ITERATIVE COMMON SOLUTIONS FOR MONOTONE INCLUSION PROBLEMS, FIXED POINT PROBLEMS AND EQUILIBRIUM PROBLEMS

WATARU TAKAHASHI, NGAI-CHING WONG, AND JEN-CHIH YAO

ABSTRACT. Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let $\alpha > 0$ and let A be an α -inverse strongly-monotone mapping of C into H. Let T be a generalized hybrid mapping of C into H. Let B and W be maximal monotone operators on H such that the domains of B and W are included in C. Let 0 < k < 1 and let g be a k-contraction of H into itself. Let V be a $\overline{\gamma}$ -strongly monotone and k-Lipschitzian continuous operator with k 0 and k 0. Take k 1 as follows:

$$0 < \mu < \frac{2\overline{\gamma}}{L^2}, \quad 0 < \gamma < \frac{\overline{\gamma} - \frac{L^2\mu}{2}}{k}.$$

Suppose that $F(T)\cap (A+B)^{-1}0\cap W^{-1}0\neq\emptyset$. In this paper, we prove a strong convergence theorem for finding a point z_0 of $F(T)\cap (A+B)^{-1}0\cap W^{-1}0$, where z_0 is a unique fixed point of $P_{F(T)\cap (A+B)^{-1}0\cap W^{-1}0}(I-V+\gamma g)$. This point $z_0\in F(T)\cap (A+B)^{-1}0\cap W^{-1}0$ is also a unique solution of the variational inequality

$$\langle (V - \gamma g)z_0, q - z_0 \rangle \ge 0, \quad \forall q \in F(T) \cap (A + B)^{-1}0 \cap W^{-1}0.$$

Using this result, we obtain new and well-known strong convergence theorems in a Hilbert space. In particular, we solve a problem posed by Kurokawa and Takahashi [16].

1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let $\mathbb N$ and $\mathbb R$ be the sets of positive integers and real numbers, respectively. A mapping $T:C\to H$ is called *generalized hybrid* [13] if there exist $\alpha,\beta\in\mathbb R$ such that

$$\alpha ||Tx - Ty||^2 + (1 - \alpha)||x - Ty||^2 \le \beta ||Tx - y||^2 + (1 - \beta)||x - y||^2$$

for all $x,y\in C$. We call such a mapping an (α,β) -generalized hybrid mapping. Then Kocourek, Takahashi and Yao [13] proved a fixed point theorem for such mappings in a Hilbert space. Furthermore, they proved a nonlinear mean convergence theorem of Baillon's type [4] in a Hilbert space. Notice that the mapping above covers several well-known mappings. For example, an (α,β) -generalized hybrid mapping T is nonexpansive for $\alpha=1$ and $\beta=0$, i.e.,

$$||Tx - Ty|| \le ||x - y||, \quad \forall x, y \in C.$$

 $^{2000\} Mathematics\ Subject\ Classification.\ 47\text{H}05,\ 47\text{H}10,\ 58\text{E}35.$

Key words and phrases. Maximal monotone operator, resolvent, inverse-strongly monotone mapping, generalized hybrid mapping, fixed point, iteration procedure, equilibrium problem.

It is also nonspreading [14, 15] for $\alpha = 2$ and $\beta = 1$, i.e.,

$$2||Tx - Ty||^2 \le ||Tx - y||^2 + ||Ty - x||^2, \quad \forall x, y \in C.$$

Furthermore, it is hybrid [31] for $\alpha = \frac{3}{2}$ and $\beta = \frac{1}{2}$, i.e.,

$$3||Tx - Ty||^2 \le ||x - y||^2 + ||Tx - y||^2 + ||Ty - x||^2, \quad \forall x, y \in C.$$

We can also show that if x = Tx, then for any $y \in C$,

$$\alpha \|x - Ty\|^2 + (1 - \alpha)\|x - Ty\|^2 \le \beta \|x - y\|^2 + (1 - \beta)\|x - y\|^2$$

and hence $||x - Ty|| \le ||x - y||$. This means that an (α, β) -generalized hybrid mapping with a fixed point is quasi-nonexpansive. The following strong convergence theorem of Halpern's type [10] was proved by Wittmannn [35]; see also [29].

Theorem 1. Let C be a nonempty closed convex subset of H and let T be a nonexpansive mapping of C into itself with $F(T) \neq \emptyset$. For any $x_1 = x \in C$, define a sequence $\{x_n\}$ in C by

$$x_{n+1} = \alpha_n x + (1 - \alpha_n) T x_n, \quad \forall n \in \mathbb{N},$$

where $\{\alpha_n\} \subset (0,1)$ satisfies

$$\lim_{n \to \infty} \alpha_n = 0, \quad \sum_{n=1}^{\infty} \alpha_n = \infty \quad and \quad \sum_{n=1}^{\infty} |\alpha_n - \alpha_{n+1}| < \infty.$$

Then $\{x_n\}$ converges strongy to a fixed point of T.

Kurokawa and Takahashi [16] also proved the following strong convergence theorem for nonspreading mappings in a Hilbert space; see also Hojo and Takahashi [11] for generalized hybrid mappings.

Theorem 2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T be a nonspreading mapping of C into itself. Let $u \in C$ and define two sequences $\{x_n\}$ and $\{z_n\}$ in C as follows: $x_1 = x \in C$ and

$$\begin{cases} x_{n+1} = \alpha_n u + (1 - \alpha_n) z_n, \\ z_n = \frac{1}{n} \sum_{k=0}^{n-1} T^k x_n \end{cases}$$

for all n = 1, 2, ..., where $\{\alpha_n\} \subset (0, 1)$, $\lim_{n \to \infty} \alpha_n = 0$ and $\sum_{n=1}^{\infty} \alpha_n = \infty$. If F(T) is nonempty, then $\{x_n\}$ and $\{z_n\}$ converge strongly to Pu, where P is the metric projection of H onto F(T).

Remark. We do not know whether Theorem 1 for nonspreading mappings holds or not; see [16] and [11].

Let $f:C\times C\to\mathbb{R}$ be a bifunction. The equilibrium problem (with respect to C) is to find $\hat{x}\in C$ such that

$$(1.1) f(\hat{x}, y) > 0, \quad \forall y \in C.$$

The set of such solutions \hat{x} is denoted by EP(f), i.e.,

$$EP(f) = {\hat{x} \in C : f(\hat{x}, y) \ge 0, \ \forall y \in C}.$$

For solving the equilibrium problem, let us assume that the bifunction $f: C \times C \to \mathbb{R}$ satisfies the following conditions:

- (A1) f(x,x) = 0 for all $x \in C$;
- (A2) f is monotone, i.e., $f(x,y) + f(y,x) \le 0$ for all $x,y \in C$;
- (A3) for all $x, y, z \in C$,

$$\lim \sup_{t\downarrow 0} f(tz + (1-t)x, y) \le f(x, y);$$

(A4) for all $x \in C$, $f(x, \cdot)$ is convex and lower semicontinuous.

Defining a set-valued mapping $A_f \subset H \times H$ by

$$A_f x = \begin{cases} \{ z \in H : f(x, y) \ge \langle y - x, z \rangle, \ \forall y \in C \}, & \forall x \in C, \\ \emptyset, & \forall x \notin C, \end{cases}$$

we have from [27] that A_f is a maximal monotone operator such that the domain is included in C.

In this paper, motivated by these results, we prove a strong convergence theorem for finding a point z_0 of $F(T) \cap (A+B)^{-1}0 \cap W^{-1}0$, where T is a generalized hybrid mapping of C into H, B and W are maximal monotone operators on H such that the domains of B and W are included in C, g is a k-contraction of H into itself with 0 < k < 1, V is a $\overline{\gamma}$ -strongly monotone and L-Lipschitzian continuous operator with $\overline{\gamma} > 0$ and L > 0. This point z_0 is a unique fixed point of $P_{F(T)\cap (A+B)^{-1}0\cap W^{-1}0}(I-V+\gamma g)$ and then this $z_0 \in F(T)\cap (A+B)^{-1}0\cap W^{-1}0$ is also a unique solution of the variational inequality

$$\langle (V - \gamma g)z_0, q - z_0 \rangle \ge 0, \quad \forall q \in F(T) \cap (A + B)^{-1}0 \cap W^{-1}0.$$

Using this result, we obtain new and well-known strong convergence theorems in a Hilbert space. In particular, we solve a problem posed by Kurokawa and Takahashi [16].

2. Preliminaries

Let H be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$. When $\{x_n\}$ is a sequence in H, we denote the strong convergence of $\{x_n\}$ to $x \in H$ by $x_n \to x$ and the weak convergence by $x_n \to x$. We have from [30] that for any $x, y \in H$ and $\lambda \in \mathbb{R}$,

and

Furthermore we have that for $x, y, u, v \in H$,

$$(2.3) 2\langle x - y, u - v \rangle = \|x - v\|^2 + \|y - u\|^2 - \|x - u\|^2 - \|y - v\|^2.$$

All Hilbert spaces satisfy Opial's condition, that is,

(2.4)
$$\liminf_{n \to \infty} ||x_n - u|| < \liminf_{n \to \infty} ||x_n - v||$$

if $x_n \to u$ and $u \neq v$; see [24]. Let C be a nonempty closed convex subset of a Hilbert space H and let $T \colon C \to H$ be a mapping. We denote by F(T) be the set of fixed points for T. A mapping $T \colon C \to H$ is called quasi-nonexpansive if $F(T) \neq \emptyset$ and $||Tx - y|| \leq ||x - y||$ for all $x \in C$ and $y \in F(T)$. If $T \colon C \to H$ is quasi-nonexpansive, then F(T) is closed and convex; see [12]. For a nonempty closed convex subset C of H, the nearest point projection of H onto C is denoted by P_C , that is, $||x - P_C x|| \leq ||x - y||$ for all $x \in H$ and $y \in C$. Such P_C is called the

metric projection of H onto C. We know that the metric projection P_C is firmly nonexpansive; $||P_Cx - P_Cy||^2 \le \langle P_Cx - P_Cy, x - y \rangle$ for all $x, y \in H$. Furthermore $\langle x - P_Cx, y - P_Cx \rangle \le 0$ holds for all $x \in H$ and $y \in C$; see [28]. The following result is in [34].

Lemma 3. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let $T: C \to H$ be a generalized hybrid mapping. Suppose that there exists $\{x_n\} \subset C$ such that $x_n \rightharpoonup z$ and $x_n - Tx_n \to 0$. Then, $z \in F(T)$.

Let B be a mapping of H into 2^H . The effective domain of B is denoted by D(B), that is, $D(B) = \{x \in H : Bx \neq \emptyset\}$. A multi-valued mapping B is said to be a monotone operator on H if $\langle x - y, u - v \rangle \geq 0$ for all $x, y \in D(B)$, $u \in Bx$, and $v \in By$. A monotone operator B on H is said to be maximal if its graph is not properly contained in the graph of any other monotone operator on H. For a maximal monotone operator B on H and T > 0, we may define a single-valued operator $T_T = (I + TB)^{-1} : H \to D(B)$, which is called the resolvent of $T_T = T_T : T$

$$(2.5) A_r x \in BJ_r x, \quad \forall x \in H, \ r > 0.$$

Let B be a maximal monotone operator on H and let $B^{-1}0 = \{x \in H : 0 \in Bx\}$. It is known that $B^{-1}0 = F(J_r)$ for all r > 0 and the resolvent J_r is firmly nonexpansive, i.e.,

$$(2.6) ||J_r x - J_r y||^2 \le \langle x - y, J_r x - J_r y \rangle, \quad \forall x, y \in H.$$

We also know the following lemma from [27].

Lemma 4. Let H be a real Hilbert space and let B be a maximal monotone operator on H. For r > 0 and $x \in H$, define the resolvent $J_r x$. Then the following holds:

$$\frac{s-t}{s}\langle J_s x - J_t x, J_s x - x \rangle \ge ||J_s x - J_t x||^2$$

for all s, t > 0 and $x \in H$.

From Lemma 4, we have that

$$||J_{\lambda}x - J_{\mu}x|| \le (|\lambda - \mu|/\lambda) ||x - J_{\lambda}x||$$

for all $\lambda, \mu > 0$ and $x \in H$; see also [28, 9]. To prove our main result, we need the following lemmas.

Lemma 5 ([2]; see also [36]). Let $\{s_n\}$ be a sequence of nonnegative real numbers, let $\{\alpha_n\}$ be a sequence of [0,1] with $\sum_{n=1}^{\infty} \alpha_n = \infty$, let $\{\beta_n\}$ be a sequence of nonnegative real numbers with $\sum_{n=1}^{\infty} \beta_n < \infty$, and let $\{\gamma_n\}$ be a sequence of real numbers with $\limsup_{n\to\infty} \gamma_n \leq 0$. Suppose that

$$s_{n+1} \le (1 - \alpha_n)s_n + \alpha_n \gamma_n + \beta_n$$

for all n = 1, 2, Then $\lim_{n \to \infty} s_n = 0$.

Lemma 6 ([19]). Let $\{\Gamma_n\}$ be a sequence of real numbers that does not decrease at infinity in the sense that there exists a subsequence $\{\Gamma_{n_i}\}$ of $\{\Gamma_n\}$ which satisfies $\Gamma_{n_i} < \Gamma_{n_{i+1}}$ for all $i \in \mathbb{N}$. Define the sequence $\{\tau(n)\}_{n \geq n_0}$ of integers as follows:

$$\tau(n) = \max\{k \le n : \Gamma_k < \Gamma_{k+1}\},\,$$

where $n_0 \in \mathbb{N}$ such that $\{k \leq n_0 : \Gamma_k < \Gamma_{k+1}\} \neq \emptyset$. Then, the following hold:

- (i) $\tau(1) \le \tau(2) \le \dots$ and $\tau(n) \to \infty$;
- (ii) $\Gamma_{\tau(n)} \leq \Gamma_{\tau(n)+1}$ and $\Gamma_n \leq \Gamma_{\tau(n)+1}$, $\forall n \in \mathbb{N}$.

3. Strong Convergence Theorems

Let H be a real Hilbert space. A mapping $g: H \to H$ is a contraction if there exists $k \in (0,1)$ such that $\|g(x) - g(y)\| \le k\|x - y\|$ for all $x,y \in H$. We call such a mapping g a k-contraction. A nonlinear operator $V: H \to H$ is called strongly monotone if there exists $\overline{\gamma} > 0$ such that $\langle x - y, Vx - Vy \rangle \ge \overline{\gamma} \|x - y\|^2$ for all $x,y \in H$. Such V is also called $\overline{\gamma}$ -strongly monotone. A nonlinear operator $V: H \to H$ is called Lipschitzian continuous if there exists L > 0 such that $\|Vx - Vy\| \le L\|x - y\|$ for all $x,y \in H$. Such V is also called L-Lipschitzian continuous. We know the following three lemmas in a Hilbert space; see Lin and Takahashi [17].

Lemma 7 ([17]). Let H be a Hilbert space and let V be a $\overline{\gamma}$ -strongly monotone and L-Lipschitzian continuous operator on H with $\overline{\gamma} > 0$ and L > 0. Let t > 0 satisfy $2\overline{\gamma} > tL^2$ and $1 > 2t\overline{\gamma}$. Then $0 < 1 - t(2\overline{\gamma} - tL^2) < 1$ and $I - tV : H \to H$ is a contraction, where I is the identity operator on H.

Lemma 8 ([17]). Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let P_C be the metric projection of H onto C and let V be a $\overline{\gamma}$ -strongly monotone and L-Lipschitzian continuous operator on H with $\overline{\gamma} > 0$ and L > 0. Let t > 0 satisfy $2\overline{\gamma} > tL^2$ and $1 > 2t\overline{\gamma}$ and let $z \in C$. Then the following are equivalent:

- (1) $z = P_C(I tV)z$;
- (2) $\langle Vz, y z \rangle \ge 0$, $\forall y \in C$;
- (3) $z = P_C(I V)z$.

Such $z \in C$ exists always and is unique.

Lemma 9 ([17]). Let H be a Hilbert space and let $g: H \to H$ be a k-contraction with 0 < k < 1. Let V be a $\overline{\gamma}$ -strongly monotone and L-Lipschitzian continuous operator on H with $\overline{\gamma} > 0$ and L > 0. Let a real number γ satisfy $0 < \gamma < \frac{\overline{\gamma}}{k}$. Then $V - \gamma g: H \to H$ is a $(\overline{\gamma} - \gamma k)$ -strongly monotone and $(L + \gamma k)$ -Lipschitzian continuous mapping. Furthermore, let C be a nonempty closed convex subset of H. Then $P_C(I - V + \gamma g)$ has a unique fixed point z_0 in C. This point $z_0 \in C$ is also a unique solution of the variational inequality

$$\langle (V - \gamma g)z_0, q - z_0 \rangle \ge 0, \quad \forall q \in C.$$

Now we prove the following strong convergence theorem of Halpern's type [10] for finding a common solution of a monotone inclusion problem for the sum of two monotone mappings, of a fixed point problem for generalized hybrid mappings and of an equilibrium problem for bifunctions in a Hilbert space.

Theorem 10. Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let $\alpha > 0$ and let A be an α -inverse strongly-monotone mapping of C into H. Let B and W be maximal monotone operators on H such that the domains of B and W are included in C. Let $J_{\lambda} = (I + \lambda B)^{-1}$ and $T_r = (I + rW)^{-1}$ be resolvents of B and W for $\lambda > 0$ and r > 0, respectively. Let S be a generalized hybrid mapping of C into H. Let 0 < k < 1 and let g be a k-contraction of K into itself. Let K be a K-contraction and K-Lipschitzian continuous operator with

 $\overline{\gamma} > 0$ and L > 0. Take $\mu, \gamma \in \mathbb{R}$ as follows:

$$0 < \mu < \frac{2\overline{\gamma}}{L^2}, \quad 0 < \gamma < \frac{\overline{\gamma} - \frac{L^2\mu}{2}}{k}.$$

Suppose $F(S) \cap (A+B)^{-1}0 \cap W^{-1}0 \neq \emptyset$. Let $x_1 = x \in H$ and let $\{x_n\} \subset H$ be a sequence generated by

$$x_{n+1} = \beta_n x_n + (1 - \beta_n) \{ \alpha_n \gamma g(x_n) + (I - \alpha_n V) S J_{\lambda_n} (I - \lambda_n A) T_{r_n} x_n \}$$

for all $n \in \mathbb{N}$, where $\{\alpha_n\} \subset (0,1)$, $\{\beta_n\} \subset (0,1)$, $\{\lambda_n\} \subset (0,\infty)$ and $\{r_n\} \subset (0,\infty)$ satisfy

$$\lim_{n \to \infty} \alpha_n = 0, \quad \sum_{n=1}^{\infty} \alpha_n = \infty, \quad 0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1,$$

$$\liminf_{n \to \infty} r_n > 0 \quad and \quad 0 < a \le \lambda_n \le b < 2\alpha.$$

Then $\{x_n\}$ converges strongly to $z_0 \in F(S) \cap (A+B)^{-1}0 \cap W^{-1}0$, where z_0 is a unique fixed point in $F(S) \cap (A+B)^{-1}0 \cap W^{-1}0$ of $P_{F(S) \cap (A+B)^{-1}0 \cap W^{-1}0}(I-V+\gamma g)$.

Proof. Let $z \in F(S) \cap (A+B)^{-1} \cap W^{-1} = 0$. We have that z = Sz, $z = J_{\lambda_n}(I - \lambda_n A)z$ and $z = T_{r_n}z$. Putting $w_n = J_{\lambda_n}(I - \lambda_n A)T_{r_n}x_n$ and $u_n = T_{r_n}x_n$, we obtain that

$$||Sw_{n} - z||^{2} \leq ||w_{n} - z||^{2}$$

$$= ||J_{\lambda_{n}}(u_{n} - \lambda_{n}Au_{n}) - J_{\lambda_{n}}(z - \lambda_{n}Az)||^{2}$$

$$\leq ||u_{n} - \lambda_{n}Au_{n} - (z - \lambda_{n}Az)||^{2}$$

$$= ||u_{n} - z - \lambda_{n}(Au_{n} - Az)||^{2}$$

$$= ||u_{n} - z||^{2} - 2\lambda_{n}\langle u_{n} - z, Au_{n} - Az\rangle + \lambda_{n}^{2} ||Au_{n} - Az||^{2}$$

$$\leq ||u_{n} - z||^{2} - 2\lambda_{n}\alpha ||Au_{n} - Az||^{2} + \lambda_{n}^{2} ||Au_{n} - Az||^{2}$$

$$\leq ||x_{n} - z||^{2} + \lambda_{n}(\lambda_{n} - 2\alpha) ||Au_{n} - Az||^{2}$$

$$\leq ||x_{n} - z||^{2}.$$

Put $\tau = \overline{\gamma} - \frac{L^2 \mu}{2}$. Using $\lim_{n \to \infty} \alpha_n = 0$, we have that for any $x, y \in H$,

 $||(I - \alpha_n V)x - (I - \alpha_n V)y||^2 = ||x - y - \alpha_n (Vx - Vy)||^2$

$$= \|x - y\|^{2} - 2\alpha_{n}\langle x - y, Vx - Vy \rangle + \alpha_{n}^{2}\|Vx - Vy\|^{2}$$

$$\leq \|x - y\|^{2} - 2\alpha_{n}\overline{\gamma}\|x - y\|^{2} + \alpha_{n}^{2}L^{2}\|x - y\|^{2}$$

$$= (1 - 2\alpha_{n}\overline{\gamma} + \alpha_{n}^{2}L^{2})\|x - y\|^{2}$$

$$= (1 - 2\alpha_{n}\tau - \alpha_{n}L^{2}\mu + \alpha_{n}^{2}L^{2})\|x - y\|^{2}$$

$$\leq (1 - 2\alpha_{n}\tau - \alpha_{n}(L^{2}\mu - \alpha_{n}L^{2}) + \alpha_{n}^{2}\tau^{2})\|x - y\|^{2}$$

$$\leq (1 - 2\alpha_{n}\tau + \alpha_{n}^{2}\tau^{2})\|x - y\|^{2}$$

$$= (1 - \alpha_{n}\tau)^{2}\|x - y\|^{2}.$$

Since $1 - \alpha_n \tau > 0$, we obtain that for any $x, y \in H$,

$$(3.3) ||(I - \alpha_n V)x - (I - \alpha_n V)y|| \le (1 - \alpha_n \tau)||x - y||.$$

Putting $y_n = \alpha_n \gamma g(x_n) + (I - \alpha_n V) S J_{\lambda_n} (I - \lambda_n A) T_{r_n} x_n$, from $z = \alpha_n V z + z - \alpha_n V z$, (3.1) and (3.3) we have that

$$||y_n - z|| = ||\alpha_n(\gamma g(x_n) - Vz) + (I - \alpha_n V)Sw_n - (I - \alpha_n V)z||$$

$$\leq \alpha_n \gamma \ k \, ||x_n - z|| + \alpha_n ||\gamma g(z) - Vz|| + (1 - \alpha_n \tau) \, ||Sw_n - z||$$

$$\leq \{1 - \alpha_n(\tau - \gamma \ k)\} \, ||x_n - z|| + \alpha_n ||\gamma g(z) - Vz||.$$

Using this, we get

$$||x_{n+1} - z|| = ||\beta_n(x_n - z) + (1 - \beta_n)(y_n - z)||$$

$$\leq \beta_n ||x_n - z|| + (1 - \beta_n) ||y_n - z||$$

$$\leq \beta_n ||x_n - z||$$

$$+ (1 - \beta_n)(\{1 - \alpha_n(\tau - \gamma k)\} ||x_n - z|| + \alpha_n ||\gamma g(z) - Vz||)$$

$$= \{1 - (1 - \beta_n)\alpha_n(\tau - \gamma k)\} ||x_n - z||$$

$$+ (1 - \beta_n)\alpha_n(\tau - \gamma k) \frac{||\gamma g(z) - Vz||}{\tau - \gamma k}.$$

Putting $K = \max\{\|x_1 - z\|, \frac{\|\gamma g(z) - Vz\|}{\tau - \gamma k}\}$, we have that $\|x_n - z\| \le K$ for all $n \in \mathbb{N}$. Then $\{x_n\}$ is bounded. Furthermore, $\{u_n\}$, $\{w_n\}$ and $\{y_n\}$ are bounded. Using Lemma 9, we can take a unique $z_0 \in F(S) \cap (A+B)^{-1}0 \cap W^{-1}0$ such that

$$z_0 = P_{F(S) \cap (A+B)^{-1} \cap W^{-1} \cap W} (I - V + \gamma g) z_0.$$

From the definition of $\{x_n\}$, we have that

$$x_{n+1} - x_n = \beta_n x_n + (1 - \beta_n) \{\alpha_n \gamma g(x_n) + (I - \alpha_n V) Sw_n\} - x_n$$

and hence

$$x_{n+1} - x_n - (1 - \beta_n)\alpha_n \gamma g(x_n) = \beta_n x_n + (1 - \beta_n)(I - \alpha_n V)Sw_n - x_n$$

= $(1 - \beta_n)\{(I - \alpha_n V)Sw_n - x_n\}$
= $(1 - \beta_n)(Sw_n - x_n - \alpha_n VSw_n).$

Thus we have that

$$\langle x_{n+1} - x_n - (1 - \beta_n) \alpha_n \gamma g(x_n), x_n - z_0 \rangle$$

$$= \langle (1 - \beta_n) (Sw_n - x_n - \alpha_n V Sw_n), x_n - z_0 \rangle$$

$$= -(1 - \beta_n) \langle x_n - Sw_n, x_n - z_0 \rangle - (1 - \beta_n) \alpha_n \langle V Sw_n, x_n - z_0 \rangle.$$

From (2.3) and (3.1), we have that

$$2\langle x_n - Sw_n, x_n - z_0 \rangle = \|x_n - z_0\|^2 + \|Sw_n - x_n\|^2 - \|Sw_n - z_0\|^2$$

$$\geq \|x_n - z_0\|^2 + \|Sw_n - x_n\|^2 - \|x_n - z_0\|^2$$

$$= \|Sw_n - x_n\|^2.$$

From (3.4) and (3.5), we also have that

$$(3.6) -2\langle x_n - x_{n+1}, x_n - z_0 \rangle = 2(1 - \beta_n)\alpha_n \langle \gamma g(x_n), x_n - z_0 \rangle$$

$$(3.6) -2(1 - \beta_n)\langle x_n - Sw_n, x_n - z_0 \rangle - 2(1 - \beta_n)\alpha_n \langle VSw_n, x_n - z_0 \rangle$$

$$\leq 2(1 - \beta_n)\alpha_n \langle \gamma g(x_n), x_n - z_0 \rangle$$

$$-(1 - \beta_n)\|Sw_n - x_n\|^2 - 2(1 - \beta_n)\alpha_n \langle VSw_n, x_n - z_0 \rangle.$$

Furthermore using (2.3) and (3.6), we have that

$$||x_{n+1} - z_0||^2 - ||x_n - x_{n+1}||^2 - ||x_n - z_0||^2$$

$$\leq 2(1 - \beta_n)\alpha_n \langle \gamma g(x_n), x_n - z_0 \rangle$$

$$- (1 - \beta_n)||Sw_n - x_n||^2 - 2(1 - \beta_n)\alpha_n \langle VSw_n, x_n - z_0 \rangle.$$

Setting $\Gamma_n = ||x_n - z_0||^2$, we have that

(3.7)
$$\Gamma_{n+1} - \Gamma_n - \|x_n - x_{n+1}\|^2 \leq 2(1 - \beta_n)\alpha_n \langle \gamma g(x_n), x_n - z_0 \rangle - (1 - \beta_n)\|Sw_n - x_n\|^2 - 2(1 - \beta_n)\alpha_n \langle VSw_n, x_n - z_0 \rangle.$$

Noting that

$$||x_{n+1} - x_n|| = ||(1 - \beta_n)\alpha_n(\gamma g(x_n) - VSw_n) + (1 - \beta_n)(Sw_n - x_n)||$$

$$\leq (1 - \beta_n)(||Sw_n - x_n|| + \alpha_n||\gamma g(x_n) - VSw_n||),$$

we have that

$$||x_{n+1} - x_n||^2 \le (1 - \beta_n)^2 (||Sw_n - x_n|| + \alpha_n ||\gamma g(x_n) - VSw_n||)^2$$

$$(3.9) = (1 - \beta_n)^2 ||Sw_n - x_n||^2 + (1 - \beta_n)^2 2\alpha_n ||Sw_n - x_n|| ||\gamma g(x_n) - VSw_n||$$

$$+ (1 - \beta_n)^2 \alpha_n^2 ||\gamma g(x_n) - VSw_n||^2.$$

Thus we have from (3.7) and (3.9) that

$$\begin{split} \Gamma_{n+1} - \Gamma_n &\leq \|x_n - x_{n+1}\|^2 + 2(1 - \beta_n)\alpha_n \langle \gamma g(x_n), x_n - z_0 \rangle \\ &- (1 - \beta_n) \|Sw_n - x_n\|^2 - 2(1 - \beta_n)\alpha_n \langle VSw_n, x_n - z_0 \rangle \\ &\leq (1 - \beta_n)^2 \|Sw_n - x_n\|^2 + (1 - \beta_n)^2 2\alpha_n \|Sw_n - x_n\| \|\gamma g(x_n) - VSw_n\| \\ &+ (1 - \beta_n)^2 \alpha_n^2 \|\gamma g(x_n) - VSw_n\|^2 + 2(1 - \beta_n)\alpha_n \langle \gamma g(x_n), x_n - z_0 \rangle \\ &- (1 - \beta_n) \|Sw_n - x_n\|^2 - 2(1 - \beta_n)\alpha_n \langle VSw_n, x_n - z_0 \rangle \end{split}$$

and hence

$$\Gamma_{n+1} - \Gamma_n + \beta_n (1 - \beta_n) \|Sw_n - x_n\|^2 \le (1 - \beta_n)^2 2\alpha_n \|Sw_n - x_n\| \|\gamma g(x_n) - VSw_n\|$$

$$(3.10) + (1 - \beta_n)^2 \alpha_n^2 \|\gamma g(x_n) - VSw_n\|^2 + 2(1 - \beta_n)\alpha_n \langle \gamma g(x_n), x_n - z_0 \rangle$$

$$- 2(1 - \beta_n)\alpha_n \langle VSw_n, x_n - z_0 \rangle.$$

We will divide the proof into two cases.

Case 1: Suppose that $\Gamma_{n+1} \leq \Gamma_n$ for all $n \in \mathbb{N}$. In this case, $\lim_{n \to \infty} \Gamma_n$ exists and then $\lim_{n \to \infty} (\Gamma_{n+1} - \Gamma_n) = 0$. Using $0 < \liminf_{n \to \infty} \beta_n \leq \limsup_{n \to \infty} \beta_n < 1$ and $\lim_{n \to \infty} \alpha_n = 0$, we have from (3.10) that

(3.11)
$$\lim_{n \to \infty} ||Sw_n - x_n|| = 0.$$

Using (3.8), we also have that

(3.12)
$$\lim_{n \to \infty} ||x_{n+1} - x_n|| = 0.$$

Since $x_{n+1} - x_n = (1 - \beta_n)(y_n - x_n)$, we have from (3.12) that

(3.13)
$$\lim_{n \to \infty} ||y_n - x_n|| = 0.$$

We also have from (2.6) that

$$2||u_n - z_0||^2 = 2||T_{r_n}x_n - T_{r_n}z_0||^2$$

$$\leq 2\langle x_n - z_0, u_n - z_0 \rangle$$

$$= ||x_n - z_0||^2 + ||u_n - z_0||^2 - ||u_n - x_n||^2$$

and hence

$$(3.14) ||u_n - z_0||^2 \le ||x_n - z_0||^2 - ||u_n - x_n||^2.$$

From (3.1) we have that

$$||Sw_n - z_0||^2 \le ||u_n - z_0||^2 \le ||x_n - z_0||^2 - ||u_n - x_n||^2$$

and hence

$$||u_n - x_n||^2 \le ||x_n - z_0||^2 - ||Sw_n - z_0||^2 \le M||Sw_n - x_n||^2$$

where $M = \sup\{||x_n - z_0|| + ||Sw_n - z_0|| : n \in \mathbb{N}\}$. Thus from (3.11) we have that

(3.15)
$$\lim_{n \to \infty} ||u_n - x_n|| = 0.$$

We will show $\lim_{n\to\infty} ||Sw_n - w_n|| = 0$. Since $||\cdot||^2$ is a convex function, we have that

From $z_0 = \alpha_n V z_0 + z_0 - \alpha_n V z_0$ and (2.1) we also have that

$$||y_{n} - z_{0}||^{2} = ||\alpha_{n}(\gamma g(x_{n}) - Vz_{0}) + (I - \alpha_{n}V)Sw_{n} - (I - \alpha_{n}V)z_{0}||^{2}$$

$$\leq (1 - \alpha_{n}\tau)^{2}||Sw_{n} - z_{0}||^{2} + 2\alpha_{n}\langle\gamma g(x_{n}) - Vz_{0}, y_{n} - z_{0}\rangle$$

$$\leq (1 - \alpha_{n}\tau)^{2}||w_{n} - z_{0}||^{2} + 2\alpha_{n}\langle\gamma g(x_{n}) - Vz_{0}, y_{n} - z_{0}\rangle$$

$$\leq ||w_{n} - z_{0}||^{2} + 2\alpha_{n}\langle\gamma g(x_{n}) - Vz_{0}, y_{n} - z_{0}\rangle$$

$$\leq ||x_{n} - z||^{2} + \lambda_{n}(\lambda_{n} - 2\alpha)||Au_{n} - Az||^{2}$$

$$+ 2\alpha_{n}\langle\gamma g(x_{n}) - Vz_{0}, y_{n} - z_{0}\rangle.$$

Using (3.16) and (3.17), we have that

$$||x_{n+1} - z_{0}||^{2} \leq \beta_{n} ||x_{n} - z_{0}||^{2} + (1 - \beta_{n}) ||x_{n} - z_{0}||^{2}$$

$$+ (1 - \beta_{n})(\lambda_{n}(\lambda_{n} - 2\alpha) ||Au_{n} - Az_{0}||^{2} + 2\alpha_{n}\langle \gamma g(x_{n}) - Vz_{0}, y_{n} - z_{0}\rangle)$$

$$(3.18) = ||x_{n} - z_{0}||^{2} + (1 - \beta_{n})(\lambda_{n}(\lambda_{n} - 2\alpha) ||Au_{n} - Az_{0}||^{2}$$

$$+ 2\alpha_{n}\langle \gamma g(x_{n}) - Vz_{0}, y_{n} - z_{0}\rangle).$$

Thus we have that

$$(1 - \beta_n)\lambda_n(2\alpha - \lambda_n) \|Au_n - Az\|^2$$

$$(3.19) \qquad \leq \|x_n - z\|^2 - \|x_{n+1} - z\|^2 + (1 - \beta_n)2\alpha_n \langle \gamma g(x_n) - Vz_0, y_n - z_0 \rangle.$$

Then we have that

(3.20)
$$\lim_{n \to \infty} ||Au_n - Az_0|| = 0.$$

Since J_{λ_n} is firmly nonexpansive, we have that

$$2\|w_{n}-z_{0}\|^{2} = 2\|J_{\lambda_{n}}(u_{n}-\lambda_{n}Au_{n}) - J_{\lambda_{n}}(z_{0}-\lambda_{n}Az_{0})\|^{2}$$

$$\leq 2\langle u_{n}-\lambda_{n}Au_{n} - (z_{0}-\lambda_{n}Az_{0}), w_{n}-z_{0}\rangle$$

$$= \|u_{n}-\lambda_{n}Au_{n} - (z_{0}-\lambda_{n}Az_{0})\|^{2} + \|w_{n}-z_{0}\|^{2}$$

$$- \|u_{n}-\lambda_{n}Au_{n} - (z_{0}-\lambda_{n}Az_{0}) - (w_{n}-z_{0})\|^{2}$$

$$\leq \|u_{n}-z_{0}\|^{2} + \|w_{n}-z_{0}\|^{2}$$

$$- \|u_{n}-w_{n}-\lambda_{n}(Au_{n}-Az_{0})\|^{2}$$

$$\leq \|x_{n}-z_{0}\|^{2} + \|w_{n}-z_{0}\|^{2} - \|u_{n}-w_{n}\|^{2}$$

$$+ 2\lambda_{n}\langle u_{n}-w_{n}, Au_{n}-Az_{0}\rangle - \lambda_{n}^{2} \|Au_{n}-Az_{0}\|^{2}.$$

Thus we get

(3.21)
$$||w_n - z_0||^2 \le ||x_n - z_0||^2 - ||u_n - w_n||^2$$

$$+ 2\lambda_n \langle u_n - w_n, Au_n - Az_0 \rangle - \lambda_n^2 ||Au_n - Az_0||^2 .$$

Using (3.17), we obtain

$$||x_{n+1} - z_{0}||^{2} \leq \beta_{n} ||x_{n} - z_{0}||^{2} + (1 - \beta_{n}) ||y_{n} - z_{0}||^{2}$$

$$\leq \beta_{n} ||x_{n} - z_{0}||^{2} + (1 - \beta_{n}) (||w_{n} - z_{0}||^{2} + 2\alpha_{n} \langle \gamma g(x_{n}) - V z_{0}, y_{n} - z_{0} \rangle)$$

$$\leq \beta_{n} ||x_{n} - z_{0}||^{2} + (1 - \beta_{n}) ||x_{n} - z_{0}||^{2}$$

$$- (1 - \beta_{n}) ||u_{n} - w_{n}||^{2} + (1 - \beta_{n}) 2\lambda_{n} \langle u_{n} - w_{n}, Au_{n} - Az_{0} \rangle$$

$$- (1 - \beta_{n})\lambda_{n}^{2} ||Au_{n} - Az_{0}||^{2} + (1 - \beta_{n}) 2\alpha_{n} \langle \gamma g(x_{n}) - V z_{0}, y_{n} - z_{0} \rangle$$

$$= ||x_{n} - z_{0}||^{2} - (1 - \beta_{n}) ||u_{n} - w_{n}||^{2}$$

$$+ (1 - \beta_{n}) 2\lambda_{n} \langle u_{n} - w_{n}, Au_{n} - Az_{0} \rangle - (1 - \beta_{n})\lambda_{n}^{2} ||Au_{n} - Az_{0}||^{2}$$

$$+ (1 - \beta_{n}) 2\alpha_{n} \langle \gamma g(x_{n}) - V z_{0}, y_{n} - z_{0} \rangle.$$

So we have that

$$(1-\beta_n) \|x_n - w_n\|^2 \le \|x_n - z_0\|^2$$

$$- \|x_{n+1} - z_0\|^2 + 2\lambda_n \langle u_n - w_n, Au_n - Az_0 \rangle$$

$$- \lambda_n^2 \|Au_n - Az_0\|^2 + 2\alpha_n \langle \gamma g(x_n) - Vz_0, y_n - z_0 \rangle).$$

Then we have

(3.22)
$$\lim_{n \to \infty} ||u_n - w_n|| = 0.$$

From (3.22) and (3.15) we have that

(3.23)
$$\lim_{n \to \infty} ||x_n - w_n|| = 0.$$

Since
$$||Sw_n - w_n|| \le ||Sw_n - x_n|| + ||x_n - w_n||$$
, we have that

(3.24)
$$\lim_{n \to \infty} ||Sw_n - w_n|| = 0.$$

Take $\lambda_0 \in \mathbb{R}$ with $0 < a \le \lambda_0 \le b < 2\alpha$ arbitrarily. Put $s_n = (I - \lambda_n A)u_n$. Using $u_n = T_{r_n} x_n$ and $w_n = J_{\lambda_n} (I - \lambda_n A)u_n$, we have from Lemma 4 that

$$||J_{\lambda_{0}}(I - \lambda_{0}A)u_{n} - w_{n}|| = ||J_{\lambda_{0}}(I - \lambda_{0}A)u_{n} - J_{\lambda_{n}}(I - \lambda_{n}A)u_{n}||$$

$$= ||J_{\lambda_{0}}(I - \lambda_{0}A)u_{n} - J_{\lambda_{0}}(I - \lambda_{n}A)u_{n}||$$

$$+ J_{\lambda_{0}}(I - \lambda_{n}A)u_{n} - J_{\lambda_{n}}(I - \lambda_{n}A)u_{n}||$$

$$\leq ||(I - \lambda_{0}A)u_{n} - (I - \lambda_{n}A)u_{n}|| + ||J_{\lambda_{0}}s_{n} - J_{\lambda_{n}}s_{n}||$$

$$\leq |\lambda_{0} - \lambda_{n}|||Au_{n}|| + \frac{|\lambda_{0} - \lambda_{n}|}{\lambda_{0}}||J_{\lambda_{0}}s_{n} - s_{n}||.$$

We also have from (3.25) that

$$(3.26) ||u_n - J_{\lambda_0}(I - \lambda_0 A)u_n|| \le ||u_n - w_n|| + ||w_n - J_{\lambda_0}(I - \lambda_0 A)u_n||.$$

We will use (3.25) and (3.26) later.

Let us show that $\limsup_{n\to\infty} \langle (V-\gamma g)z_0, x_n-z_0\rangle \geq 0$. Put

$$A = \limsup_{n \to \infty} \langle (V - \gamma g) z_0, x_n - z_0 \rangle.$$

Without loss of generality, there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $A=\lim_{i\to\infty}\langle(V-\gamma g)z_0,x_{n_i}-z_0\rangle$ and $\{x_{n_i}\}$ converges weakly some point $w\in H$. From $\|x_n-w_n\|\to 0$ and $\|x_n-u_n\|\to 0$, we also have that $\{w_{n_i}\}$ and $\{u_{n_i}\}$ converge weakly to $w\in C$. On the other hand, from $\{\lambda_{n_i}\}\subset [a,b]$ there exists a subsequence $\{\lambda_{n_{i_j}}\}$ of $\{\lambda_{n_i}\}$ such that $\lambda_{n_{i_j}}\to \lambda_0$ for some $\lambda_0\in [a,b]$. Without loss of generality, we assume that $w_{n_i}\to w$, $u_{n_i}\to w$ and $\lambda_{n_i}\to \lambda_0$. From (3.24) we know $\lim_{n\to\infty}\|Sw_n-w_n\|=0$. Thus we have from Lemma 3 that w=Sw. Since W is a monotone operator and $\frac{x_{n_i}-u_{n_i}}{r_{n_i}}\in Wu_{n_i}$, we have that for any $(u,v)\in W$,

$$\langle u - u_{n_i}, v - \frac{x_{n_i} - u_{n_i}}{r_{n_i}} \rangle \ge 0.$$

Since $\liminf_{n\to\infty} r_n > 0$, $u_{n_i} \rightharpoonup w$ and $x_{n_i} - u_{n_i} \to 0$, we have

$$\langle u - w, v \rangle > 0.$$

Since W is a maximal monotone operator, we have $0 \in Ww$ and hence $w \in W^{-1}0$. Since $\lambda_{n_i} \to \lambda_0$, we have from (3.25) that

$$||J_{\lambda_0}(I - \lambda_0 A)u_{n_i} - w_{n_i}|| \to 0.$$

Furthermore, we have from (3.26) that

$$||u_{n_i}-J_{\lambda_0}(I-\lambda_0A)u_{n_i}||\to 0.$$

Since $J_{\lambda_0}(I - \lambda_0 A)$ is nonexpansive, we have that $w = J_{\lambda_0}(I - \lambda_0 A)w$. This means that $0 \in Aw + Bw$. Thus we have

$$w \in F(T) \cap (A+B)^{-1}0 \cap W^{-1}0.$$

Then we have

$$(3.27) A = \lim_{i \to \infty} \langle (V - \gamma g) z_0, x_{n_i} - z_0 \rangle = \langle (V - \gamma g) z_0, w - z_0 \rangle \ge 0.$$

Since
$$y_n - z_0 = \alpha_n(\gamma g(x_n) - Vz_0) + (I - \alpha_n V)Sw_n - (I - \alpha_n V)z_0$$
, we have

$$||y_n - z_0||^2 \le (1 - \alpha_n \tau)^2 ||Sw_n - z_0||^2 + 2\alpha_n \langle \gamma g(x_n) - Vz_0, y_n - z_0 \rangle$$
.

Thus we have

$$||y_n - z_0||^2 \le (1 - \alpha_n \tau)^2 ||x_n - z_0||^2 + 2\alpha_n \langle \gamma g(x_n) - V z_0, y_n - z_0 \rangle.$$

Then we have that

$$\begin{aligned} \|x_{n+1} - z_0\|^2 &\leq \beta_n \|x_n - z_0\|^2 + (1 - \beta_n) \|y_n - z_0\|^2 \\ &\leq \beta_n \|x_n - z_0\|^2 \\ &+ (1 - \beta_n) \left((1 - \alpha_n \tau)^2 \|x_n - z_0\|^2 + 2\alpha_n \left\langle \gamma g(x_n) - V z_0, y_n - z_0 \right\rangle \right) \\ &= \left(\beta_n + (1 - \beta_n) (1 - \alpha_n \tau)^2 \right) \|x_n - z_0\|^2 \\ &+ 2(1 - \beta_n) \alpha_n \left\langle \gamma g(x_n) - V z_0, y_n - z_0 \right\rangle \\ &\leq \left(1 - (1 - \beta_n) (2\alpha_n \tau - (\alpha_n \tau)^2) \right) \|x_n - z_0\|^2 \\ &+ 2(1 - \beta_n) \alpha_n \gamma k \|x_n - z_0\|^2 + 2(1 - \beta_n) \alpha_n \left\langle \gamma g(z_0) - V z_0, y_n - z_0 \right\rangle \\ &= (1 - 2(1 - \beta_n) \alpha_n (\tau - \gamma k)) \|x_n - z_0\|^2 \\ &+ (1 - \beta_n) (\alpha_n \tau)^2 \|x_n - z_0\|^2 + 2(1 - \beta_n) \alpha_n \left\langle \gamma g(z_0) - V z_0, y_n - z_0 \right\rangle \\ &= (1 - 2(1 - \beta_n) \alpha_n (\tau - \gamma k)) \|x_n - z_0\|^2 \\ &+ 2(1 - \beta_n) \alpha_n (\tau - \gamma k) \left(\frac{\alpha_n \tau^2 \|x_n - z_0\|^2}{2(\tau - \gamma k)} + \frac{\left\langle \gamma g(z_0) - V z_0, y_n - z_0 \right\rangle}{\tau - \gamma k} \right). \end{aligned}$$

By (3.27) and Lemma 5, we obtain that $x_n \to z_0$, where

$$z_0 = P_{F(S)\cap(A+B)^{-1}0\cap W^{-1}0}(I - V + \gamma g)z_0.$$

Case 2: Suppose that there exists a subsequence $\{\Gamma_{n_i}\}\subset\{\Gamma_n\}$ such that $\Gamma_{n_i}<\Gamma_{n_i+1}$ for all $i\in\mathbb{N}$. In this case, we define $\tau:\mathbb{N}\to\mathbb{N}$ by

$$\tau(n) = \max\{k \le n : \Gamma_k < \Gamma_{k+1}\}.$$

Then we have from Lemma 6 that $\Gamma_{\tau(n)} < \Gamma_{\tau(n)+1}$. Thus we have from (3.10) that for all $n \in \mathbb{N}$,

$$\beta_{\tau(n)}(1-\beta_{\tau(n)})\|Sw_{\tau(n)} - x_{\tau(n)}\|^{2}$$

$$\leq (1-\beta_{\tau(n)})^{2}2\alpha_{\tau(n)}\|Sw_{\tau(n)} - x_{\tau(n)}\|\|\gamma g(x_{\tau(n)}) - VSw_{\tau(n)}\|$$

$$+ (1-\beta_{\tau(n)})^{2}\alpha_{\tau(n)}^{2}\|\gamma g(x_{\tau(n)}) - VSw_{\tau(n)}\|^{2}$$

$$+ 2(1-\beta_{\tau(n)})\alpha_{\tau(n)}\langle\gamma g(x_{\tau(n)}), x_{\tau(n)} - z_{0}\rangle$$

$$- 2(1-\beta_{\tau(n)})\alpha_{\tau(n)}\langle VSw_{\tau(n)}, x_{\tau(n)} - z_{0}\rangle.$$

Using $\lim_{n\to\infty} \alpha_n = 0$ and $0 < \liminf_{n\to\infty} \beta_n \le \limsup_{n\to\infty} \beta_n < 1$, we have from (3.28) and Lemma 6 that

(3.29)
$$\lim_{n \to \infty} ||Sw_{\tau}(n) - x_{\tau}(n)|| = 0.$$

As in the proof of Case 1 we also have that

(3.30)
$$\lim_{n \to \infty} ||x_{\tau(n)+1} - x_{\tau(n)}|| = 0$$

and

(3.31)
$$\lim_{n \to \infty} \|y_{\tau(n)} - x_{\tau(n)}\| = 0.$$

Furthermore, we have that $\lim_{n\to\infty} \|u_{\tau(n)} - x_{\tau(n)}\| = 0$, $\lim_{n\to\infty} \|Au_{\tau(n)} - Az_0\| = 0$, $\lim_{n\to\infty} \|u_{\tau(n)} - w_{\tau(n)}\| = 0$ and $\lim_{n\to\infty} \|x_{\tau(n)} - w_{\tau(n)}\| = 0$. From these we have that $\lim_{n\to\infty} \|Sw_{\tau(n)} - w_{\tau(n)}\| = 0$. As in the proof of Case 1, we can show that

$$\limsup_{n \to \infty} \left\langle (V - \gamma g) z_0, x_{\tau(n)} - z_0 \right\rangle \ge 0.$$

We also have that

$$\|y_{\tau(n)} - z_0\|^2 \le (1 - \alpha_{\tau(n)}\tau)^2 \|x_{\tau(n)} - z_0\|^2 + 2\alpha_{\tau(n)} \langle \gamma g(x_{\tau(n)}) - V z_0, y_{\tau(n)} - z_0 \rangle$$
and then

$$||x_{\tau(n)+1} - z_0||^2 \le (1 - 2(1 - \beta_{\tau(n)})\alpha_{\tau(n)}(\tau - \gamma k)) ||x_{\tau(n)} - z_0||^2 + (1 - \beta_{\tau(n)})(\alpha_{\tau(n)}\tau)^2 ||x_{\tau(n)} - z_0||^2 + 2(1 - \beta_{\tau(n)})\alpha_{\tau(n)}\langle \gamma g(z_0) - Vz_0, y_{\tau(n)} - z_0 \rangle.$$

From $\Gamma_{\tau(n)} < \Gamma_{\tau(n)+1}$, we have that

$$2(1 - \beta_{\tau(n)})\alpha_{\tau(n)}(\tau - \gamma k)) \|x_{\tau(n)} - z_0\|^2$$

$$\leq (1 - \beta_{\tau(n)})(\alpha_{\tau(n)}\tau)^2 \|x_{\tau(n)} - z_0\|^2 + 2(1 - \beta_{\tau(n)})\alpha_{\tau(n)}\langle \gamma g(z_0) - V z_0, y_{\tau(n)} - z_0 \rangle.$$

Since $(1 - \beta_{\tau(n)})\alpha_{\tau(n)} > 0$, we have that

$$2(\tau - \gamma k) \|x_{\tau(n)} - z_0\|^2$$

$$\leq \alpha_{\tau(n)} \tau^2 \|x_{\tau(n)} - z_0\|^2 + 2\langle \gamma g(z_0) - V z_0, y_{\tau(n)} - z_0 \rangle.$$

Thus we have that

$$\limsup_{n \to \infty} 2(\tau - \gamma k) \left\| x_{\tau(n)} - z_0 \right\|^2 \le 0$$

and hence $||x_{\tau(n)} - z_0|| \to 0$ as $n \to \infty$. Since $x_{\tau(n)} - x_{\tau(n)+1} \to 0$, we have $||x_{\tau(n)+1} - z_0|| \to 0$ as $n \to \infty$. Using Lemma 6 again, we obtain that

$$||x_n - z_0|| \le ||x_{\tau(n)+1} - z_0|| \to 0$$

as $n \to \infty$. This completes the proof.

4. Applications

In this section, using Theorem 10, we can obtain well-known and new strong convergence theorems for in a Hilbert space. Let H be a Hilbert space and let f be a proper lower semicontinuous convex function of H into $(-\infty, \infty]$. Then, the subdifferential ∂f of f is defined as follows:

$$\partial f(x) = \{ z \in H : f(x) + \langle z, y - x \rangle \le f(y), \ \forall y \in H \}$$

for all $x \in H$. From Rockafellar [25], we know that ∂f is a maximal monotone operator. Let C be a nonempty closed convex subset of H and let i_C be the indicator function of C, i.e.,

$$i_C(x) = \begin{cases} 0, & x \in C, \\ \infty, & x \notin C. \end{cases}$$

Then, i_C is a proper lower semicontinuous convex function on H and then the subdifferential ∂i_C of i_C is a maximal monotone operator. So, we can define the resolvent J_{λ} of ∂i_C for $\lambda > 0$, i.e.,

$$J_{\lambda}x = (I + \lambda \partial i_C)^{-1}x$$

for all $x \in H$. We know that $J_{\lambda}x = P_C x$ for all $x \in H$ and $\lambda > 0$; see [30].

Theorem 11. Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let S be a generalized hybrid mapping of C into C. Suppose $F(S) \neq \emptyset$. Let $u, x_1 \in C$ and let $\{x_n\} \subset C$ be a sequence generated by

$$x_{n+1} = \beta_n x_n + (1 - \beta_n) \{ \alpha_n u + (1 - \alpha_n) S x_n \}$$

for all $n \in \mathbb{N}$, where $\{\beta_n\} \subset (0,1)$ and $\{\alpha_n\} \subset (0,1)$ satisfy

$$\lim_{n \to \infty} \alpha_n = 0, \quad \sum_{n=1}^{\infty} \alpha_n = \infty$$

and
$$0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1.$$

Then the sequence $\{x_n\}$ converges strongly to $z_0 \in F(S)$, where $z_0 = P_{F(S)}u$.

Proof. Put A=0, $B=W=\partial i_C$ and $\lambda_n=r_n=1$ for all $n\in\mathbb{N}$ in Theorem 10. Then we have $J_{\lambda_n}=T_{r_n}=P_C$ for all $n\in\mathbb{N}$. Furthermore, put g(x)=u and V(x)=x for all $x\in H$. Then, we can take $\overline{\gamma}=L=1$. Thus we can take $\mu=1$. On the other hand, since $\|g(x)-g(y)\|=0\leq \frac{1}{3}\|x-y\|$ for all $x,y\in H$, we can take $k=\frac{1}{3}$. So, we can take $\gamma=1$. Then for $u,x_1\in C$, we get that

$$x_{n+1} = \beta_n x_n + (1 - \beta_n) \{ \alpha_n u + (I - \alpha_n) S x_n \}$$

for all $n \in \mathbb{N}$. So, we have $\{x_n\} \subset C$. We also have

$$z_0 = P_{F(S)\cap C}(I - V + \gamma g)z_0 = P_{F(S)}(z_0 - z_0 + 1 \cdot u) = P_{F(S)}u.$$

Thus we obtain the desired result by Theorem 10.

Theorem 11 solves a problem posed by Kurokawa and Takahashi [16]. The following result is a strong convergence theorem of Halpern's type [10] for finding a common solution of a monotone inclusion problem for the sum of two monotone mappings, of a fixed point problem for nonexpansive mappings and of an equilibrium problem for bifunctions in a Hilbert space.

Theorem 12. Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let $\alpha > 0$ and let A be an α -inverse strongly-monotone mapping of C into H. Let B and W be maximal monotone operators on H such that the domains of B and W are included in C. Let $J_{\lambda} = (I + \lambda B)^{-1}$ and $T_r = (I + rW)^{-1}$ be resolvents of B and W for $\lambda > 0$ and r > 0, respectively. Let S be a nonexpansive mapping of C into H. Let 0 < k < 1 and let g be a k-contraction of H into itself. Let V be a $\overline{\gamma}$ -strongly monotone and L-Lipschitzian continuous operator with $\overline{\gamma} > 0$ and L > 0. Take $\mu, \gamma \in \mathbb{R}$ as follows:

$$0 < \mu < \frac{2\overline{\gamma}}{L^2}, \quad 0 < \gamma < \frac{\overline{\gamma} - \frac{L^2\mu}{2}}{k}.$$

Suppose $F(S) \cap (A+B)^{-1} \cap W^{-1} = \emptyset$. Let $x_1 = x \in H$ and let $\{x_n\} \subset H$ be a sequence generated by

$$x_{n+1} = \beta_n x_n + (1 - \beta_n) \{ \alpha_n \gamma g(x_n) + (I - \alpha_n V) S J_{\lambda_n} (I - \lambda_n A) T_{r_n} x_n \}$$

for all $n \in \mathbb{N}$, where $\{\alpha_n\} \subset (0,1)$, $\{\beta_n\} \subset (0,1)$, $\{\lambda_n\} \subset (0,\infty)$ and $\{r_n\} \subset (0,\infty)$ satisfy

$$\lim_{n \to \infty} \alpha_n = 0, \quad \sum_{n=1}^{\infty} \alpha_n = \infty, \quad 0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1,$$

$$\liminf_{n \to \infty} r_n > 0 \quad and \quad 0 < a \le \lambda_n \le b < 2\alpha.$$

Then the sequence $\{x_n\}$ converges strongly to $z_0 \in F(S) \cap (A+B)^{-1}0 \cap W^{-1}0$, where $z_0 = P_{F(S)\cap (A+B)^{-1}0\cap W^{-1}0}(I-V+\gamma g)z_0$.

Proof. We know that a nonexpansive mapping T of C into H is a (1,0)-generalized hybrid mapping. So, we obtain the desired result by Theorem 10.

The following lemmas were given in Combettes and Hirstoaga [8] and Takahashi, Takahashi and Toyoda [27]; see also [1].

Lemma 13 ([8]). Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Assume that $f: C \times C \to \mathbb{R}$ satisfies (A1) – (A4). For r > 0 and $x \in H$, define a mapping $T_r: H \to C$ as follows:

$$T_r x = \left\{ z \in C : f(z, y) + \frac{1}{r} \langle y - z, z - x \rangle \ge 0, \ \forall y \in C \right\}$$

for all $x \in H$. Then, the following hold:

- (1) T_r is single-valued;
- (2) T_r is a firmly nonexpansive mapping, i.e., for all $x, y \in H$,

$$||T_r x - T_r y||^2 \le \langle T_r x - T_r y, x - y \rangle;$$

- (3) $F(T_r) = EP(f)$;
- (4) EP(f) is closed and convex.

We call such T_r the resolvent of f for r > 0.

Lemma 14 ([27]). Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let $f: C \times C \to \mathbb{R}$ satisfy (A1)-(A4). Let A_f be a set-valued mapping of H into itself defined by

$$A_f x = \begin{cases} \{z \in H : f(x, y) \ge \langle y - x, z \rangle, \ \forall y \in C\}, & \forall x \in C, \\ \emptyset, & \forall x \notin C. \end{cases}$$

Then, $EP(f) = A_f^{-1}0$ and A_f is a maximal monotone operator with $D(A_f) \subset C$. Furthermore, for any $x \in H$ and r > 0, the resolvent T_r of f coincides with the resolvent of A_f , i.e.,

$$T_r x = (I + rA_f)^{-1} x.$$

Using Lemmas 13, 14 and Theorem 10, we also obtain the following result for generalized hybrid mappings of C into H with equilibrium problem in a Hilbert space.

Theorem 15. Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let S be a generalised hybrid mapping of C into H. Let f be a bifunction of $C \times C$ into $\mathbb R$ satisfying (A1) - (A4). Let 0 < k < 1 and let g be a k-contraction of H into itself. Let V be a $\overline{\gamma}$ -strongly monotone and L-Lipschitzian continuous operator of H into itself with $\overline{\gamma} > 0$ and L > 0. Take $\mu, \gamma \in \mathbb R$ as follows:

$$0<\mu<\frac{2\overline{\gamma}}{L^2},\quad 0<\gamma<\frac{\overline{\gamma}-\frac{L^2\mu}{2}}{k}.$$

Suppose that $F(S) \cap EP(f) \neq \emptyset$. Let $x_1 = x \in H$ and let $\{x_n\} \subset H$ be a sequence generated by

$$f(u_n, y) + \frac{1}{r_n} \langle y - u_n, u_n - x_n \rangle \ge 0, \quad \forall y \in C,$$

$$x_{n+1} = \beta_n x_n + (1 - \beta_n) \{ \alpha_n \gamma g(x_n) + (I - \alpha_n V) S u_n \}$$

for all $n \in \mathbb{N}$, where $\{\beta_n\} \subset (0,1)$, $\{\alpha_n\} \subset (0,1)$ and $\{r_n\} \subset (0,\infty)$ satisfy

$$\lim_{n \to \infty} \alpha_n = 0, \quad \sum_{n=1}^{\infty} \alpha_n = \infty, \quad \liminf_{n \to \infty} r_n > 0,$$

and
$$0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1.$$

Then the sequence $\{x_n\}$ converges strongly to $z_0 \in F(S) \cap EP(f)$, where $z_0 = P_{F(S) \cap EP(f)}(I - V + \gamma g)z_0$.

Proof. Put A=0 and $B=\partial i_C$ in Theorem 10. Futhermore, for the bifunction $f:C\times C\to\mathbb{R}$, define A_f as in Lemma 14. Put $W=A_f$ in Theorem 10 and let T_{r_n} be the resolvent of A_f for $r_n>0$. Then we obtain that the domain of A_f is included in C and $T_{r_n}x_n=u_n$ for all $n\in\mathbb{N}$. Thus we obtain the desired result by Theorem 10.

Acknowledgements. The first author was partially supported by Grant-in-Aid for Scientific Research No. 23540188 from Japan Society for the Promotion of Science. The second and the third authors were partially supported by the grant NSC 99-2115-M-110-007-MY3 and the grant NSC 99-2115-M-037-002-MY3, respectively.

References

- K. Aoyama, Y. Kimura, Yasunori and W. Takahashi, Maximal monotone operators and maximal monotone functions for equilibrium problems, J. Convex Anal. 15 (2008), 395–409.
- [2] K. Aoyama, Y. Kimura, Yasunori, W. Takahashi and Toyoda, Masashi, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007), 2350–2360.
- [3] K. Aoyama, Y. Kimura, W. Takahashi, and M. Toyoda, On a strongly nonexpansive sequence in Hilbert spaces, J. Nonlinear Convex Anal. 8 (2007), 471–489.
- [4] J.-B. Baillon, Un theoreme de type ergodique pour les contractions non lineaires dans un espace de Hilbert, C. R. Acad. Sci. Paris Ser. A-B 280 (1975), 1511–1514.
- [5] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), 123–145.
- [6] F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z. 100 (1967), 201–225.
- [7] F. E. Browder and W. V.Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. 20 (1967), 197–228.
- [8] P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6, (2005), 117–136.
- [9] K. Eshita and W. Takahashi, Approximating zero points of accretive operators in general Banach spaces, JP J. Fixed Point Theory Appl. 2 (2007), 105–116.
- [10] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957–961.
- [11] M. Hojo and W. Takahashi, Weak and strong convergence theorems for generalized hybrid mappings in Hilbert spaces, Sci. Math. Jpn. 73 (2011), 31–40.
- [12] S. Itoh and W. Takahashi, The common fixed point theory of single-valued mappings and multi-valued mappings, Pacific J. Math. 79 (1978), 493–508.
- [13] P. Kocourek, W. Takahashi and J.-C. Yao, Fixed point theorems and weak convergence theorems for genelalized hybrid mappings in Hilbert spaces, Taiwanese J. Math. 14 (2010), 2497–2511.
- [14] F. Kohsaka and W. Takahashi, Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces, SIAM J. Optim. 19 (2008), 824–835.

- [15] F. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math. 91 (2008), 166–177.
- [16] Y. Kurokawa and W. Takahashi, Weak and strong convergence theorems for nonlspreading mappings in Hilbert spaces, Nonlinear Anal. 73 (2010), 1562–1568.
- [17] L.-J. Lin and W. Takahashi, A general iterative method for hierarchical variational inequality problems in Hilbert spaces and applications, Positivity, to appear.
- [18] Y. Liu, A general iterative method for equilibrium problems and strict pseudo-contractions in Hilbert spaces, Nonlinear Appl. 71 (2009), 4852–4861.
- [19] P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valed Appl. 16 (2008), 899–912.
- [20] G. Marino H.-K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 318 (2006), 43–52.
- [21] G. Marino H.-K. Xu, Weak and strong convergence theorems for strich pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl. 329 (2007), 336–346.
- [22] A. Moudafi, Weak convergence theorems for nonexpansive mappings and equilibrium problems, J. Nonlinear Convex Anal. 9 (2008), 37–43.
- [23] N. Nadezhkina and W. Takahashi, Strong convergence theorem by hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim. 16 (2006), 1230–1241.
- [24] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597.
- [25] R. T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math. 33 (1970), 209–216.
- [26] S. Takahashi and W. Takahashi, Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space, Nonlinear Anal. 69 (2008), 1025– 1033.
- [27] S. Takahashi, W. Takahashi, and M. Toyoda, Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl. 147 (2010), 27–41.
- [28] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
- [29] W. Takahashi, Convex Analysis and Approximation of Fixed Points, Yokohama Publishers, Yokohama, 2000 (Japanese).
- [30] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yokohama, 2009.
- [31] W. Takahashi, Fixed point theorems for new nonlinear mappings in a Hilbert space, J. Nonlinear Convex Anal. 11 (2010), 79–88.
- [32] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), 417–428.
- [33] W. Takahashi, N.-C. Wong and J.-C. Yao, Two generalized strong convergence theorems of Halpern's type in Hilbert spaces and applications, Taiwanese J. Math., to appear.
- [34] W. Takahashi, J.-C. Yao, and K. Kocourek, Weak and strong convergence theorems for generalized hybrid nonself-mappings in Hilbert spaces, J. Nonlinear Convex Anal. 11 (2010), 567, 586.
- [35] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992), 486–491.
- [36] H. K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc. 65 (2002), 109–113.
- [37] H. Zhou, Convergence theorems of fixed points fot k-strict pseudo-contractions in Hilbert spaces, Nonlinear Anal. 69 (2008), 456–462.

(Wataru Takahashi) Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo 152-8552, Japan

 $E ext{-}mail\ address:$ wataru@is.titech.ac.jp

(Ngai-Ching Wong) Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan

E-mail address: wong@math.nsysu.edu.tw

(Jen-Chih Yao) Center for General Education, Kaohsiung Medical University, Kaohsiung 80702, Taiwan

 $E ext{-}mail\ address: yaojc@kmu.edu.tw}$