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Abstract

We study in this paper the existence and approximation of solutions of variational in-
equalities involving generalized pseudo-contractive mappings in Banach spaces. The conver-
gence analysis of a proposed hybrid iterative method for approximating common zeros or
fixed points of a possibly infinitely countable or uncountable family of such operators will
be conducted within the conceptual framework of the “viscosity approximation technique”
in reflexive Banach spaces. This technique should make existing or new results in solving
variational inequalities more applicable.

1 Introduction

Variational inequalities were initially studied by Stampacchia (cf. [18]), which cover various
problems from partial differential equations, optimal control, optimization, mathematical pro-
gramming, mechanics and finance, as some special cases (see, e.g. [13, 44]). Below is a famous
result.

Theorem 1.1 (Projection Gradient Method [44]) Let C be a nonempty closed convex subset of
a Hilbert space H, let F : C → H be a κ-Lipschitzian and η-strongly monotone operator, and
let PC be the metric projection from H onto C. Then the following hold:

(i) For any µ in (0, 2η/κ2), the mapping PC(I − µF ) : C → C is a contraction.

(ii) For any x1 in C, the sequence {xn} generated by the Picard iteration process:

xn+1 = PC(I − µF)xn, ∀n ∈ N, (1.1)

converges strongly to the unique solution of the variational inequality
V I(H,C,F , η) : find u in C such that 〈Fu, u− v〉 ≤ 0 for all v in C.

The fixed-point formulation (1.1) involves the projection mapping PC , which might not be
easy to compute, due to the complexity of the convex set C. In order to reduce the complex-
ity probably caused by the projection mapping PC , Yamada (see [40], and also [11]) recently
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introduced a hybrid steepest descent method for solving the problem

V I(H,F (T ),F , η) : find u in F (T ) such that 〈Fu, u− v〉 ≤ 0 for all v in F (T ).

Here is the idea. Suppose T (e.g., T = PC) is a nonexpansive mapping from a Hilbert space
H into itself with a nonempty fixed point set F (T ), and F is κ-Lipschitzian and η-strongly
monotone over the range T (H) of T . Take a fixed number µ in (0, 2η/κ2) and a sequence {λn}
in (0, 1) satisfying the conditions

(L1) λn → 0,

(L2)
∑∞

n=1 λn = +∞, and

(L3) limn→∞(λn − λn+1)/λ2
n+1 = 0.

Starting with an arbitrary initial guess x0 in H, one generates a sequence {xn} by the following
algorithm:

xn+1 := Txn − λn+1F(Txn), ∀n ≥ 0. (1.2)

Yamada [40, Theorem 3.3, p.486] proved that the sequence {xn} defined by (1.2) converges
strongly to a unique solution of V I[H,F (T ),F , η].

In the case when {T1, T2, . . . , TN} is a finite family of nonexpansive mappings satisfying

N⋂
i=1

F (Ti) = F (T1T2 · · ·TN ) = F (TNT1 · · ·TN−1) = · · · = F (T2T3 · · ·TNT1). (1.3)

Yamada [40] studied the following algorithm:

xn+1 = T[n+1]xn − λn+1µFT[n+1]xn, n ≥ 0. (1.4)

Here, T[r] = Tr mod N for r in N, and the sequence {λn} satisfies the conditions (L1), (L2), and

(L4)
∞∑

n=1
|λn − λn+N | < +∞.

In 2003, Xu and Kim [39] further considered and studied the hybrid steepest-descent algo-
rithms (1.2) and (1.4). Their major contribution is that the strong convergence of algorithms
(1.2) and (1.4) holds with conditions (L1), (L2), (L3) and (L4) assumed, still in the framework
of Hilbert spaces. They also established the strong convergence with conditions (L3) be replaced
by

(L5) limn→∞(λn − λn+1)/λn+1 = 0,

and (L4) be replaced by

(L6) limn→∞(λn − λn+r)/λn+r = 0 for all r.

Following Xu and Kim [39], several authors discussed this kind of problems assuming (1.3)
in the context of Hilbert spaces and q-uniformly smooth Banach spaces (see, e.g. [7, 45]).
Zeng, Schaible and Yao [45] obtained a more general result in this direction, in which F is
demicontinuous and φ-strongly accretive with domain

⋃N
i=1 Ti(H).

In this paper, we will study variational inequality problems concerning a closed convex subset
C of a smooth Banach space X. Let D be a nonempty closed convex subset of C, let J : X → X∗
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be the normalized duality mapping, and let F : C → X for which A = I −F is a generalized Φ-
pseudo contractive nonlinear operator associated with a strictly increasing function Φ : [0,∞) →
[0,∞) satisfying Φ(0) = 0. We consider the following generalized variational inequality

GV I(1.5)[C,D,F ,Φ] : find z in D such that 〈Fz, J(z − v)〉 ≤ 0 for all v in D. (1.5)

Concrete definitions for the notations will be given in Section 2.
Motivated by [6, 15, 45], we will investigate in Section 3 the existence of the solutions of

GV I(1.5) [C,D,F ,Φ], under certain assumptions on the nonlinear operator F and that D is a
set of common zeros or fixed points of a possibly infinitely countable or uncountable family of
demicontinuous nonlinear operators on a reflexive Banach space. In order to broaden the scope of
applicability of the existence results, we propose in Section 4 a unified hybrid iterative algorithm
obtained by coupling a φ-strongly pseudo-contractive operator A and members of a possibly
infinite family of demicontinuous non-Lipschitzian mappings. We investigate its asymptotic
behavior for approximating solutions of GV I(1.5)[C,D,F ,Φ] under mild control conditions on
iteration parameters. We also propose in Section 5 a parallel algorithm to remove the assumption
(1.3). Our iterative method generalizes and improves most of the existing methods for viscosity
approximation (see, e.g. [6, 8, 9, 32, 33, 37, 39, 41]) and hybrid steepest-descent methods for
variational inequalities involving demicontinuous non-Lipschitzian nonlinear mappings (see, e.g.
[39, 40, 45]). We shall demonstrate how to use our results in solving the image recovery problems
for an example of possible applications.

2 Preliminaries

Throughout this paper (X, ‖ · ‖) is a real Banach space with unit sphere S = {z ∈ X : ‖z‖ =
1} and Banach dual space (X∗, ‖ · ‖∗). A Banach space X is said to be smooth provided
limt→0+(‖x + ty‖ − ‖x‖)/t exists for each x and y in S. In this case, the norm of X is said to
be Gâteaux differentiable. It is said to be uniformly Gâteaux differentiable if for each y in S,
the above limit is attained uniformly for x in S. It is well known that every uniformly smooth
space (e.g., Lp space, 1 < p < ∞) has a uniformly Gâteaux differentiable norm (see e.g., [10]).

Let J : X → 2X∗
be the normalized duality mapping. In other words,

J(x) = {f ∈ X∗ : f(x) = ‖x‖2 = ‖f‖2}, ∀x ∈ X.

In case X is smooth, J is a single-valued norm to weak* continuous mapping. When X is strictly
convex, J(x) ∩ J(y) = ∅ for distinct x, y in X (see, e.g., [10]).

2.1 Various contractive mappings

Let T : C → X be a nonlinear mapping with domain C ⊆ X. The fixed point set of T is defined
by

F (T ) = {x ∈ C : Tx = x}.

The mapping T is said to be

1. demicontinuous if Txn → Tx weakly whenever xn → x in norm in C;

2. nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y in C;

3. uniformly L-Lipschitzian if there exists a constant L > 0 such that

‖Tnx− Tny‖ ≤ L‖x− y‖, ∀x, y ∈ C,∀n ∈ N;
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4. pseudo-contractive if for all x, y in C, there exists j(x− y) in J(x− y) satisfying

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2;

5. φ-strongly pseudo-contractive if there exists a strictly increasing function φ : [0,∞) → [0,∞)
with φ(0) = 0 such that for all x, y in C we have j(x− y) in J(x− y) satisfying

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 − φ(‖x− y‖)‖x− y‖;

6. generalized Φ-pseudo-contractive (cf. [3, 38]) if there exists a strictly increasing function
Φ : [0,∞) → [0,∞) with Φ(0) = 0 such that for all x, y in C, we have j(x − y) in J(x − y)
satisfying

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 − Φ(‖x− y‖).

We remark that A := I−T is accretive (resp., φ-strongly accretive, uniformly accretive) if T
is pseudo-contractive (resp., φ-strongly pseudo-contractive, generalized Φ-pseudo-contractive),
where I is the identity operator. As accretive operators play important roles in the study of
nonlinear evolution equations in Banach spaces, the pseudo-contractive mappings have been
widely studied.

The modulus of continuity of a continuous mapping T on C is the function wT : [0,∞) →
[0,∞) defined by

wT (t) := sup{‖Tx− Ty‖ : x, y ∈ C; ‖x− y‖ ≤ t}.

Clearly, ‖Tx − Ty‖ ≤ wT (‖x − y‖) for all x, y in C. If T is uniformly continuous, then wT is
nonnegative, nondecreasing, continuous on (0,∞), and wT (0) = 0.

A nonempty closed convex subset C of a Banach space X is called a retract of X if there
exists a continuous mapping P from X onto C such that Px = x for all x in C. We call such
P a retraction of X onto C. A retraction P is said to be sunny if P (Px + t(x − Px)) = Px
for each x in X and t ≥ 0. If a sunny retraction P is also nonexpansive, then C is said to be a
sunny nonexpansive retract of X.

2.2 Asymptotic properties of a family of nonlinear mappings

Let C be a nonempty subset of a Banach space X and fix a sequence {cn} in [0,∞) with cn → 0.
Throughout this paper, G denotes an unbounded subset of R+ := [0,∞) (often G = N or R+).

We adapt the following definitions from [1, 26, 27, 28]. A family T := {Ts : s ∈ G} of
mappings from C into itself is said to be

1. uniformly continuous on C if each member of T is uniformly continuous on C;

2. nearly uniformly L-Lipschitzian associated with net {ct} if there exist a constant L > 0 and
a net {ct : t ∈ G} in [0,∞) with limt→∞ ct = 0 such that

‖Ttx− Tty‖ ≤ L‖x− y‖+ ct, ∀x, y ∈ C,∀t ∈ G;

3. nearly asymptotically nonexpansive associated with the net {(ct, η(Tt))} if there exist two nets
{ct : t ∈ G} in [0,∞) with limt→∞ ct = 0 and {η(Tt) : t ∈ G} in [1,∞) with limt→∞ η(Tt) = 1
such that

‖Ttx− Tty‖ ≤ η(Tt)‖x− y‖+ ct, ∀x, y ∈ C,∀t ∈ G;

4. uniformly asymptotically regular on C if

lim
t∈G, t→∞

sup
x∈ eC

‖Ttx− TsTtx‖ = 0, for all s ∈ G and bounded C̃ ⊆ C.
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A sequence S := {Tn} of mappings from C into itself is said to be

5. asymptotically m-regular at a point x0 in C if lim
n→∞

‖Tnx0 − TmTnx0‖ = 0;

6. asymptotically regular at a point x0 if it is asymptotically 1-regular at x0.

We also say that T := {Ts : s ∈ G} satisfies property (A ) if for each bounded set {xs : s ∈ G}
in C, we have

(A ) lim
s→∞

(xs − Tsxs) = 0 ⇒ lim
s→∞

(xs − Ttxs) = 0, ∀t ∈ G.

It is easy to see that if T has property A, then every approximate fixed point (resp. fixed point)
of any member in T is a common approximate fixed point (resp. fixed point) of all members in
T .

Remark 2.1 (I) Let T be a singleton, i.e., T = {T}, or Ts = T for all s in G. Then {T}
always has property (A ).

(II) Assume T = {Ts : s ∈ G} is a uniformly continuous semigroup and uniformly asymptoti-
cally regular on C. Then T has property (A ). Indeed, for a bounded set {ys : s ∈ G} in
C with lim

s→∞
(xs − Tsxs) = 0, we have

‖ys − Ttys‖ ≤ ‖ys − Tsys‖+ ‖Tsys − TtTsys‖+ ‖TtTsys − Ttys‖
≤ ‖ys − Tsys‖+ sup

y∈{yγ :γ∈G}
‖Tsy − TtTsy‖+ wTt(‖ys − Tsys‖) → 0

as s →∞ for all t in G.

The example below shows that there exists a nonexpansive mapping which is not asymptot-
ically regular. However, a nontrivial convex combination Tλ = (1 − λ)I + λT of nonexpansive
mappings turns out to be asymptotically regular in a general Banach space (see [1]).

Example 2.2 Let C be a bounded symmetric subset of a Banach space X containing 0. Let
Tx = −x, ∀x ∈ C. Let T = {Tn : n ∈ N} be the semigroup generated by the nonexpansive
mapping T : C → C with F (T ) = {0}. Then sup

x∈ eC
‖Tnx − Tn+1x‖ = 2 sup

x∈ eC
‖x‖ for all

C̃ ⊂ C. Clearly, T is not uniformly asymptotically regular on C, but it is 2-regular on C.

2.3 Some known results

In subsequent sections, we shall make use of the following results.

Lemma 2.3 (see [1, 22]) Let C be a nonempty closed convex subset of a reflexive and strictly
convex Banach space X, and let x ∈ X. Then there exists a unique element x0 in C such that
‖x− x0‖ = inf

y∈C
‖x− y‖.

Let f be a continuous linear functional on `∞. We use fn(xn+m) to denote

f(xm+1, xm+2, xm+3, · · · , xm+n, · · · ),

for m = 0, 1, 2, . . .. A continuous linear functional j on l∞ is called a Banach limit if ‖j‖∗ =
j(1) = 1 and jn(xn) = jn(xn+1) for each x = (x1, x2, · · · ) in l∞.

Fix any Banach limit and denote it by LIM. Note that ‖LIM ‖∗ = 1,

lim inf
n→∞

tn ≤ LIMn tn ≤ lim sup
n→∞

tn,
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and
LIMn tn = LIMn tn+1, ∀(tn) ∈ l∞.

Let T = {Ts : s ∈ G} be a collection of self-mappings on C ⊆ X. For a bounded sequence
{yn} in C, let

M{yn} = {y ∈ C : LIMn ‖yn − y‖2 = inf
x∈C

LIMn ‖yn − x‖2}.

Lemma 2.4 (Ha and Jung [14, Lemma 1]) Let X be a Banach space with a uniformly Gâteaux
differentiable norm, C a nonempty closed convex subset of X, and {xn} a bounded sequence in
X. Let LIM be a Banach limit and y ∈ C. Then

y ∈ M{xn} ⇔ LIMn〈x− y, J(xn − y)〉 ≤ 0, ∀x ∈ C.

Lemma 2.5 (Goebel and Reich [12, Lemma 13.1]) Let C be a nonempty convex subset of
a smooth Banach space X, let D be a non-empty subset of C, and let P be a retraction from C
onto D. Then the following are equivalent:

(a) P is sunny and nonexpansive.

(b) 〈x− Px, J(z − Px)〉 ≤ 0, for all x in C and z in D.

(c) 〈x− y, J(Px− Py)〉 ≥ ‖Px− Py‖2, for all x, y in C.

Proposition 2.6 (Bruck [5]) Let C be a nonempty closed convex subset of a strictly convex
Banach space X. Let S = {Tn : n ∈ N} be a sequence of nonexpansive mappings from C into itself
such that F (S) 6= ∅ and let {αn} be a sequence of real numbers in (0, 1) such that

∑∞
n=1 αn = 1.

Then Tx =
∑∞

n=1 αnTnx defines a nonexpansive mapping on C with F (S) = F (T ).

Lemma 2.7 (Alber and Guerre-Delabriere [2]) Let {αn} and {βn} be two sequences of
nonnegative real numbers such that limn→∞ βn/αn = 0 and

∑∞
n=1 αn = +∞. Let φ : [0,∞) →

[0,∞) be a continuous and nondecreasing function such that φ(0) = 0 and φ(t) > 0 for t > 0.
Let {λn} be a sequence of nonnegative real numbers satisfying the recursive inequality:

λn+1 ≤ λn − αnφ(λn) + βn, ∀n ∈ N.

Then {λn} converges to zero.

3 Existence Results

Proposition 3.1 Let A : C → C be a continuous generalized Φ-pseudo-contractive mapping of
a nonempty closed convex subset C of a smooth Banach space X. Let T = {Ts : s ∈ G} be a
family of continuous pseudo-contractive mappings from C into itself.

(a) For any s in G and scalar bs in (0, 1), there exists a unique point ys in C such that

ys = bsAys + (1− bs)Tsys. (3.1)

(b) If v is a common fixed point of T , then

〈ys −Ays, J(ys − v)〉 ≤ 0.
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Proof. (a) Set Φs(·) := bsΦ(·) for each s in G. The mapping

TA
s (y) := bsAy + (1− bs)Tsy, ∀y ∈ C,

is continuous and generalized Φs-pseudo-contractive. Indeed, for x, y in C,

〈TA
s x− TA

s y, J(x− y)〉 = bs〈Ax−Ay, J(x− y)〉+ (1− bs)〈Tsx− Tsy, J(x− y)〉
≤ bs(‖x− y‖2 − Φ(‖x− y‖)) + (1− bs)‖x− y‖2

= ‖x− y‖2 − Φs(‖x− y‖).

Note also that Φs(·) is a strictly increasing function with Φs(0) = 0. By Xiang [38, Theoerm
2.1], TA

s has a unique fixed point ys in C satisfying (3.1).
(b) Suppose that v is a common fixed point of the family T . Since each Ts is a pseudo-

contractive,

〈ys − Tsys, J(ys − v)〉 = 〈ys − v + Tsv − Tsys, J(ys − v)〉
= ‖ys − v‖2 − 〈Tsys − Tsv, J(ys − v)〉 ≥ 0.

From (3.1), we have

〈ys −Ays, J(ys − v)〉 = (1− bs)〈Tsys −Ays, J(ys − v)〉
= (1− bs)〈Tsys − ys + ys −Ays, J(ys − v)〉.

It follows that
〈ys −Ays, J(ys − v)〉 =

1− bs

bs
〈Tsys − ys, J(ys − v)〉 ≤ 0,

as asserted. �
Let T = {Ts : s ∈ G} be a family of mappings from a nonempty convex subset C of a Banach

space into C and A : C → C. Denote by

ET (C) = {x ∈ C : Tsx = λx + (1− λ)Ax for some λ > 1 and s in G}.

Theorem 3.2 Let C be a nonempty closed convex subset of be a reflexive Banach space X with
a uniformly Gâteaux differentiable norm. Let A : C → C be a continuous generalized Φ-pseudo-
contractive mapping with a bounded range A(C). Set F = I − A. Let T = {Ts : s ∈ G}
be a family of continuous pseudo-contractive mappings with property (A ) such that ET (C) is
bounded. Suppose every nonempty closed convex bounded subset of C has the fixed point property
for nonexpansive self-mappings. Then we have the following:

(i) GV I(3.2)[C,F (T ),F ,Φ]:

find z in F (T ) such that 〈Fz, J(z − v)〉 ≤ 0 for all v in F (T ) (3.2)

has a unique solution y∗ in F (T ).

(ii) Let {bs}s∈G be a scalar net in (0, 1) such that lim
s→∞

bs = 0. The net {ys} described by (3.1)
converges strongly to y∗ as s →∞.

Proof. (i) From [21, Theorem 6] we know that the mapping 2I−Tt has a nonexpansive inverse,
denoted by gt, which maps C into itself with F (Tt) = F (gt) for t in G. Proposition 3.1(a) shows
that there exists a unique point ys in C satisfying (3.1). From (3.1), we have

ys − Tsys = bs(1− bs)−1(Ays − ys).
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One can easily see, by the boundedness of ET (C) and A(C), that ys − Tsys → 0 as s →∞. By
property (A ), we have ys − Ttys → 0 as s →∞ for all t in G. This implies that ys − gtys → 0
as s → ∞ for all t in G. We can choose a sequence {sn} in G such that limn→∞ sn = ∞. Set
yn := ysn . Fix an arbitrary Banach limit LIM, and define a function ϕ : C → R+ by

ϕ(x) := LIMn ‖yn − x‖2, ∀x ∈ C.

Set
M := {y ∈ C : ϕ(y) = inf

x∈C
ϕ(x)}. (3.3)

Note that X is reflexive, ϕ(x) → ∞ as ‖x‖ → ∞, and ϕ is a continuous convex function. By
Barbu and Precupanu [4, Theorem 1.2, p. 79], the set M is nonempty. By Takahashi [34], we see
that M is also closed, convex and bounded. Moreover, M is invariant under gγ , i.e., gγ(M) ⊂ M
for all γ in G. In fact, we have for each y in M ,

ϕ(gγy) = LIMn ‖yn − gγy‖2 ≤ LIMn ‖gγyn − gγy‖2 ≤ LIMn ‖yn − y‖2 = ϕ(y).

By assumption, each gγ has a fixed point yγ in M . As the family {gγ : γ ∈ G} has property
(A), it has a common fixed point in M , that is, M ∩F (T ) 6= ∅. Let y∗ ∈ F (T )∩M . By Lemma
2.4, we have LIMn〈z − y∗, J(yn − y∗)〉 ≤ 0 for all z in C. In particular,

LIMn〈Ay∗ − y∗, J(yn − y∗)〉 ≤ 0. (3.4)

By Proposition 3.1(b), we have

〈yn −Ayn, J(yn − v)〉 ≤ 0, ∀n ∈ N,∀v ∈ F (T ). (3.5)

From (3.5), we have

‖yn − y∗‖2 = 〈yn −Ayn + Ayn −Ay∗ + Ay∗ − y∗, J(yn − y∗)〉
≤ ‖yn − y∗‖2 − Φ(‖yn − y∗‖) + 〈Ay∗ − y∗, J(yn − y∗)〉. (3.6)

From (3.4) and (3.6), we obtain LIMn Φ(‖yn − y∗‖) ≤ 0. Thus, there exists a subsequence of
{yn}, still denoted by {yn}, such that yn → y∗.

We now show that y∗ is a solution of GV I(3.2)[C,F (T ),F ,Φ]. For fixed v in F (T ), we have
{yn − v} is bounded. It follows from (3.5) that

〈y∗ −Ay∗, J(yn − v)〉 = 〈y∗ − yn + yn −Ayn + Ayn −Ay∗, J(yn − v)〉
≤ 〈y∗ − yn + Ayn −Ay∗, J(yn − v)〉
≤ ‖y∗ − yn + Ayn −Ay∗‖ ‖yn − v‖
≤ ‖y∗ − yn + Ayn −Ay∗‖ sup

m∈N
‖ym − v‖, ∀n ∈ N. (3.7)

Since the duality mapping J is single-valued and norm to weak∗ continuous, by passing to a
subsequence we have

〈y∗ −Ay∗, J(yni − v)〉 → 〈y∗ −Ay∗, J(y∗ − v)〉.

Using the continuity of A we get from (3.7) that

〈y∗ −Ay∗, J(y∗ − v)〉 ≤ 0, ∀v ∈ F (T ).

It follows that y∗ is a solution of the variational inequality GV I(3.2)[C,F (T ),F ,Φ]. One can
easily see that y∗ is the unique solution of GV I(3.2)[C,F (T ),F ,Φ].
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(ii) Assume that {tn} is another sequence in G with lim
n→∞

tn = ∞ such that ytn → z∗.

Then as shown in (i), z∗ is also a solution of GV I(3.2)[C,F (T ),F ,Φ]. By uniqueness, z∗ = y∗.
Therefore, {ys} converges strongly to y∗. �

The next theorem extends the results of Kikkawa and Takahashi [17], Takahashi [35], Wong,
Sahu and Yao [37] and many others from nonexpansive mappings to a semigroup of nonexpansive
mappings.

Theorem 3.3 Let C be a nonempty closed convex subset of a reflexive Banach space with a
uniform Gǎteaux differentiable norm. Assume that C has normal structure. Let A : C → C
be a continuous generalized Φ-pseudo-contractive mapping with a bounded range A(C), and let
T = {Ts : s ∈ G} be a semigroup of nonexpansive mappings from C into itself with property
(A ) such that ET (C) is bounded. Then the conclusions of Theorem 3.2 hold.

Proof. Using the argument of the proof of Theorem 3.2, we obtain that the set M defined by
(3.3) is nonempty, closed, convex, bounded, and invariant under {Ts : s ∈ G}. Theorem 1 of Lim
[19] implies that the commuting family {Ts : s ∈ G} has a common fixed point in M . Similar
to the proof of Theorem 3.2, one can show that {ys : s ∈ G} converges strongly to a common
fixed point y∗ of T as s →∞. �

Theorem 3.4 Let C be a nonempty closed convex subset of a strictly convex reflexive Banach
space with a uniform Gǎteaux differentiable norm. Let A : C → C be a continuous generalized
Φ-pseudo-contractive mapping with a bounded range A(C), and let T = {Ts : s ∈ G} be a family
of continuous pseudo-contractive mappings from C into itself with property (A ) such that ET (C)
is bounded and F (T ) 6= ∅. Then the conclusions of Theorem 3.2 hold.

Proof. To utilize the arguments in the proof of Theorem 3.2, we need to show that the set M
defined by (3.3) has a common fixed point of the family {gγ : γ ∈ G}. As F (T ) 6= ∅, we can
find v ∈

⋂
γ∈Γ F (gγ). Then the set

M0 = {u ∈ M : ‖u− v‖ = inf
x∈M

‖x− v‖}

is a singleton since X is strictly convex (see Lemma 2.3). Let M0 = {u0} for some u0 in M .
Observe that

‖gγu0 − v‖ = ‖gγu0 − gγv‖ ≤ ‖u0 − v‖ = inf
x∈M

‖x− v‖.

Thus, gγu0 = u0 for all γ in G and hence
⋂

γ∈G F (gγ) ∩M 6= ∅. �
We remark that Theorem 3.4 is a far more general result than those in the existing literature

of this nature. In particular, it extends Jung and Sahu [16, Theorem 1], Morales [23, Theorem 2],
Morales and Jung [24, Theorem 2], Takahashi [35] from the class of nonexpansive or Lipschitzian
pseudo-contractive self-mappings to the more general family of pseudo-contractive self-mappings
of a Banach space.

Let C be a closed convex subset of a Banach space X. A mapping T : C → X is said to
be c-pseudo-contractive (cf. [15]), if there exists a monotonic function h : [0,∞) → [0,∞) with
limt→0+ h(t) = 0, and L > 0 such that for all u, v, x, y in C, there exists some j in J(x − y)
(depending on u, v, x, y) such that

〈Tu− Tv, j〉 ≤ h(‖u− x‖+ ‖v − y‖) + L‖x− y‖2.

The mapping T is said to be locally c-pseudo-contractive if for each z in C, a number r > 0 exists
such that T : C ∩B(z; r) → C is c-pseudo-contractive. We remark that any locally Lipschitzian
mapping is c-pseudo-contractive.
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Proposition 3.5 Let C be a nonempty closed convex subset of a Banach space X and T a
demicontinuous, pseudo-contractive, and locally c-pseudo-contractive mapping from C into itself.
Let AT : C → X be a mapping defined by AT := I + r(I − T ) for any r > 0. Then we have the
following:

(a) The range of AT contains C, i.e., C ⊆ AT (C).

(b) A−1
T is nonexpansive from AT (C) into C, and the fixed point sets F (A−1

T ) = F (T ).

(c) If X is strictly convex, then F (T ) is closed and convex.

Proof. (a) Let z be a point in C. Then it suffices to show that there exists x in C such that
z = AT (x). Define g : C → C by g(x) = (1 + r)−1(rTx + z). Then g is a demicontinuous,
r/(1+r)-strongly pseudo-contractive, and locally c-pseudo-contractive mapping. By Hester and
Morales [15, Theorem 4], there exists x in C with g(x) = x, i.e., z = AT (x).

(b) By the pseudocontractivity of T , we have

‖x− y‖ ≤ ‖[I + r(I − T )]x− [I + r(I − T )]y‖ = ‖AT (x)−AT (y)‖, ∀x, y ∈ C.

It follows that AT is one-one. Therefore, A−1
T is nonexpansive from AT (C) into C. Clearly, we

have F (A−1
T ) = F (T ).

(c) By the continuity of A−1
T , one sees that F (T ) is closed. The convexity of F (T ) follows

from Agarwal, Regan and Sahu [1, Theorem 5.2.27]. �
Recall that an accretive operator A is said to be m-accretive if R(I + rA) = X for all r > 0.

It is well known that every continuous accretive operator on X is m-accretive (see, Martin [20]).
As a direct consequence of Proposition 3.5(a), we derive an interesting new result, which is a
significant improvement of a corresponding result of Martin [20].

Corollary 3.6 Let X be a Banach space and let A : X → X be a demicontinuous accretive
operator such that I − A is locally c-pseudo-contractive. Then A is m-accretive.

Theorem 3.7 Let C be a nonempty closed convex subset of a strictly convex reflexive Banach
space with a uniformly Gǎteaux differentiable norm. Let T = {Ts : s ∈ G} be a family of
demicontinuous, pseudo-contractive, and locally c-pseudo-contractive mappings from C into itself
with property (A ), and F (T ) 6= ∅. Let {bs} be a scalar net in (0, 1) such that lim

s→∞
bs = 0, and

for each u in C, suppose

Eu = {x ∈ C : Tsx = tx + (1− t)u for some t > 1 and s in G}

is a bounded set. Then, for each s in G, there exists a unique point ys in C such that

ys = bsu + (1− bs)Tsys, (3.8)

Moreover, {ys} described by (3.8) converges strongly to Qu in F (T ) as s → ∞, where Q so
defined is a sunny nonexpansive retraction from C onto F (T ).

Proof. For each s in G, the mapping T u
s (y) := bsu + (1− bs)Tsy is a demicontinuous, (1− bs)-

strongly pseudo-contractive and locally c-pseudo-contractive mapping. Hester and Morales [15,
Theorem 4] implies that there exists a unique point ys in C satisfying (3.8). The constant map
Ax := u is a continuous generalized Φ-pseudo-contractive mapping from C into C. Using the
argument of the proof of Theorem 3.4, we obtain that 〈ys − u, j(ys − v)〉 ≤ 0 for all v in F (T ),
and {ys} converges strongly to y∗ in F (T ). Let Qu := lim

s→∞
ys. Note that Qu is the unique

solution the following variational inequality:

〈Qu− u, J(Qu− v)〉 ≤ 0 for all v in F (T ).

One can easily see from Proposition 3.5 that F (T ) is closed and convex. Therefore, Lemma 2.5
shows that Q is a sunny nonexpansive retraction from C onto F (T ). �
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4 Convergence of a hybrid iterative method

In this section, we assume that X is a Banach space with a uniformly Gâteaux differentiable
norm, and C is a nonempty closed convex subset of X. Let A : C → C be a φ-strongly pseudo-
contractive mapping, and let F = I−A. Let T = {Ts : s ∈ G} be a family of pseudo-contractive
mappings from C into C with a nonempty common fixed point set F (T ). Let {λn} and {θn} be
two sequences of real numbers in (0, 1] with λn(1+θn) ≤ 1 for all n in N, and let {sn} be another
sequence in G such that limn→∞ sn = ∞. Assume that the following GV I(4.1)[C,F (T ),F , φ]
has a unique solution y∗ in C:

Find z in F (T ) such that 〈Fz, J(z − v)〉 ≤ 0 for all v in F (T ). (4.1)

Motivated by Bruck [6], we now introduce a hybrid iterative method, called a functional
Bruck method, for finding the unique solution y∗ of GV I(4.1)[C,F (T ),F , φ].

Algorithm 4.1 Given x1 in C, a sequence {xn} in C is constructed as follows:

xn+1 := (1− λn(1 + θn))xn + λnTsnxn + λnθnAxn for all n in N. (4.2)

In order to establish the main result of this section, we need the following lemma.

Lemma 4.2 Let C be a nonempty closed convex subset of a Banach space X with a uniformly
Gâteaux differentiable norm, and let A : C → C be a continuous strongly φ-pseudo-contractive
mapping with a bounded range A(C). Let T = {Ts : s ∈ G} be a semigroup of demicontinuous
pseudo-contractive and nearly uniformly L-Lipschitzian mappings from C into itself associated
with the net {as} with property (A ) and F (T ) 6= ∅. Let {λm} and {bt} be in (0, 1) such that
limm→∞ λm = limt→∞ bt = 0. For m in N, let Sm = {Sm,t : t ∈ G} be the family of mappings
Sm,t : C → C defined by

Sm,tx = (1− λm)x + λmTtx, ∀x ∈ C, ∀t ∈ G. (4.3)

For m in N and t in G, let zm,t be the unique point in C described by

zm,t = btAzm,t + (1− bt)Sm,tzm,t. (4.4)

Suppose limt→∞ zm,t = zm exists for each m in N. Then all zm = y∗, where y∗ in C is the
unique solution of GV I(4.1)[C,F (T ),F , φ]. Moreover, for any bounded sequence {xn} in C we
have

lim sup
n→∞

〈Ay∗ − y∗, J(xn − y∗)〉 ≤ 0.

Proof. Let m ∈ N. Note that

‖Sm,tx− Sm,ty‖ ≤ (1− λm)‖x− y‖+ λm‖Ttx− Tty‖
≤ (1− λm)‖x− y‖+ λm[L‖x− y‖+ at]
≤ L′

m‖x− y‖+ at, ∀x, y ∈ C,∀t ∈ G. (4.5)

Here, L′
m = 1−λm +Lλm. By choosing a y from F (T ) and noting {zm,t} converges strongly, we

have from (4.5) that {Sm,tzm,t : t ∈ G} is eventually bounded. From (4.4) and the boundedness
of A(C), we have

‖zm,t − Sm,tzm,t‖ = bt‖Azm,t − Sm,tzm,t‖ → 0 as t →∞.
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It follows from (4.3) that

‖zm,t − Ttzm,t‖ =
‖zm,t − Sm,tzm,t‖

λm
→ 0 as t →∞.

Property (A ) implies that Tszm,t → zm for any s in G, and also Ts+s′zm,t → zm for any s, s′

in G. By the demicontinuity of Ts′ , we have Ts+s′zm,t = Ts′(Tszm,t) → Ts′zm weakly. By the
uniqueness of the weak limit of {Tszm,t}t∈G, we have zm = Ts′zm. Thus, zm ∈

⋂
s∈G F (Ts) for

each m in N. We now show that zm is a solution GV I(4.1)[C,F (T ),F , φ] for each m. For v in
F (T ) and m in N, we have {zm,t − v} is bounded. In the lines of (3.7), one can obtain that

〈zm −Azm, J(zm,t − v)〉 ≤ ‖zm − zm,t + Azm,t −Azm‖ sup
s∈G

‖zm,s − v‖, ∀t ∈ G.

Due to the facts that limt→∞ zm,t = zm, that A is continuous and that the duality mapping J
is norm-to-weak∗ continuous, we have

〈zm −Azm, J(zm − v)〉 ≤ 0.

By the uniqueness of the solution of GV I(4.1)[C,F (T ),F , φ], we have zm = y∗ in C for each m
in N. In particular,

lim
t→∞

zm,t = y∗, ∀m ∈ N.

Since for each m in N and t in G, the mapping Sm,t is pseudocontractive, it follows from
(4.4) that

‖zm,t − y∗‖2 = 〈bt(Azm,t − y∗) + (1− bt)(Sm,tzm,t − y∗), J(zm,t − y∗)〉
≤ bt〈Azm,t −Ay∗ + Ay∗ − y∗, J(zm,t − y∗)〉+ (1− bt)‖zm,t − y∗‖2

≤ bt[‖zm,t − y∗‖2 − ‖zm,t − y∗‖φ(‖zm,t − y∗‖)] + bt〈Ay∗ − y∗, J(zm,t − y∗)〉
+(1− bt)‖zm,t − y∗‖2.

Consequently, φ(‖zm,t − y∗‖) ≤ ‖Ay∗ − y∗‖. Hence

‖zm,t − y∗‖ ≤ φ−1(‖Ay∗ − y∗‖), ∀m ∈ N,∀t ∈ G.

Thus, by the boundedness of {xn}, we may assume that

‖xn − zm,t‖ ≤ K1, ∀m,n ∈ N,∀t ∈ G.

By (4.3), we have

lim
m→∞

‖xn − Sm,txn‖ = lim
m→∞

λm‖xn − Ttxn‖ = 0. (4.6)

Since (1− bt)(zm,t − Sm,tzm,t) = bt(Azm,t − zm,t), we have

bt〈Azm,t − zm,t, J(xn − zm,t)〉 = (1− bt)〈(zm,t − Sm,tzm,t), J(xn − zm,t)〉
= (1− bt)〈zm,t − xn + xn − Sm,txn

+Sm,txn − Sm,tzm,t, J(xn − zm,t)〉
≤ (1− bt)〈xn − Sm,txn, J(xn − zm,t)〉
≤ (1− bt)‖xn − Sm,txn‖K1.

Using (4.6), we obtain

lim sup
m→∞

〈Azm,t − zm,t, J(xn − zm,t)〉 ≤ 0, ∀n ∈ N,∀t ∈ G.
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Clearly, for each ε > 0, there exists m0 in N such that

〈Azm,t − zm,t, J(xn − zm,t)〉 ≤
ε

2
, ∀m ≥ m0, ∀n ∈ N,∀t ∈ G. (4.7)

Noting again that limt→∞ zm0,t = y∗, that A is continuous and that the duality mapping J is
norm-to-weak∗ continuous, we have

| 〈Ay∗ − y∗, J(xn − y∗)〉 − 〈Azm0,t − zm0,t, J(xn − zm0,t)〉 |
= | 〈Ay∗ − y∗, J(xn − y∗)− J(xn − zm0,t)〉+ 〈Ay∗ − y∗ − (Azm0,t − zm0,t), J(xn − zm0,t)〉 |
≤ | 〈Ay∗ − y∗, J(xn − y∗)− J(xn − zm0,t)〉 | +‖Ay∗ − y∗ − (Azm0,t − zm0,t)‖K1

→ 0 as t →∞.

Hence, there exists t0 in G such that

| 〈Ay∗ − y∗, J(xn − y∗)〉 − 〈Azm0,t − zm0,t, J(xn − zm0,t)〉 |<
ε

2
, ∀t ≥ t0, n ∈ N.

Using (4.7), we obtain

〈Ay∗ − y∗, J(xn − y∗)〉 ≤ 〈Azm0,t − zm0,t, J(xn − zm0,t)〉+
ε

2
≤ ε

2
+

ε

2
= ε, ∀n ∈ N.

Therefore, lim supn→∞〈Ay∗ − y∗, J(xn − y∗)〉 ≤ 0. �

Theorem 4.3 Let C be a nonempty closed convex subset of a Banach space X with a uniformly
Gâteaux differentiable norm, and A : C → C be a uniformly continuous φ-strongly-pseudo-
contractive mapping with a bounded range A(C). Let T = {Ts : s ∈ G} be a semigroup of
demicontinuous pseudo-contractive and nearly uniformly L-Lipschitzian mappings from C into
itself associated with the net {as} with property (A ). Let {sn} be a sequence in G such that
limn→∞ sn = ∞. Let {λn} and {θn} be two sequences in (0, 1] satisfying the following conditions:

(S1) λn(1 + θn) ≤ 1 for all n in N, λn → 0 and limn→∞ λn/θn = 0.

(S2)
∑∞

n=1 λnθn = +∞.

(S3) limn→∞ asn/θn = 0.

Suppose F (T ) is nonempty and y∗ in C is the unique solution of GV I(4.1)[C,F (T ),F , φ]. Let
{bs} be a net in (0, 1) such that lims→∞ bs = 0. For m in N and s in G, define Sm,s =
(1− λm)I + λmTs, and let zm,s be the unique point in C described by

zm,s = bsAzm,s + (1− bs)Sm,szm,s.

Suppose for each m in N, the net {zm,s : s ∈ G} is strongly convergent in C as s →∞. Suppose
also the sequence {xn} generated by Algorithm 4.1 is bounded. Then {xn} converges strongly to
y∗.

Proof. Since {asn} is bounded, we may assume that asn ≤ a for all n in N. Set

d := ‖y∗ −Ay∗‖, δn := 1− λnθn, and σn := ‖xn − y∗‖.

We now estimate

‖xn+1 − xn‖
= λn‖Tsnxn − xn − θn(xn −Axn)‖
≤ λn[‖Tsnxn − xn‖+ θn‖xn −Axn‖]
≤ λn[‖Tsnxn − Tsny∗‖+ ‖xn − y∗‖+ θn(‖xn − y∗‖+ ‖y∗ −Ay∗‖+ ‖Ay∗ −Axn‖)]
≤ λn[(1 + L)‖xn − y∗‖+ asn + θn(‖xn − y∗‖+ ‖y∗ −Ay∗‖+ wA(‖y∗ − xn‖))]
≤ λn[(1 + L)σn + asn ] + λnθn[σn + d + wA(σn)] (4.8)
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and

σ2
n+1 = 〈(1− λnθn)(xn − y∗) + λn(Tsnxn − xn) + λnθn(Axn − y∗), J(xn+1 − y∗)〉

= 〈(1− λnθn)(xn − y∗) + λn(Tsnxn − xn + xn+1 − Tsnxn+1 − (xn+1 − Tsnxn+1))
+λnθn(Axn −Axn+1 + Axn+1 −Ay∗ + Ay∗ − y∗), J(xn+1 − y∗)〉

≤ 〈(1− λnθn)(xn − y∗) + λn(Tsnxn − xn + xn+1 − Tsnxn+1)
+λnθn(Axn −Axn+1 + Ay∗ − y∗), J(xn+1 − y∗)〉
+λnθn[‖xn+1 − y∗‖2 − ‖xn+1 − y∗‖φ(‖xn+1 − y∗‖)]

≤ [(1− λnθn)‖xn − y∗‖+ λn(‖Tsnxn − Tsnxn+1‖+ ‖xn+1 − xn‖)
+λnθnwA(‖xn − xn+1‖)]‖xn+1 − y∗‖+ λnθn〈Ay∗ − y∗, J(xn+1 − y∗)〉
+λnθn[‖xn+1 − y∗‖2 − ‖xn+1 − y∗‖φ(‖xn+1 − y∗‖)]

≤ [(1− λnθn)σn + λn((1 + L)‖xn+1 − xn‖+ asn) + λnθnwA(‖xn − xn+1‖)]σn+1

+λnθn[〈Ay∗ − y∗, J(xn+1 − y∗)〉+ σ2
n+1 − σn+1φ(σn+1)]

≤ (1− λnθn)(σ2
n + σ2

n+1)/2 + λn[(1 + L)‖xn+1 − xn‖+ asn + θnwA(‖xn − xn+1‖)]σn+1

+λnθn〈Ay∗ − y∗, J(xn+1 − y∗)〉+ λnθn[σ2
n+1 − σn+1φ(σn+1)].

It follows that

σ2
n+1 ≤ σ2

n +
2λn

δn
[(1 + L)‖xn+1 − xn‖+ asn + θnwA(‖xn − xn+1‖))σn+1

+θn〈Ay∗ − y∗, J(xn+1 − y∗)〉 − θnσn+1φ(σn+1)], ∀n ∈ N. (4.9)

Note {σn} is bounded, it follows from (4.8) that there exists a constant K2 > 0 such that
‖xn+1 − xn‖ ≤ λnK2 for all n in N. Since for each m in N, {zm,s : s ∈ G} is strongly convergent
in C as s →∞, Lemma 4.2 gives us that lim supn→∞〈Ay∗− y∗, J(xn− y∗)〉 ≤ 0 and hence there
exists a positive null sequence {Υn} such that 〈Ay∗ − y∗, J(xn − y∗)〉 ≤ Υn for all n = 1, 2, . . ..
Set K3 = supn∈N σn. Then, from (4.9), we have

σ2
n+1 ≤ σ2

n −
2λnθn

δn
σn+1φ(σn+1) +

2λn

δn
[(1 + L)K2λn + asn

+θnwA(λnK2)]K3 +
2λnθn

δn
〈Ay∗ − y∗, J(xn+1 − y∗)〉 (4.10)

for all n in N. Note asn/θn → 0, λn/θn → 0, wA(λnK2) → 0 and
∑∞

n=1 λnθn = ∞. It then
follows from (4.10) and Lemma 2.7 that σn → 0. �

Theorem 4.4 Let C be a nonempty closed convex subset of a reflexive and strictly convex
Banach space X with a uniformly Gâteaux differentiable norm, and A : C → C be a uniformly
continuous φ-strongly-pseudo-contractive mapping with a bounded range A(C). Let T = {Ts :
s ∈ G} be a semigroup of continuous pseudo-contractive and nearly uniformly L-Lipschitzian
mappings from C into itself associated with the net {as}. Suppose F (T ) 6= ∅ and T has property
(A ). Let {λn} and {θn} be two sequences in (0, 1] satisfying the conditions (S1), (S2) and
(S3). Let {sn} be a sequence in G such that limn→∞ sn = ∞. Assume the sequence {xn}
generated by Algorithm 4.1 is bounded. Then {xn} converges strongly to the unique solution of
GV I(4.1)[C,F (T ),F , φ].

Proof. Let m ∈ N. Define Sm,t : C → C by

Sm,tx = (1− λm)x + λmTtx for all x in C and t in G.
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Note for each t in G, the mapping Sm,t is pseudocontractive and y∗ ∈
⋂

t∈G F (Sm,t). Let {bs}
be a net in (0, 1) with lims→∞ bs = 0. l

By Proposition 3.1, there exists a point zm,t in C such that

zm,t = btAzm,t + (1− bt)Sm,tzm,t for each t in G.

By Theorem 3.4, {zm,t : t ∈ G} converges strongly to an element of C. Thus, {zm,t : t ∈ G} is
eventually bounded. It then follows from (4.5) that {Sm,tzm,t : t ∈ G} is also eventually bounded.
By the boundedness of A(C), we have ‖zm,t − Sm,tzm,t‖ = bt‖Azm,t − Sm,tzm,t‖ → 0 as t → ∞
and ‖zm,t − Ttzm,t‖ = ‖zm,t−Sm,tzm,t‖

λm
→ 0 as t → ∞. Now we can follow the proof of Theorem

4.3. �
We remark that in the previous theorems, if all Ts are nonexpansive then the sequence {xn}

generated by Algorithm 4.1 is automatically bounded. Indeed, from (4.2), we have

‖xn+1 − y∗‖ ≤ (1− λn(1 + θn))‖xn − y∗‖+ λn‖Tsnxn − Tsny∗‖+ λnθn‖Axn − y∗‖
≤ (1− λn(1 + θn))‖xn − y∗‖+ λn‖xn − y∗‖+ λnθndist(y∗, A(C))
≤ max{‖xn − y∗‖,dist(y∗, A(C))}
≤ max{‖x1 − y∗‖,dist(y∗, A(C))}, ∀n = 1, 2, · · · .

Corollary 4.5 Let C be a nonempty closed convex subset of a Banach space X with a uniformly
Gâteaux differentiable norm, and A : C → C be a uniformly continuous φ-strongly-pseudo-
contractive mapping with a bounded range A(C). Let T : C → C be a nonexpansive mapping
with F (T ) 6= ∅. Let {λn} and {θn} be two sequences in (0, 1] satisfying the conditions (S1)
and (S2). For m in N and t in (0, 1), let Sm = (1 − λm)I + λmT and zm,t be a unique point
in C described by zm,t = tAzm,s + (1 − t)Smzm,t. Suppose for each m in N, {zm,t} is strongly
convergent in C as t → 0+. Then the sequence {xn} generated by

xn+1 := (1− λn(1 + θn))xn + λnTxn + λnθnAxn, ∀n ∈ N, (4.11)

converges strongly to the unique solution of GV I(4.1)[C,F (T ),F , φ].

Corollary 4.6 Let X be a reflexive and strictly convex Banach space with a uniformly Gâteaux
differentiable norm, and C a nonempty closed convex subset of X. Let A : C → C be a uniformly
continuous φ-strongly pseudo-contractive mapping with a bounded range A(C), and T : C → C
a nonexpansive mapping with F (T ) 6= ∅. Let {λn} and {θn} be two sequences in (0, 1] satisfying
the conditions (S1) and (S2). Then {xn} generated by (4.11) converges strongly to the unique
solution of GV I(4.1)[C,F (T ),F , φ].

In light of Remark 2.1, we derive the following

Corollary 4.7 Let X be a reflexive and strictly convex Banach space with a uniformly Gâteaux
differentiable norm, and C a nonempty closed convex subset of X. Let A : C → C be a
uniformly continuous φ-strongly pseudo-contractive mapping with a bounded range A(C). Let
T = {Tn : n ∈ N} be a sequence of nonexpansive mappings from C into itself with F (T ) 6= ∅
and property (A ). Let {λn} and {θn} be two sequences in (0, 1] satisfying the conditions (S1)
and (S2). Then {xn} generated by

xn+1 := (1− λn(1 + θn))xn + λnTnxn + λnθnAxn, ∀n ∈ N,

converges strongly to the unique solution of GV I(4.1)[C,F (T ),F , φ].

15



Remark 4.8 (I) We have already shown that there are some nonexpansive mappings which
are not necessarily regular and also that if T = {T} is singleton, then it automatically
satisfies property (A ). Thus, uniform asymptotic regularity becomes an extra condition
when T is singleton. In this aspect, Theorem 4.4 is an improvement upon all the results
concerning with uniformly asymptotically regular semigroups (see, e.g. [25, 30, 31, 32, 42]
and the references therein).

(II) Corollary 4.7 extends and unifies a number of results (see, e.g., Takahashi [36, Theo-
rem 5.1]) for approximating of common fixed points of a sequence of nonexpansive self-
mappings.

(III) It is well known that Lp spaces (1 < p < ∞, p 6= 2) do not possess weakly sequentially
continuous duality mappings and hence Song [30, Theorem 3.3] and Song and Chen [31,
Theorem 3.2] cannot be applied to these spaces.

(IV) Corollary 4.5 is an important improvement and a significant generalization of the results
of Shioji and Takahashi [29] and Suzuki [33, Theorem 3], since in our results, {θn} is not
assumed to be constant.

Following Theorem 4.3, we are able to establish the next convergence result.

Corollary 4.9 Let X be a reflexive and strictly convex Banach space with a uniformly Gâteaux
differentiable norm, C a closed convex subset of X, and T = {Ts : s ∈ G} a semigroup of demi-
continuous, pseudo-contractive, locally c-pseudo-contractive and nearly uniformly L-Lipschitzian
mappings from C into itself associated with the net {as}, having property (A ) and F (T ) 6= ∅.
Let {sn} be a sequence in G such that limn→∞ sn = ∞ and let {λn} and {θn} be two sequences
in (0, 1] satisfying the conditions (S1), (S1) and (S3). For any given u in C, if the sequence
{xn} generated by Algorithm 4.1 is bounded, then {xn} converges strongly to Qu ∈ F (T ) as
s →∞, where Q so defined is a sunny nonexpansive retraction from C onto F (T ).

We should remark that Theorem 3.7 and Corollary 4.9 appear to be new results for demi-
continuous pseudo-contractive self-mappings. Corollary 4.9 improves various known results es-
tablished concerning pseudo-contractive mappings in Hilbert and Banach spaces. In particular,
Corollary 4.9 improves the convergence result of Bruck [6] without the acceptably paired as-
sumption in the Banach space setting.

5 Applications

Let C be a nonempty closed convex subset of a Banach space X and A : C → C a uni-
formly continuous φ-strongly pseudo-contractive mapping with a bounded range A(C). Let
T1, T2, · · · , TN : C → C be nonexpansive mappings with ∩N

i=1F (Ti) 6= ∅. We now propose a
parallel algorithm for finding solution of GV I(4.1)[C,∩N

i=1F (Ti),F , φ] and to remove the as-
sumption (1.3).

Algorithm 5.1 Given x1 in C and t1, t2, . . . , tN > 0 such that
∑N

i=1 ti = 1, and two sequences
{λn} and {θn} in (0, 1] satisfying the conditions (S1) and (S2), a sequence {xn} in C is con-
structed as follows.

xn+1 := (1− λn(1 + θn))xn + λn

N∑
i=1

tiTixn + λnθnAxn ∀n ∈ N. (5.1)
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Theorem 5.2 Let X be a reflexive and strictly convex Banach space with a uniformly Gâteaux
differentiable norm, C a closed convex subset of X and A : C → C a uniformly continuous φ-
strongly pseudo-contractive mapping with a bounded range A(C). Let T1, T2, · · · , TN : C → C be
nonexpansive mappings with

⋂N
i=1 F (Ti) 6= ∅. Then {xn} generated by (5.1) converges strongly

to the unique solution of GV I(4.1)[C,
⋂N

i=1 F (Ti),F , φ].

Proof. Let T =
∑N

i=1 tiTi. Proposition 2.6 implies that T is nonexpansive from C into itself
and F (T ) =

⋂N
i=1 F (Ti). Hence the result follows from Corollary 4.6. �

We remark that Theorem 5.2 is a significant improvement and unification of many existing
results concerning approximation of the solutions of a variational inequality, which are also
common fixed points of a family of nonexpansive mappings (see, e.g. [7, 39, 40]) in the following
senses:

(1) Theorem 5.2 holds for reflexive and strictly convex Banach spaces.

(2) The assumption (1.3) is not needed.

(3) The domains of the mappings F and Ti’s are not necessarily the whole space.

(4) The domain of F is independent of the ranges of Ti’s.

In Theorem 5.2, no metric projection mapping is used. However, metric projection mappings
have wide applications in various disciplines, for example, image recovery. Recall that the
so-called problem of image recovery is essentially to find a common element of finitely many
nonexpansive retracts C1, C2, . . . , CN of C with

⋂N
i=1 Ci 6= ∅. It is easy to see that every

nonexpansive retraction Pi of C onto Ci is a nonexpansive mapping of C into itself. Therefore,
the image recovery problem can be thought of finding a common fixed point of finitely many
nonexpansive mappings P1, . . . , PN of C into itself. Therefore, Theorem 5.2 should improve a
number of results connected to the problem of image recovery.

Applying Proposition 2.6, we obtain

Corollary 5.3 Let X be a reflexive and strictly convex Banach space with a uniformly Gâteaux
differentiable norm, C a nonempty closed convex subset of X, and A : C → C a uniformly
continuous φ-strongly pseudo-contractive mapping with a bounded range A(C). Let T = {Tn :
n ∈ N} be a sequence of nonexpansive mappings from C into itself such that F (T ) 6= ∅. Let {αn}
be a sequence of real numbers in (0,1) such that

∑∞
n=1 αn = 1, and define Tx =

∑∞
n=1 αnTnx

for all x in C. Let {λn} and {θn} be two sequences in (0, 1] satisfying the conditions (S1) and
(S2). Then {xn} generated by

xn+1 := (1− λn(1 + θn))xn + λnTxn + λnθnAxn, ∀n ∈ N,

converges strongly to the unique solution of GV I(4.1)[C,F (T ),F , φ].

Recall that an accretive operator A in a Banach space X is said to satisfy the range condition
if D(A) ⊂ R(1 + λA) for all λ > 0. Here, D(A) is the domain of A and R(1 + λA) is the range
of 1 + λA. If A is accretive, then we can define, for each λ > 0, a nonexpansive single-valued
mapping JA

λ : R(1 + λA) → D(A) by JA
λ = (I + λA)−1. It is called the resolvent of A. It is well

known that for an accretive operator A which satisfies the range condition, A−1(0) = F (JA
λ ) for

all λ > 0. We also define the Yosida approximation Ar := (I−JA
r )/r. We know that Arx ∈ AJA

r x
for all x in R(I + rA) and ‖Arx‖ ≤ |Ax| = inf{‖y‖ : y ∈ Ax} for all x in D(A) ∩R(I + rA).

The following result in an improvement of Wong, Sahu and Yao [37, Theorem 6.3] and Zegeye
and Shahzad [43, Theorem 3.3].
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Corollary 5.4 Let X be a reflexive and strictly convex Banach space with a uniformly Gâteaux
differentiable norm, C a nonempty closed convex subset of X, and A : C → C a uniformly
continuous φ-strongly pseudo-contractive mapping with a bounded range A(C). Let Ai ⊂ X ×X
(i = 1, 2, · · · , N) be accretive operators with resolvent JAi

t for t > 0 such that ∩N
i=1A

−1
i 0 6= ∅ and

D(Ai) ⊂ C ⊂
⋂

t>0 R(I + tAi). Let t1, t2, . . . , tN > 0 such that
∑N

i=1 ti = 1. Let {λn} and {θn}
be two sequences in (0, 1] satisfying the conditions (S1) and (S2). Then {xn} generated by

xn+1 := (1− λn(1 + θn))xn + λn

N∑
i=1

tiJ
Ai
ti

xn + λnθnAxn, ∀n ∈ N,

converges strongly to the unique solution of GV I(4.1)[C,∩N
i=1A

−1
i 0,F , φ].

Proof. Note that each JAi
t is nonexpansive for each i = 1, 2, · · · , N and t > 0. Set T :=∑N

i=1 tiJ
Ai
t . Proposition 2.6 implies that T is nonexpansive from C into itself and F (T ) =

∩N
i=1A

−1
i 0. Hence the result follows from Corollary 4.6. �

Corollary 5.5 Let X be a reflexive and strictly convex Banach space with a uniformly Gâteaux
differentiable norm, C a nonempty closed convex subset of X, and A : C → C a uniformly
continuous φ-strongly pseudo-contractive mapping with a bounded range A(C). Let A = {An :
n ∈ N} be a sequence of accretive operators with resolvent JAn

t for t > 0 such that ∩n∈NA−1
n 0 6= ∅

and D(An) ⊂ C ⊂
⋂

t>0 R(I + tAn) for all n in N. Let {αn} be a sequence of real numbers in
(0, 1) such that

∑∞
n=1 αn = 1, and define Sx =

∑∞
n=1 αnJAn

αn
x for all x in C. Let {λn} and {θn}

be two sequences in (0, 1] satisfying the conditions (S1) (S2). Then {xn} generated by

xn+1 := (1− λn(1 + θn))xn + λnSxn + λnθnAxn, ∀n ∈ N,

converges strongly to the unique solution of GV I(4.1)[C,∩n∈NA−1
n 0,F , φ].
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