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Abstract. We consider the general boundary value problem for a de-
generate semilinear functional differential inclusion in a Banach space
with infinite delay. We construct the multivalued integral operator
whose fixed points are mild solutions of the above problem and study
its properties. We apply the topological degree method to obtain the
general existence principle and consider some particular cases, including
Cauchy and periodic problems.

1. Introduction

In the recent time two directions in the theory of differential equations
and inclusions in Banach spaces are intensively developing and attract the
attention of many researchers. The first one is the theory of degenerate (or
Sobolev type) differential equations and inclusions (see, e.g., [1], [2], [5], [14],
[16], [17] and the references therein). One of the reasons of growing interest
to this branch is the fact that many types of PDEs arising in problems of
mathematical physics and applied sciences may be naturally presented in
this form.

The second direction is connected with the study of functional differential
equations and inclusions with infinite delay. Starting from the work of J.K.
Hale and J. Kato [8], who suggested the axiomatic approach to the definition
of the phase space of distributed infinite delays, this subject is investigated
very actively (see, e.g., [6], [7], [9], [10], [15] and the references therein).

In the present paper, generalizing some results of the works [1], [14], we
suggest a version of synthesis of both theories, considering the general type
boundary value problem for a degenerate semilinear functional differential
inclusion in a Banach space with infinite delay. We construct the multivalued
integral operator whose fixed points are mild solutions of the above problem
and study its properties. In particular, we give conditions under which this
multioperator is condensing w.r.t. the vector measure of noncompactness of
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a special form. This allows us to apply the methods of topological degree
theory for condensing multimaps (see, e.g. [3], [12]) and to obtain the general
existence result (Theorem 24). We consider some particular cases including
Cauchy and periodic problems.

2. Preliminaries

2.1. Multivalued linear operators. We begin with some necessary defi-
nitions and results from the theory of multivalued linear operators. Details
can be found in [1], [2], and [5].

Let E be a complex Banach space.

Definition 1. A multivalued map (multimap) A : E → 2E is said to be a
multivalued linear operator (MLO) on E if:
1) D (A) = {x ∈ E : Ax 6= ∅} is a linear subspace of E;
2) {

Ax + Ay ⊂ A (x + y) , ∀x, y ∈ D (A) ;

λAx ⊆ A (λx) , ∀λ ∈ C , x ∈ D (A) .

It is an easy consequence of the definition to note that Ax + Ay =
A (x + y) for all x, y ∈ D (A) and λAx = A (λx) for all x ∈ D (A), λ 6= 0.
It is also clear that A is a MLO on E if and only if its graph ΓA is a
linear subspace of E ×E. A MLO A is said to be closed if ΓA is the closed
subspace of E ×E. The collection of all closed MLO’s in E will be denoted
by ML (E) .

Definition 2. The inverse A−1 of a MLO is defined as:
1) D

(
A−1

)
= R (A) ;

2) A−1y = {x ∈ D (A) : y = Ax} .

It is obvious that (y, x) ∈ ΓA−1 if and only if (x, y) ∈ ΓA and hence
A−1 ∈ ML (E) if A ∈ ML (E) .

Denote by L (E) the space of all single-valued bounded operators on E.

Definition 3. The resolvent set ρ (A) of a MLO A is defined as the col-
lection of all λ ∈ C for which:
1) R (λI −A) = D

(
(λI −A)−1

)
= E ;

2) (λI −A)−1 ∈ L (E) .

Definition 4. The operator-valued function R (·, A) : ρ (A) → L (E)

R (λ,A) = (λI −A)−1

is called the resolvent of a MLO A.

Remark 5. If E is a real Banach space and A is a MLO on E, we may
consider the complexification Ẽ = E + iE and Ã defined by

Γ
Ã

= {(x, y1) + i (x, y2) : x ∈ D (A) , y1, y2 ∈ Ax}.
Then we set, by definition, ρ (A) = ρ(Ã).
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Let U : R+ = [0,+∞) → L (E) be a C0-semigroup of operators, i.e., we
suppose the following conditions:

(i) U (t + s) = U (t) U (s) , ∀t, s ∈ R+;
(ii) for each x ∈ E, the function t → U(t)x is continuous on R+.

Notice that the usual condition U (0) = I is absent here. From assump-
tion (i) it follows that U (0) = P ∈ L (E) is the projector. In case P 6= I
the semigroup U is called generalized (or degenerate).

It is easy to verify that there exist constants C ≥ 1 and γ ≥ 0 such that

(1) ‖U (t) ‖L(E) ≤ Ceγt, t ∈ R+.

Therefore, for each λ ∈ Cγ = {µ ∈ C : Reµ > γ} the bounded linear
operator R (λ) may be defined by the following Laplace transformation:

R (λ) x =
∫ ∞

0
U (τ) xe−λτdτ.

The function R : Cγ → L (E) satisfies Hilbert equality and it is the resolvent
of a certain (unique) A ∈ ML (E) . This MLO A is called the generator of
the generalized semigroup U.

Let E∗ be the dual space of E. For A ∈ ML (E) , we denote by A∗ a MLO
on E∗ defined in the following way: for h, g ∈ E∗, the relation h ∈ A∗ (g)
means that g (y) = h (x) for all pairs (x, y) ∈ ΓA. It is easy to verify that
A∗0∗ = {h ∈ E∗ : D (A) ⊂ Kerh} = D (A)

⊥
.

Consider the following assumptions on A ∈ ML (E) .

(A1) functionals from A∗0∗ are separated by vectors of A0, i.e., for each
h ∈ A∗0∗, h 6= 0∗ there exists y ∈ A0 such that h(y) 6= 0;

(A2) the Hille–Yosida condition: there exist a constant C > 0 and γ ∈ R
such that Cγ ⊂ ρ (A) and

‖R (λ,A)n ‖L(E) ≤
C

(Re λ− γ)n , n = 1, 2, ..., λ ∈ Cγ .

Remark 6. In [1] it was shown that each of the following conditions implies
(A1): (i) the space E is reflexive; (ii) dimA0 = dimA∗0∗ < ∞.

The following result holds true (cfr. [1], [5]).

Theorem 7. Conditions (A1) and (A2) are necessary and sufficient for A ∈
ML (E) to be the generator of a C0-semigroup U. Moreover, the semigroup
U is generalized iff A is not single-valued. In this case the space E may be
represented as E = E1⊕E1, where E0 = D (A), E1 = A0 and the restriction
of U (t) on E0 defines the usual C0-semigroup on E0 whereas the restriction
on E1 vanishes.

2.2. Multivalued maps and measures of noncompacness. Let us re-
call some notions (see, e.g., [3], [12]). Let X be a metric space; E a normed
space; P (E) denote the collection of all nonempty subsets of E . By symbols
K(E) and Kv(E) we denote the collections of all nonempty compact and,
respectively, compact convex subsets of E .
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Definition 8. A multivalued map (multimap) F : X → K(E) is said to be
upper semicontinuous (u.s.c.) if F−1(V ) = {x ∈ X : F(x) ⊂ V } is an
open subset of X for every open V ⊂ E.
Definition 9. A multivalued map (multimap) F : X → K(E) is said to be
compact if its range F(X) is a relatively compact subset of E . If a u.s.c.
multimap F is compact on bounded subsets of X it is called completely
continuous.

Definition 10. Let E be a normed space; (A,≥ 0) a (partially) ordered
set. A function β : P (E) → A is called a measure of noncompactness
(MNC) in E if

β(coΩ) = β(Ω)
for every Ω ∈ P (E).

A MNC β is called:
(a) monotone if Ω1 ⊆ Ω2 implies β(Ω1) ≤ β(Ω2);
(b) nonsingular if β(Ω ∪ {a}) = β(Ω) for every a ∈ E , Ω ∈ P (E);
(c) invariant with respect to union with compact sets if β(Ω∪K) = β(Ω)

for every Ω ∈ P (E), K is relatively compact in E ;
(d) invariant with respect to reflection through the origin if β(−Ω) =

β(Ω) for every Ω ∈ P (E);
(e) real if A = [0, +∞] with natural ordering.
If A is a cone in a Banach space, we say that the MNC β is:
(f) algebraically semiadditive if β(Ω0 + Ω1) ≤ β(Ω0) + β(Ω1) for every

Ω0, Ω1 ∈ P (E);
(g) regular if β(Ω) = 0 is equivalent to the relative compactness of Ω.
As the example of the MNC possessing all these properties, we may

consider the Hausdorff MNC:

χ(Ω) = inf{ε > 0 : Ω has a finite ε - net }.
Let I ⊆ R be any closed interval. The examples of real measures of non-
compactness defined on the space of continuous functions C(I; E) with the
values in a Banach space E are presented by the following characteristics:

1) modulus of equicontinuity:

modC(Ω) = lim
δ→0

sup
x∈Ω

max
|t1−t2|<δ

‖x(t1)− x(t2)‖E .

2) modulus of fiber noncompactness:

ϕ(Ω) = sup
t∈I

χE(Ω(t)),

where Ω(t) = {x(t) : x ∈ Ω}.
Let E and E ′ be normed spaces with MNC β and β′ respectively; N :

E → E ′ a continuous linear operator.

Definition 11. The operator N is said to be (β, β′)-bounded provided there
exists C ≥ 0 such that

β′(LΩ) ≤ Cβ(Ω) for all bounded sets Ω ⊂ E .
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The value ‖N‖(β,β′) which is equal to the infimum of all such coefficients is
called the (β, β′)-norm of operator L.

In particular, if E = E ′ and β = β′ then ‖N‖(β,β) is denoted by ‖N‖(β)

and called the β-norm of the operator N . For the evaluation of the χ-norm
of the operator N we can apply the formula

‖N‖(χ) = χ(NS) = χ(NB),

where S and B are the unit sphere and the unit ball in E , respectively. It is
easy to see that

‖N‖(χ) ≤ ‖N‖.
Definition 12. A multimap F : X ⊆ E → K(E) is called condensing
w.r.t. a MNC β in E (or β-condensing), if for every Ω ⊆ X, that is not
relatively compact, we have

β(F(Ω)) 6≥ β(Ω).

Let U be an open set in E , K ⊆ E a convex closed set, such that UK =
U ∩ K is nonempty, bounded and β a monotone nonsingular MNC in E .

Let F : UK → Kv(K) be compact or β-condensing, u.s.c. multimap,
moreover, let x /∈ F(x) for all x ∈ ∂UK, where UK and ∂UK denote, respec-
tively, the closure and the boundary of the set UK in the relative topology
of the space K. In this situation for the corresponding multifield i− F the
characteristic

degK(i−F , UK),
called the relative topological degree, having all standart properties, is
defined (see, e.g., [3], [12]). In particular, the difference of this characteristic
from zero implies the existence of at least one fixed point x ∈ UK, x ∈ F(x).

We will use the following notion. Let E be a Banach space; for T > 0 by
the symbol L1([0, T ]; E) we will denote the space of all Bochner summable
functions.

Definition 13. The sequence {fn}∞n=1 ⊂ L1([0, T ]; E) is said to be semi-
compact if it is integrably bounded and the set {fn(t)}∞n=1 ⊂ E is relatively
compact for a.e. t ∈ [0, T ].

Theorem 14. (see, e.g. [12]). Every semicompact sequence is weakly com-
pact in the space L1([0, d]; E).

2.3. Phase space. We will employ the axiomatical definition of the phase
space B, introduced by J.K.Hale and J.Kato (see [8], [10]). The space B
will be considered as a linear topological space of functions mapping (−∞, 0]
into a Banach space E endowed with a seminorm ‖ · ‖B .

For any function x : (−∞; T ] → E and for every t ∈ (−∞; T ], xt repre-
sents the function from (−∞, 0] into E defined by

xt(θ) = x(t + θ), θ ∈ (−∞; 0].

We will assume that B satisfies the following axioms.

(B1) If x : (−∞;T ] → E is continuous on [0;T ] and x0 ∈ B, then for
every t ∈ [0;T ] we have



6 ANSARI, LIOU, OBUKHOVSKII AND WONG

(i) xt ∈ B;
(ii) function t 7→ xt is continuous;
(iii) ‖xt‖B ≤ K(t) sup

0≤τ≤t
‖x(τ)‖+ N(t)‖x0‖B, where K, N : [0;∞) → [0;∞)

are independent on x, K is strictly positive and continuous, and N is locally
bounded.

(B2) There exists l > 0 such that

‖ψ(0)‖E ≤ l‖ψ‖B
for all ψ ∈ B.

Let us mention that under above hypotheses the space C00 of all con-
tinuous functions from (−∞, 0] into E with compact support is a subset of
each phase space B ([10], Proposition 1.2.1). We will assume, additionally,
that the following hypothesis holds true.

(BC1) If a uniformly bounded sequence {ψn}+∞
n=1 ⊂ C00 converges to a

function ψ compactly (i.e. uniformly on each compact subset of (−∞, 0]),
then ψ ∈ B and

lim
n→+∞ ‖ψn − ψ‖B = 0.

The hypothesis (BC1) yields that the Banach space BC = BC((−∞, 0];E)
of bounded continuous functions is continuously imbedded into B. More ex-
actly, the following proposition holds true.

Theorem 15. [[10], Proposition 7.1.1].
(i) BC ⊂ C00, where C00 denotes the closure of C00 in B;
(ii) if a uniformly bounded sequence {ψn} in BC converges to a function ψ
compactly on (−∞, 0] then ψ ∈ B and lim

n→+∞ ‖ψn − ψ‖B = 0;

(iii) ‖ψ‖B ≤ L‖ψ‖BC , ψ ∈ BC for some constant L > 0.

At last, we will assume the following.

(BC2) If ψ ∈ BC and ‖ψ‖BC 6= 0, then ‖ψ‖B 6= 0.

This hypothesis implies that that the space BC endowed with ‖ · ‖B is a
normed space. We will denote it by BC.

We may consider the following examples of phase spaces satisfying all
above properties.

(1) For ν > 0 let B = Cν be a space of continuous functions ϕ : (−∞; 0] →
E having a limit lim

θ→−∞
eνθϕ(θ) with

‖ϕ‖B = sup
−∞<θ≤0

eνθ‖ϕ(θ)‖.

(2) (Spaces of “fading memory”). Let B = Cρ be a space of functions
ϕ : (−∞; 0] → E such that

(a) ϕ is continuous on [−r; 0], r > 0;
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(b) ϕ is Lebesgue measurable on (−∞; r) and there exists a positive
Lebesgue integrable function ρ : (−∞;−r) → R+ such that ρϕ is
Lebesgue integrable on (−∞; r); moreover, there exists a locally
bounded function P : (−∞; 0] → R+ such that, for all ξ ≤ 0,
ρ(ξ + θ) ≤ P (ξ)ρ(θ) a.e. θ ∈ (−∞;−r). Then,

‖ϕ‖B = sup
−r≤θ≤0

‖ϕ(θ)‖+

−r∫

−∞
ρ(θ)‖ϕ(θ)‖dθ.

A simple example of such a space is given by ρ(θ) = eµθ, µ ∈ R.

3. Boundary value problem for a degenerate functional
differential inclusion with infinite delay

Let M : D (M) ⊆ E → E be a bounded linear operator and L : D (L) ⊆
E → E a closed linear operator in a real separable Banach space E satisfy-
ing the condition

(ML) D (L) ⊆ D (M) and M (D (L)) ⊆ R (M) .

We will consider the following general boundary value problem for a
degenerate (Sobolev type) differential inclusion in E

(2)
dMy (t)

dt
∈ Ly(t) + F (t,Myt), t ∈ [0, T ]

(3) Q (My) ∈ S (My) .

With the change x (t) = My (t) we can rewrite problem (2), (3) into the
following form

(4)
dx (t)

dt
∈ Ax(t) + F (t, xt), t ∈ [0, T ]

(5) Q (x) ∈ S (x) ,

where A = LM−1. It is clear that A ∈ ML (E) if M is not invertible and
that D (A) = M (D (L)) .

It will be supposed that:
(A) A = LM−1 satisfies conditions (A1) , (A2) of Section 2.1.

It should be mentioned that to guarantee condition (A2) , it is sufficient to
assume that:
(i) [Ly,My] ≤ γ‖My‖2,∀y ∈ D (L) for some γ ∈ R, where [, ] is a semi-
scalar product in E
and
(ii) R (λ0M − L) = E for some λ0 > γ.
(See [1]).

In accordance with [1], [14] we give the following notion.
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Definition 16. A function y : (−∞, T ] → E is a mild solution of differ-
ential inclusion (2) if the function x (t) = My (t) , t ∈ [0, T ] has the form

(6) x (t) = U (t) x (0) +
∫ t

0
U (t− s) f (s) ds,

where U is the generalized semigroup generated by A and f ∈ L1 ([0, T ] ; E)
is a selection of the multifunction t ( F (t, xt) .

The definition is motivated by the following facts. At first, following [5],
Theorem 2.6, it is easy to verify that given a function f ∈ L1 ([0, T ] ; E)
every Caratheodory solution to the problem with the MLO A

dx (t)
dt

∈ Ax (t) + f (t)

x (0) = x0 ∈ D (A)

is necessarily of the form

x (t) = U (t) x0 +
∫ t

0
U (t− s) f (s) ds .

Further, the function t → U (t) x0 +
∫ t
0 U (t− s) f (s) ds takes its values in

the subspace D (A) = M (D (L)) ⊆ R (M) (see condition (ML) ). At last, in
the non-degenerate case M = I, the given definition agrees with the notion
of mild solution for a semilinear differential inclusion (see, e.g., [12]).

We will also say that a function x satisfying integral equation (6) is the
mild solution of inclusion (4).

In the sequel, we consider the phase space B of functions ψ : (−∞, 0] →
E0, with E0 = D (A) = M (D (L)), satisfying all axioms of Section 2.3.

We will assume that the multimap F : [0, T ] × B → Kv(E) obeys the
following conditions:

(F1) for each ψ ∈ BC, the multifunction F (·, ψ) : [0;T ] → Kv(E) admits
a measurable selection;

(F2) for a.e. t ∈ [0;T ], the multimap F (t, ·) : BC → Kv(E) is u.s.c.;
(F3) for each nonempty, bounded set Ω ⊂ BC, there exists a function

αΩ ∈ L1
+[0, T ] such that

‖F (t, ψ)‖E := sup{‖z‖E : z ∈ F (t, ψ)} ≤ αΩ(t)

for a.e. t ∈ [0, T ] ψ ∈ Ω;
(F4) there exists a function k ∈ L1

+[0, T ] such that for each nonempty
bounded set Ω ⊂ BC

χ(F (t, Ω)) ≤ k(t)ϕ(Ω)

for a.e. t ∈ [0, T ], where χ is the Hausdorff MNC in E and ϕ(Ω) is
the modulus of fiber noncompactness of the set Ω.

By the symbol C((−∞; T ]; E0) we wll denote the space of bounded con-
tinuous functions x : (−∞; T ] → E0 endowed with the norm

‖x‖C = ‖x0‖B + ‖x |[0;T ] ‖C ,
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where the last norm is the usual sup-norm in the space C([0;T ];E0).

For operators from boundary condition (3) we assume that:

(Q) Q : C((−∞;T ]; E0) → BC is a linear bounded operator;

(S) the multimap S : C((−∞; T ];E0) → Kv(BC) is completely continu-
ous, i.e., it is u.s.c. and transforms bounded sets into relatively compact
ones.

From conditions (F1)− (F3) and (B1) it follows that the superposition
multioperator PF : C((−∞;T ]; E0) → P (L1([0, T ]; E)), given by

PF (x) = {f ∈ L1([0, T ]; E) : f(t) ∈ F (t, xt) a.e. t ∈ [0, T ]}
is well-defined (see, e.g., [4], [12]).

Definition 17. The linear operator G : L1([0, T ];E) → C((−∞; T ]; E0),
defined as

Gf(t) =





t∫
0

U (t− s) f (s) ds, t ∈ [0;T ];

0, t ∈ (−∞; 0]
is called the Cauchy operator.

Following [12], one may verify that the Cauchy operator has the next
properties.

Theorem 18. For every semicompact sequence {fn}∞n=1 in the space L1([0, T ];
E) the sequence {Gfn}∞n=1 is relatively compact in C((−∞, T ]; E0).

Theorem 19. The composition G ◦PF : C((−∞, T ]; E0) → Kv(C((−∞, T ];
E0)) is u.s.c. with compact convex values.

Denote by C0 the subspace of C((−∞; T ]; E0), consisting of functions of
the form

x(t) = U (t) x (0) , t ∈ [0, T ]
and denote by Q0 the restriction of Q to C0.

Our main assumption on boundary operators Q and S will be the fol-
lowing.
(QS) There exists a continuous linear operator Λ : BC → C0 such that

(I − Q0Λ)(z − QGf) = 0 for each x ∈ C((−∞, T ]; E0), z ∈ S(x)
and f ∈ PF (x).

To present an example of the realization of condition (QS), consider the
linear operator r : BC → C0 defined in the following way:

(rψ)(t) =
{

ψ(t), t ∈ (−∞, 0];
U (t)ψ (0) , t ∈ [0;T ].

Notice that from condition (B2) it follows that the operator r is continuous.

Assume that



10 ANSARI, LIOU, OBUKHOVSKII AND WONG

(Q̃) The linear continuous operator Q̃ : BC → BC defined as Q̃ψ = Q(rψ)
has the continuous inverse Q̃−1.

It is easy to see that under condition (Q̃) the operator Λ may be presented
in the following form:

(7) Λψ = r[Q̃−1(ψ)].

Supposing that condition (QS) is fulfilled, consider the multioperator

Γ : C((−∞; T ]; E0) → Kv(C((−∞; T ];E0))

defined in the following way:

Γ(x) = ΛS(x) + (I − ΛQ)GPF (x).

From Theorem 19 and the conditions posed on the operators Q, S, and Λ
it follows that the multioperator Γ is u.s.c. and has convex compact values.
Also, it is easy to see that Γ is a bounded operator, i.e., it takes bounded
sets into bounded ones. Describe its subsequent properties.

Theorem 20. Fixed points of the multioperator Γ are mild solutions of
problem (4)-(5) and hence they define mild solutions of problem (2)-(3).

Proof. Let x ∈ Γ(x). It means that there exist z ∈ S(x), f ∈ PF (x) such
that

x = Λz + (I − ΛQ)Gf.

Since the function x may be represented in the form

x = Λ(z −QGf) + Gf

we obtain that x satisfies integral equation (6).
Let us verify the fulfilment of the boundary condition. Using condition

(QS) we get

Qx = Q0Λz +Q (I − ΛQ) Gf = z − (z −Q0Λz) +QGf +Q0ΛQGf

= z − (I −Q0Λ) (z −QGf) = z ∈ Sx.

¤

Consider the MNC ν on the space C((−∞; T ]; E0) with values in the cone
R2

+:
ν(Ω) = (ϕC(Ω), modC(Ω)),

where ϕC is the modulus of fiber noncompactness in the space C((−∞; T ]; E0).
Notice that

ϕC(Ω) = sup
0≤t≤T

ϕBC(Ωt),

where Ωt ⊂ BC, Ωt = {xt : x ∈ Ω} and, for t ∈ [0, T ] :

ϕBC(Ωt) = sup
−∞≤τ≤0

χ(Ωt(τ)) = sup
−∞≤τ≤0

χ(Ω(t + τ)) = sup
−∞≤τ≤t

χ(Ω(τ)),

where χ is the Hausdorff MNC in E0.

Denote by C̃ the subspace of C((−∞; T ];E0) consisting of functions van-
ishing on (−∞; 0]. It is clear that C̃ is isomorphic to the space C([0, T ]; E0).

Theorem 21. Let the following conditions hold:
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(H1) there exists b ≥ 0 such that

ϕBC(QΩ) ≤ bϕC(Ω)

for each bounded set Ω ⊂ C̃;
(H2) for each relatively compact sequence {zn} ⊂ C̃, the sequence {ΛQzn}

is equicontinuous;
(H3) there exists a function h ∈ L1

+([0, T ]) such that

‖U (t) ‖(χ) ≤ h(t);

(H4) (1 + ‖Λ‖(ϕBC ,ϕC)b) sup
0≤t≤T

t∫
0

h(t − s)k(s)ds = µ < 1, where k(·) is the

function from condition (F4).
Then the multioperator Γ is ν-condensing on bounded subsets of the space

C((−∞;T ]; E0).

Proof. Assume that Ω is a bounded subset of C((−∞;T ]; E0) for which we
have

ν(ΓΩ) ≥ ν(Ω).
Let us show that the set Ω is relatively compact.

From the above inequality it follows that

ϕC(ΓΩ) ≥ ϕC(Ω).

Taking arbitrary t ∈ [0;T ] and τ ∈ [−∞, t], let us estimate χ(ΓΩ(τ)). Since
the set ΛS(Ω) is relatively compact, it is sufficient to estimate the value

χ((I − ΛQ)GPF (Ω)(τ)).

We obtain

χ(ΛQGPF (Ω)(τ)) ≤ ϕC(ΛQGPF (Ω)) ≤ ‖Λ‖(ϕBC ,ϕC)ϕBC(QGPF (Ω))

≤ ‖Λ‖(ϕBC ,ϕC)bϕC(GPF (Ω)) = ‖Λ‖(ϕBC ,ϕC)b sup
0≤t≤T

χ(GPF (Ω)(t)).

To estimate χ(GPF (Ω)(t)), notice that for 0 ≤ s ≤ t, we have

χ(U (t− s) F (s,Ωs)) ≤ ‖U (t− s) ‖(χ)χ(F (s,Ωs)) ≤
≤ h(t− s)k(s)ϕBC(Ωs) ≤ h(t− s)k(s)ϕC(Ω).

Then, applying the theorem on χ-estimation of a multivalued integral (see
[12], Theorem 4.2.3) we obtain

χ(GPF (Ω)(t)) ≤
t∫

0

h(t− s)k(s)ds · ϕC(Ω).

Using now the algebraic semiadditivity of the MNC χ, we have

χ((I − ΛQ)GPF Ω(τ)) ≤ (1 + ‖Λ‖(ϕBC ,ϕC)b) sup
0≤t≤T

t∫

0

h(t− s)k(s)ds · ϕC(Ω)

= µ · ϕC(Ω).

Then
ϕC(ΓΩ) = sup

0≤t≤T
sup

−∞≤τ≤t
χ(ΓΩ(τ)) ≤ µ · ϕC(Ω).



12 ANSARI, LIOU, OBUKHOVSKII AND WONG

We obtain
ϕC(Ω) ≤ ϕC(ΓΩ) ≤ µ · ϕC(Ω),

and therefore

(8) ϕC(Ω) = 0.

Let us demonstrate now that the set Ω is equicontinuous. Notice that
the relation

modC(Ω) ≤ modC(ΓΩ)
implies that it is sufficient to prove the equicontinuity of the set ΓΩ. In
turn, it is equivalent to the equicontinuity of each sequence

{gn} ⊂ (I − ΛQ)GPF (Ω).

For any such sequence {gn}, consider sequences {xn} ⊂ Ω and {fn}, fn ∈
PF (xn) such that

gn = (I − ΛQ)Gfn, n = 1, 2, ...

From condition (F3) it follows that the sequence of functions {fn} is
integrably bounded. Equality (8) implies that sequence {xn} satisfies the
relation

χ({xn(t)}) = 0, ∀t ∈ [0, T ]
and then, from condition (F4) we obtain that

χ({fn(t)}) = 0 a.e. t ∈ [0, T ],

i.e., the sequence {fn}is semicompact. From Theorem 18 it follows that
the sequence {Gfn} ⊂ C̃ is relatively compact and hence equicontinuous.
Applying condition (H2) we obtain that the sequence {gn} is equicontinuous.

From the Arzela–Ascoli theorem (see, e.g., [13]) it follows that the set Ω
is relatively compact w.r.t. the topology of uniform convergence on compact
subsets of (−∞; 0]. But then Theorem 15 yields the relative compactness of
the set Ω in the space C((−∞;T ]; E0) also. ¤

Remark 22. Notice that condition H(4) obviously holds in each of the fol-
lowing cases: (i) k ≡ 0, i.e., the multimap F is completely continuous in
the second argument; (ii) h ≡ 0, i.e., the semigroup U is compact. In each
of these cases the multioperator Γ is completely continuous.

So, the properties of the multioperator Γ open the possibility to apply
the topological degree theory for its study. We can formulate the following
general principle for the existence of mild solutions of problem (2)-(3).

Theorem 23. Under above conditions, let an open bounded set Ω ⊂ C((−∞;
T ];E0) does not have mild solutions of problem (4)-(5) on its boundary ∂Ω
and let

deg(i− Γ,Ω) 6= 0.

Then the set of mild solutions of problem (2)-(3) is non empty.

As the example of application of this principle consider he following
assertion.

Theorem 24. Under above conditions, let us assume, in addition, that
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(H5) there exists a sequence of functions ωn ∈ L1
+[0;T ], n = 1, 2, ... such

that:

lim
n→∞

1
n

T∫

0

ωn(t)dt = 0;

and

sup
‖ϕ‖B≤n

‖F (t, ϕ)‖ ≤ ωn(t) for a.e. t ∈ [0;T ],

(H6) the following asymptotic condition holds:

lim inf
‖x‖C→∞

‖S(x)‖B
‖x‖C = 0.

Then the set of mild solutions to problem (2)-(3) is non empty.

Proof. Let us show that there exists a closed ball Br ⊂ C((−∞;T ]; E0) such
that Γ(Br) ⊆ Br.

Supposing the contrary and using the boundedness of the multioperator
Γ, we may find the sequence of integers qn → ∞ and sequences {xn}, {zn}
in C((−∞; T ];E0) such that zn ∈ Γ(xn), ‖xn‖C ≤ qn, ‖zn‖C > qn, and
‖xn‖C →∞.
Then we obtain

‖zn‖C ≤ ‖ΛSxn‖C + ‖Gfn‖C + ‖ΛQGfn‖C

≤ ‖Λ‖‖Sxn‖B + (1 + ‖ΛQ‖)‖Gfn‖C([0,T ];E),

where fn ∈ PF (xn).
Using estimate (1), we obtain

‖zn‖C ≤ ‖Λ‖‖Sxn‖B + CeγT (1 + ‖ΛQ‖)
T∫

0

‖fn(s)‖ds

yielding

1 <
‖zn‖C

qn
≤ ‖Λ‖‖Sxn‖B

qn
+ CewT (1 + ‖ΛQ‖) 1

qn

T∫

0

‖fn(s)‖ds

≤ ‖Λ‖‖Sxn‖B
‖xn‖C + CewT (1 + ‖ΛQ‖) 1

qn

T∫

0

‖fn(s)‖ds,

contrary to assumptions (H5) and (H6).
It remains to apply the fixed point theorem for condensing multimaps

(see, e.g., Theorem 1.2.70 [3] or Corollary 3.3.1 [12]). ¤
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4. Some particular cases

4.1. Condition (Q̃). It is easy to see that the (ϕBC , ϕC)-norm of the oper-
ator r admits the following estimate :

‖r‖(ϕBC ,ϕC) ≤ R = max{1, sup
0≤t≤T

h(t)}.

So, under condition (Q̃) we obtain the following estimate for the (ϕBC , ϕC)-
norm of the operator Λ :

‖Λ‖(ϕBC ,ϕC) ≤ R‖Q̃−1‖(ϕBC).

It means that in this case condiion (H4) has the form

(H4′) (1 + R‖Q̃−1‖(ϕBC)b) sup
0≤t≤T

t∫
0

h(t− s)k(s)ds < 1.

4.2. Cauchy problem. In this case boundary condition (3) may be written
in the following form

(9) QMy = u,

or, equivalently,

(10) Qx = u,

where Qx = x0, u ∈ BC is a given function. Then, obviously, Sx ≡ u,
b = 0. For each sequence {zn} ⊂ C̃ the sequence {ΛQzn} is constant and its
members equal zero, so condition (H2) is fulfilled. Further, the operator Q̃
is identity and condition (H4) takes the following form:

(H4′′) sup
0≤t≤T

t∫
0

h(t− s)k(s)ds < 1.

From Theorem 24 we deduce the following result.

Theorem 25. Under conditions (A), (F1), (F2), (F4), (H3), (H4′′), and
(H5) there exists a mild solution of Cauchy problem (2)– (3).

4.3. Periodic problem. Consider boundary condition

(11) QMy = 0,

or, equivalently,

(12) Qx = 0,

where Qx = xT − x0. Notice that from condition (B1)(iii) it follows that Q
is a continuous linear operator.

We will assume the following condition:
(A3) the linear operator U (T )− I is invertible on E0.
Taking into account that Sx ≡ 0, it is sufficient to construct the operator

Λ on the subspace QC̃ ⊂ BC proceeding from formula (7). Notice that in
our case the subspace QC̃ consists of continuous functions ψ : (−∞, 0] → E
vanishing on (−∞,−T ]. It is natural enough to suppose that

(QC̃) if a set Ψ ⊂ QC̃ is bounded w.r.t. the norm ‖·‖B then it is uniformly
bounded.
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Now, for a given function ψ ∈ QC̃, let us find a function ξ ∈ BC such that
Q̃ξ = ψ, where, as earlier, Q̃ξ = Q(rξ). We have

(13) (rξ)T − (rξ)0 = (rξ)T − ξ = ψ,

implying
ξ(0) = (U (T )− I)−1ψ(0),

and further, for θ ∈ [−T, 0] :

(14) ξ(θ) = U (T + θ) ξ(0)− ψ(θ) = U (T + θ) (U (T )− I)−1ψ(0)− ψ(θ).

If now θ < −T, then from (13) we obtain

(rξ)T (θ)− ξ(θ) = ξ(T + θ)− ξ(θ) = 0,

i.e., the function ξ is T -periodic on (−∞, 0] and its values are completely
determined by formula (14). Thus we constructed the operator inverse to Q̃
on QC̃.

Further, let a certain set of functions Ψ ⊂ QC̃ is bounded w.r.t. ‖ ·
‖B. Then, applying property (QC̃), we see, from formula (14), that the
corresponding family of functions Ξ = {ξ = Q̃−1ψ : ψ ∈ Ψ} is uniformly
bounded on (−∞, 0], and therefore, by Theorem 15 (iii) it is bounded in the
space BC also. It means that the operator Q̃−1 is continuous on QC̃.

The operator Λ on QC̃ may be presented in the explicit form:

(Λψ)(t) =
{ [

U (T + t) (U (T )− I))−1ψ (0)− ψ (t)
]
T

, t ∈ [−∞, 0];
U (t) (U (T )− I)−1ψ(0), t ∈ [0;T ],

where by [·]T we denote the T -periodic extension to [−∞, 0] of a function
given on [−T, 0].

It is easy to see that condition (H1) is fulfilled with the constant b = 1.
Further, let {zn} ⊂ C̃ be a relatively compact sequence. Then the se-

quence {ψn} ⊂ QC̃, ψn = Qzn = (zn)T , is equicontinuous and {ψn(0)} is a
relatively compact subset of E0. But then, from the construction of the op-
erator Λ, we see that the sequence {Λψn} is also equicontinuous and hence
condition (H2) is fulfilled.

Now, notice that (ϕBC)-norm of the operator Q̃−1 on QC̃ may be esti-
mated in the following way:

‖Q̃−1‖(ϕBC) ≤ sup
0≤t≤T

h(t) · ‖ (U (T )− I)−1 ‖(χ) + 1.

Then condition (H4′) may be written in the following form:

(H4′′′) [1+R( sup
0≤t≤T

h(t)·‖(U (T )−I)−1‖(χ)+1)]· sup
0≤t≤T

t∫
0

h(t−s)k(s)ds < 1.

The multioperator Γ in the periodic problem has the form

Γ(x) = (I − ΛQ)GPF (x).

To present it in the explicit form, notice that for f ∈ PF (x) we have

(QGf)(t) =

T+t∫

0

U (T + t− s) f(s)ds, t ∈ [−T, 0].
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So, Γ(x) consists of all functions z ∈ C((−∞; T ];E0) which, for f ∈ PF (x),
have the form

z(t) =





[
T+t∫
0

U (T + t− s) f(s)ds

−U (T + t) (U (T )− I)−1
T∫
0

U (T − s) f(s)ds

]

T

, t ∈ (−∞, 0] ;

t∫
0

U (t− s) f(s)ds− U (t) (U (T )− I)−1
T∫
0

U (T − s) f(s)ds,

t ∈ [0, T ]

(cfr. [11], [12]).
The application of Theorem 24 yields the following assertion.

Theorem 26. Under conditions (A), (A3), (F1), (F2), (F4), (H3), (H4′′′),
(H5), and (QC̃) periodic problem (2), (11) has a mild solution.

References

[1] A. Baskakov, V. Obukhovskii, P. Zecca, Multivalued linear operators and differential
inclusions in Banach spaces. Discuss. Math. Differ. Incl. Control Optim. 23 (2003),
53–74.

[2] A. Baskakov, V. Obukhovskii, P. Zecca, On solutions of differential inclusions in
homogeneous spaces of functions. J. Math. Anal. Appl. 324 (2006), no. 2, 1310–1323.

[3] Yu.G. Borisovich, B.D. Gelman, A.D. Myshkis, V.V. Obukhovskii, Topological methods
in the theory of fixed points of multivalued mappings. (Russian) Uspekhi Mat. Nauk
35 (1980), no 1(211), 59-126. English translation: Russian Math. Surveys 35 (1980),
65-143.

[4] Yu.G. Borisovich, B.D. Gelman, A.D. Myshkis, V.V. Obukhovskii, Introduction to the
Theory of Multivalued Maps and Differential Inclusions, KomKniga, Moscow, 2005 (in
Russian).

[5] A.Favini, A.Yagi, Degenerate Differential Equations in Banach Spaces. Monographs
and Textbooks in Pure and Applied Mathematics, 215. Marcel Dekker, Inc., New
York, 1999.

[6] C.Gori, V.Obukhovskii, M.Ragni, P.Rubbioni, Existence and continuous dependence
results for semilinear functional differential inclutions with infinite delay. Nonlinear
Anal. 51 (2002), 765-782.

[7] C.Gori, V.Obukhovskii, M.Ragni, P.Rubbioni, On some properties of semilinear func-
tional differential inclusions in abstract spaces. J. Concr. Appl. Math. 4 (2006), no. 2,
183–214.

[8] J.K.Hale, J.Kato, Phase space for retarded equations with infinite delay. Funkcial.
Ekvac. 21(1978), no.1, 11-41.

[9] H.R. Henriquez, Periodic solutions of quasi-linear partial functional-differential equa-
tions with unbounded delay. Funkcial. Ekvac. 37 (1994), no. 2, 329–343.

[10] Y.Hino, S.Murakami, T.Naito, Functional Differential Equations with Infinite Delay.
Lecture Notes in Mathematics, Vol. 1473, Springer-Verlag, Berlin–Heidelberg–New
York, 1991.

[11] M.Kamenskii, V.Obukhovskii, Condensing multioperators and periodic solutions
of parabolic functional-differential inclusions in Banach spaces. Nonlinear Anal. 20
(1993), 781–792

[12] M.Kamenskii, V.Obukhovskii, P.Zecca, Condensing Multivalued Maps and Semilinear
Differential Inclusions in Banach Spaces. Walter de Gruyter, Berlin–New York, 2001.

[13] J.L. Kelley, General Topology. Reprint of the 1955 edition [Van Nostrand, Toronto,
Ont.]. Graduate Texts in Mathematics, No. 27. Springer-Verlag, New York-Berlin,
1975.



TOPOLOGICAL DEGREE METHODS IN BOUNDARY VALUE PROBLEMS 17

[14] V.Obukhovskii, P.Zecca, On boundary value problems for degenerate differential in-
clusions in Banach spaces. Abstract and Appl. Anal. 13 (2003), 769–784.

[15] J.S. Shin, An existence theorem of functional-differential equations with infinite delay
in a Banach space. Funkcial. Ekvac. 30 (1987), no. 1, 19–29.

[16] R.E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differ-
ential Equations. Mathematical Surveys and Monographs, 49. American Mathematical
Society, Providence, RI, 1997.

[17] G.A. Sviridyuk, V.E. Fedorov, Linear Sobolev Type Equations and Degenerate Semi-
groups of Operators. Inverse and Ill-posed Problems Series. VSP, Utrecht, 2003.

Q. H. Ansari, Department of Mathematical Sciences, King Fahd Univer-
sity of Petroleum & Minerals, P.O. Box 1169, Dhahran, 31261, Saudi Arabia;
and Department of Mathematics, Aligarh Muslim University, Aligarh 202 002,
India., E-mail address: qhansari@kfupm.edu.sa

Y. C. Liou, Department of Information Management, Cheng Shiu Univer-
sity, Kaohsiung 833, Taiwan., simplexliou@hotmail.com

V. Obukhovskii, Faculty of Mathematics, Universitetskaya Pl., 1, Voronezh,
Russia, E-mail address: valerio@math.vsu.ru

N. C. Wong, Department of Applied Mathematics, National Sun Yat-sen
University, Kaohsiung, Taiwan 804., E-mail address: wong@math.nsysu.edu.tw


