f (x) ∩ −N(x,C) = ∂̂↑f (x̄) ∩ −N(x̄,C)

}
.

Comparing with (9), we note that ∂f has to be replaced not just by ∂↑f , but with
the maximum element of its equivalence class.

7 Pseudomonotone Operators and Mathematical Economics

Pseudomonotonicity appears in consumer theory of mathematical economics. Sup-
pose that in an economy there are n different commodities. In this case, a commodity
bundle is an element of R

n+ or, more generally, of a subset K of R
n+. It is supposed

that for each consumer, a preference relation � is defined on K , x � y meaning that
the consumer likes x at least as much as y. In many cases, the preference relation is
supposed to be defined by the so-called utility function, i.e., a function u : K → R

such that x � y if and only if u(x) ≥ u(y). Prices of the n commodities are repre-
sented by an element p ∈ R

n++ = (R++)n. Given a number w > 0 representing the
budget of the consumer, for each price vector p the consumer chooses a commod-
ity bundle maximizing the utility, among all bundles x whose value 〈p,x〉 does not
exceed w. That is, one has to solve the following problem:

maximize u(x) s.t. x ∈ K, 〈p,x〉 ≤ w.
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It is clear that the solutions of the above problem do not change if one replaces w

by 1 and p by p/w. For this reason, w is usually taken equal to 1. Then one defines
the budget set B(p) by

B(p) := {
x ∈ K : 〈p,x〉 ≤ 1

}
.

The demand correspondence X : R
n++ ⇒ K is defined by

X(p) := {
x ∈ B(p) : u(x) ≥ u(y),∀y ∈ B(p)

}
. (10)

The utility function is a mathematically convenient, but artificial way to express
consumer’s preferences. The demand correspondence is supposed to have a more ob-
jective character than the utility function since it can actually be observed, and can
be defined in an obvious way by using only the preference relation �. The revealed
preference problem in consumer theory is the following: given a demand correspon-
dence X, does there exist a utility function u such that X is defined by (10), and,
if the answer is positive, how can one define u using X? The answer should be re-
lated of course to some assumptions on the demand correspondence, which should
be the result of economic considerations. Note that if u is a utility function and
h : u(X) → R is strictly increasing, then h ◦ u is a utility function corresponding to
the same preference relation and producing the same demand correspondence. Given
this non-uniqueness of u, in some cases one chooses a utility function satisfying a
normalization condition, such as u(te) = t for all t > 0, where e = (1,1, . . . ,1).

The utility function u or, more generally, the preference relation � is assumed to
satisfy some assumptions. For instance, it is assumed that u is continuous and strictly
increasing along half-lines starting at the origin, i.e., u(x) < u(tx) for all t > 1. This
simply expresses that fact that all commodities are desirable by the consumer. In
this case, whenever for some x ∈ K one has 〈p,x〉 < 1, it follows easily that x ∈
B(p)\X(p). Thus, for any x ∈ X(p) one has 〈p,x〉 = 1.

Now assume that p1,p2, . . . , pn is a finite sequence of prices and xi ∈ X(pi)

for i = 1,2, . . . , n. Then 〈pi, xi〉 = 1 for all i. Assume further that 〈pi, xi+1 −
xi〉 ≤ 0 for all i = 1,2, . . . , n − 1. Then 〈pi, xi+1〉 ≤ 1 thus xi+1 ∈ B(pi). By
definition of the correspondence X, this implies that u(xi+1) ≤ u(xi) for all i =
1,2, . . . , n − 1. Hence, u(xn) ≤ u(x1). It follows that necessarily 〈pn, x1〉 ≥ 1, oth-
erwise x1 ∈ B(pn)\X(pn) so that u(x1) < u(xn), a contradiction. Consequently,
〈pn, x1 − xn〉 ≥ 0. The preceding argument shows that the demand correspondence
must satisfy the so-called “Generalized Axiom of Revealed Preference” GARP [28]:

xi ∈ X(pi), ∀i = 1,2, . . . , n

〈pi, xi+1 − xi〉 ≤ 0, ∀i = 1,2, . . . , n − 1

}

⇒ 〈pn, x1 − xn〉 ≥ 0. (GARP)

Denoting by X−1 the inverse of the operator X, GARP says simply that the oper-
ator −X−1 is cyclically pseudomonotone.

The following property was remarked in [29].

Proposition 7.1 Let Y be a Banach space and T : Y ⇒ Y ∗ be an operator such that
〈x∗, x〉 = 1 for all (x, x∗) ∈ gr(T ). Then T is cyclically pseudomonotone if and only
if T −1 is cyclically pseudomonotone.
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Proof Assume that T −1 is cyclically pseudomonotone. Consider any finite sequence
x1, x2, . . . , xn in Y and any x∗

i ∈ T (xi), i = 1,2, . . . , n. Now consider the finite se-
quence x∗

n, x∗
n−1, . . . , x

∗
1 (in this order). Since xi ∈ T −1(x∗

i ), cyclic pseudomono-
tonicity of T −1 says that the following implication is true:

〈x∗
n−1 − x∗

n, xn〉 ≥ 0, 〈x∗
n−2 − x∗

n−1, xn−1〉 ≥ 0, . . . 〈x∗
1 − x∗

2 , x2〉 ≥ 0

⇒ 〈x∗
n − x∗

1 , x1〉 ≤ 0.

Since 〈x∗
i , xi〉 = 1, this implies

〈x∗
n−1, xn〉 ≥ 1, 〈x∗

n−2, xn−1〉 ≥ 1, . . . 〈x∗
1 , x2〉 ≥ 1 ⇒ 〈x∗

n, x1〉 ≤ 1

or, if we write the left-hand side in reverse order,

〈x∗
1 , x2 − x1〉 ≥ 0, 〈x∗

2 , x3 − x2〉 ≥ 0, . . . 〈x∗
n−1, xn − xn−1〉 ≥ 0

⇒ 〈x∗
n, x1 − xn〉 ≤ 0.

The last implication expresses the cyclic pseudomonotonicity of T .
The converse follows from the fact that T is the inverse of T −1. �

According to the proposition, GARP says also that −X is cyclically pseudomono-
tone.

Very recently, Crouzeix, Keraghel and Rahmani [30] considered the case K =
R

n++ and showed the following result. For the sake of this theorem, given a function
u : R

n++ → R, let us denote by Xu the demand correspondence defined by u. We call
u increasing iff u(x) ≤ u(x + y) for all x, y ∈ R

n++.

Theorem 7.1 Assume that X : R
n++ ⇒ R

n++ has nonempty values, satisfies GARP
and is such that 〈p,x〉 = 1 for all x ∈ X(p), p ∈ R

n++. Then there exist two increas-
ing, quasiconcave functions u− and u+ defined on R

n++, satisfying the normalization
condition

u+(te) = u−(te) = t, ∀t > 0

and such that, for all x ∈ X(p), p ∈ R
n++, and all y ∈ B(p),

u+(x) ≥ u+(y) and u−(x) ≥ u(y)

that is, X(p) ⊆ Xu+(p) and X(p) ⊆ Xu−(p) for all p ∈ R
n++.

If further u : R
n++ → R is any increasing, quasiconcave function satisfying

u(te) = t , ∀t > 0 and such that X(p) ⊆ Xu(p) for all p ∈ R
n++, then u−(x) ≤ u(x) ≤

u+(x), for all x ∈ R
n++.

The above result is reminiscent of the result, mentioned in Sect. 2, that the graph
of any cyclically monotone operator is included in the graph of the subdifferential of
a proper, lsc convex function.
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8 Open Questions

The theory of pseudomonotone operators is rich, but there are still many important
open problems. We mention a few of them here.

1. Theorem 3.2 gives a characterization of single-valued, differentiable pseudomono-
tone operators. On the other hand, it is known that a single-valued differentiable
operator T defined on a simply connected open subset of R

n is cyclically mono-
tone if and only if T ′ is symmetric and positive semidefinite. Is there a character-
ization for single-valued, differentiable cyclically pseudomonotone operators?

2. Let X : R
n++ ⇒ R

n++ be an operator satisfying GARP and such that 〈p,x〉 = 1 for
all x ∈ X(p), p ∈ R

n++. Which economically justified assumptions would guaran-
tee that there exists a function u : R

n++ → R such that X = Xu for all p ∈ R
n++,

rather than X(p) ⊆ Xu(p)?
3. Under what conditions is a pseudomonotone operator equivalent to a monotone

one?
4. Quasimonotone operators are in some sense more attractive than pseudomono-

tone ones. Besides having applications to economics, they are related to quasi-
convex functions in a very simple way: a lsc function f is quasiconvex if and
only if ∂↑f is quasimonotone [5]. Of course, quasiconvex functions is a wider
and more important class of functions than pseudoconvex ones. However, dealing
with quasimonotone operators is often more tricky and requires more sophisti-
cated arguments. Many of the advances for pseudomonotone operators in varia-
tional inequalities, have been also achieved, with some additional effort, for quasi-
monotone ones. However, there is no theory concerning the maximality of quasi-
monotone operators. Can one invent a suitable definition so that we have similar
theoretical results and applications as for pseudomonotone operators?

5. The notion of D-maximal monotone operator seems to be very fruitful and fits
very well with other notions such as pseudomonotone∗ operators. Many properties
similar to those of monotone operators have been shown. However, there is a lot to
be done: how to define maximal pseudomonotone operators without reference to
the domain D? Can we have a theorem similar to Corollary 5.2 for the maximality
of subdifferentials of lsc (rather than locally Lipschitz) pseudoconvex functions?
How to extend Theorem 5.1 to infinite-dimensional spaces?
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