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ABSTRACT. Let H be a real Hilbert space and let C' be a nonempty closed
convex subset of H. Let a > 0 and let A be an a-inverse strongly-monotone
mapping of C into H. Let T be a generalized hybrid mapping of C into H.
Let B and W be maximal monotone operators on H such that the domains
of B and W are included in C. Let 0 < k < 1 and let g be a k-contraction of
H into itself. Let V' be a 7-strongly monotone and L-Lipschitzian continuous
operator with % > 0 and L > 0. Take p,y € R as follows:
_ P

0<u<2—7, O<'y<j.

L2 k
Suppose that F(T)N(A+B)~10NW =10 # (). In this paper, we prove a strong
convergence theorem for finding a point zg of F(T)N(A+B)~10NnW 10, where
zp is a unique fixed point of PF(T>Q(A+B)—100w—10(I — V + vg). This point
20 € F(T) N (A4 B)~'0N W~10 is also a unique solution of the variational
inequality
(V =~9)z0,q — 20) >0, Vg F(T)n(A+B)"lonw~1o.

Using this result, we obtain new and well-known strong convergence theorems
in a Hilbert space. In particular, we solve a problem posed by Kurokawa and
Takahashi [16].

1. INTRODUCTION

Let H be a real Hilbert space and let C' be a nonempty closed convex subset of
H. Let N and R be the sets of positive integers and real numbers, respectively. A
mapping T : C — H is called generalized hybrid [13] if there exist «, 8 € R such
that

a7z = Ty|* + (1 = a)z = Ty|* < BTz — y|I* + (1 = Bz -yl

for all z, y € C. We call such a mapping an («, 3)-generalized hybrid mapping. Then
Kocourek, Takahashi and Yao [13] proved a fixed point theorem for such mappings
in a Hilbert space. Furthermore, they proved a nonlinear mean convergence theorem
of Baillon’s type [4] in a Hilbert space. Notice that the mapping above covers
several well-known mappings. For example, an («, )-generalized hybrid mapping
T is nonexpansive for « = 1 and § =0, i.e.,

[Tz =Tyl <z —yl, Va,yeC.
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It is also nonspreading [14, 15] for « = 2 and § =1, i.e.,
2|Tz — Ty|* < ||Te —y||* + || Ty — z|*, Va,yeC.
Furthermore, it is hybrid [31] for a = % and 3 = %, ie.,
3Tz — Ty|* < [lz —y|* + | T2 — y|* + | Ty — |, Va,y e C.
We can also show that if x = Tz, then for any y € C,
allz =Tyl + (1 - a)llz = Ty||* < Blla -yl + 1 = Bz - y]*

and hence ||z — Ty|| < ||z — y||. This means that an (o, ()-generalized hybrid
mapping with a fixed point is quasi-nonexpansive. The following strong convergence
theorem of Halpern’s type [10] was proved by Wittmannn [35]; see also [29].

Theorem 1. Let C' be a nonempty closed conver subset of H and let T be a
nonexpansive mapping of C into itself with F(T) # 0. For any ©y = =z € C,
define a sequence {x,} in C by

Tnt1 = @z + (1 — )Tz, VneN,
where {ay,} C (0,1) satisfies

n—oo

oo o0
lim a,, =0, E an, =00 and E lan, — apt1] < 0.
n=1 n=1

Then {x,} converges strongy to a fized point of T.

Kurokawa and Takahashi [16] also proved the following strong convergence the-
orem for nonspreading mappings in a Hilbert space; see also Hojo and Takahashi
[11] for generalized hybrid mappings.

Theorem 2. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let T be a nonspreading mapping of C into itself. Let u € C' and define two
sequences {x,} and {z,} in C as follows: ©v1 =z € C and

Tyl = apu+ (1 — o) 2y,
-1
1 n
Zp = — g Tkmn
n
k=0

for alln = 1,2, ..., where {a,} C (0,1), limy, ooy, = 0 and .7 o, = 00. If
F(T) is nonempty, then {x,} and {z,} converge strongly to Pu, where P is the
metric projection of H onto F(T).

Remark. We do not know whether Theorem 1 for nonspreading mappings holds
or not; see [16] and [11].
Let f: C x C — R be a bifunction. The equilibrium problem (with respect to
C) is to find & € C such that
(1.1) f(@,y) >0, VYyeC.
The set of such solutions & is denoted by EP(f), i.e.,
EP(f) = {a € C: f(i,y) 2 0, ¥y € C}.

For solving the equilibrium problem, let us assume that the bifunction f : C x C —
R satisfies the following conditions:
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(A1) f(z,z)=0forall z € C;
(A2) f is monotone, i.e., f(z,y)+ f(y,z) <0 for all 2,y € C;
(A3) for all z,y,z € C,

limsup f(tz + (1 = t)x,y) < f(x,y);
t10

(A4) for all z € C, f(x,-) is convex and lower semicontinuous.
Defining a set-valued mapping Ay C H x H by

{{zeﬂzﬂx,y) > (y—m,2), VyeC}, Vaed,
Arx =
0, Vx¢C,

we have from [27] that Ay is a maximal monotone operator such that the domain
is included in C.

In this paper, motivated by these results, we prove a strong convergence theorem
for finding a point zo of F(T) N (A + B)~'0 N W10, where T is a generalized
hybrid mapping of C into H, B and W are maximal monotone operators on H
such that the domains of B and W are included in C, g is a k-contraction of
H into itself with 0 < k < 1, V is a J-strongly monotone and L-Lipschitzian
continuous operator with 7 > 0 and L > 0. This point zj is a unique fixed point of
PF(T)ﬁ(AJrB)*lOﬂW*lO(I —V + 7g) and then this 2o € F(T)N (A + B)710 NWw-10
is also a unique solution of the variational inequality

(V=~9)20,q — 20) >0, VYge F(T)n(A+ B)~'onw1o.

Using this result, we obtain new and well-known strong convergence theorems in a
Hilbert space. In particular, we solve a problem posed by Kurokawa and Takahashi
[16].

2. PRELIMINARIES

Let H be a real Hilbert space with inner product (-, -) and norm || -||. When
{z,} is a sequence in H, we denote the strong convergence of {z,} to x € H by
x, — x and the weak convergence by z, — z. We have from [30] that for any
z,y € Hand X € R,

(2.1) o+ ylI* < [lzl” + 2y, + y)
and
(2.2) Az + (1= Nyll* = Al)* + (1= V]lylI> = A1 = Nz -yl

Furthermore we have that for x,y,u,v € H,

(2.3) 2(r —y,u—v) = |z — ol + lly —ul* — [lz — ul* — [ly — o[>,

All Hilbert spaces satisfy Opial’s condition, that is,

(2.4) liminf ||z, — u|| < liminf ||z, — v

if x, = u and u # v; see [24]. Let C be a nonempty closed convex subset of a
Hilbert space H and let T: C — H be a mapping. We denote by F(T) be the
set of fixed points for 7. A mapping T : C — H is called quasi-nonexpansive if
F(T)#0and [|[Tx —y|| < ||z —y| forallz € Candy € F(T). YT :C — H
is quasi-nonexpansive, then F(T) is closed and convex; see [12]. For a nonempty
closed convex subset C' of H, the nearest point projection of H onto C' is denoted
by Pc, that is, ||z — Pox|| < ||l — y|| for all z € H and y € C. Such P is called the
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metric projection of H onto C. We know that the metric projection P¢ is firmly
nonexpansive; ||Pox — Pcy||2 < (Pecx — Poy,x —y) for all z,y € H. Furthermore
(x — Pox,y — Pox) < 0 holds for all x € H and y € C; see [28]. The following
result is in [34].

Lemma 3. Let H be a Hilbert space and let C be a nonempty closed convex subset
of H. Let T : C'— H be a generalized hybrid mapping. Suppose that there ezists
{zn} C C such that ,, — z and x,, — Txy, — 0. Then, z € F(T).

Let B be a mapping of H into 2¥. The effective domain of B is denoted by
D(B), that is, D(B) = {x € H : Bx # 0}. A multi-valued mapping B is said to
be a monotone operator on H if (x —y,u—v) > 0 for all z,y € D(B), u € Bz,
and v € By. A monotone operator B on H is said to be maximal if its graph is
not properly contained in the graph of any other monotone operator on H. For
a maximal monotone operator B on H and r > 0, we may define a single-valued
operator J,. = (I +7B)~': H — D(B), which is called the resolvent of B for r. We
denote by A, = %(I — J;-) the Yosida approximation of B for » > 0. We know from
[29] that

(2.5) Arx € BJpxz, Yz e H, r>0.

Let B be a maximal monotone operator on H and let B™'0 = {z € H : 0 €

Bx}. It is known that B=10 = F(J,) for all r > 0 and the resolvent J, is firmly

nonexpansive, i.e.,

(2.6) | Joz — Joyl|? < (z -y, Jox — Juy), Y,y € H.

We also know the following lemma from [27].

Lemma 4. Let H be a real Hilbert space and let B be a maximal monotone operator

on H. Forr >0 and x € H, define the resolvent J,.x. Then the following holds:
s—t

(Jex — Jox, Jox — x) > ||Jsz — Joz||?
forall s,t >0 and x € H.

From Lemma 4, we have that
[z = Juz|| < (IX = pl /) lz = Jxz|
for all A\, u > 0 and x € H; see also [28, 9]. To prove our main result, we need the

following lemmas.

Lemma 5 ([2]; see also [36]). Let {s,} be a sequence of nonnegative real numbers,
let {a,} be a sequence of [0,1] with > .7 a, = oo, let {8,} be a sequence of

nonnegative real numbers with > - 3, < oo, and let {v,} be a sequence of real

numbers with limsup,,_, ., 7n < 0. Suppose that

Sp+1 < (1 - an)sn + apYn + ﬁn
for allm =1,2,.... Then lim, . s, = 0.
Lemma 6 ([19]). Let {T',} be a sequence of real numbers that does not decrease at

infinity in the sense that there exists a subsequence {T'y,} of {T'n} which satisfies
Ty, <Ty,41 for alli € N. Define the sequence {T(n)}n>n, of integers as follows:

7(n) = max{k <n:T; < Tk},
where ng € N such that {k <ng: Ty <Tiy1} # 0. Then, the following hold:
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(i) 7(1) < 7(2) < ... and 7(n) — oo;
(11) F-r(n) < FT(n)+1 and I',, < FT(7L)+17 Vn € N.

3. STRONG CONVERGENCE THEOREMS

Let H be a real Hilbert space. A mapping g : H — H is a contraction if there
exists k € (0,1) such that ||g(z) — g(y)|| < k|lz — y|| for all z,y € H. We call such
a mapping g a k-contraction. A nonlinear operator V : H — H is called strongly
monotone if there exists 7 > 0 such that (z—y, Va—Vy) > 7||a—y||* forallz,y € H.
Such V is also called 7-strongly monotone. A nonlinear operator V : H — H is
called Lipschitzian continuous if there exists L > 0 such that ||[Vz—Vy|| < L||z—y||
for all z,y € H. Such V is also called L-Lipschitzian continuous. We know the
following three lemmas in a Hilbert space; see Lin and Takahashi [17].

Lemma 7 ([17]). Let H be a Hilbert space and let V' be a 7-strongly monotone and
L-Lipschitzian continuous operator on H with ¥ > 0 and L > 0. Let t > 0 satisfy
2y > tL? and 1 > 2t5. Then 0 <1 —t(2y —tL?) <1l and I —tV : H — H is a
contraction, where I is the identity operator on H.

Lemma 8 ([17]). Let H be a Hilbert space and let C' be a nonempty closed convex
subset of H. Let Po be the metric projection of H onto C' and let V' be a 7-strongly
monotone and L-Lipschitzian continuous operator on H with 7% > 0 and L > 0.
Let t > 0 satisfy 2y > tL? and 1 > 2t5 and let z € C. Then the following are
equivalent:

(1) 2= Pc(I —tV)z;

(2) (Vz,y—2) =0, VyeC;

(3) z2=Pc(I—-V)z.

Such z € C exists always and is unique.

Lemma 9 ([17]). Let H be a Hilbert space and let g : H — H be a k-contraction
with 0 < k < 1. Let V be a 7-strongly monotone and L-Lipschitzian continuous
operator on H with 5 > 0 and L > 0. Let a real number v satisfy 0 < v < %
Then V —~g: H — H is a (7 — vk)-strongly monotone and (L + ~yk)-Lipschitzian
continuous mapping. Furthermore, let C' be a nonempty closed convex subset of H.
Then Po(I =V + ~g) has a unique fived point zo in C. This point zy € C' is also

a unique solution of the variational inequality
(V =79)20,q— 20) 20, VgeC.

Now we prove the following strong convergence theorem of Halpern’s type [10]
for finding a common solution of a monotone inclusion problem for the sum of two
monotone mappings, of a fixed point problem for generalized hybrid mappings and
of an equilibrium problem for bifunctions in a Hilbert space.

Theorem 10. Let H be a real Hilbert space and let C' be a nonempty closed convex
subset of H. Let a > 0 and let A be an a-inverse strongly-monotone mapping of C
into H. Let B and W be mazximal monotone operators on H such that the domains
of B and W are included in C. Let Jy = (I + AB)™! and T, = (I +rW)~! be
resolvents of B and W for A\ > 0 and r > 0, respectively. Let S be a generalized
hybrid mapping of C into H. Let 0 < k < 1 and let g be a k-contraction of H into
itself. Let V' be a 7-strongly monotone and L-Lipschitzian continuous operator with
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¥ >0 and L > 0. Take p,v € R as follows:
2
%y 5 — L
O<p< T2 0<y< o
Suppose F(S)N(A+ B)"'0NW=10#£0. Let vy =x € H and let {x,} C H be a
sequence generated by
Tpt1 = Bnxn + (1= Bu){anyg(zn) + (I — anV)SJx, (I — A\ A) T, w0}

for alln € N, where {a,} € (0,1), {Bn} C (0,1), {\,} C (0,00) and {r,} C (0,00)
satisfy

o0
lim a, =0, Zan =00, 0<liminfg, <limsupg, <1,
n—oo n:1 n—oo

n—oo

liminfr, >0 and 0<a<\, <b<2a.

n—oo

Then {z,,} converges strongly to z9 € F(S) N (A+ B)~10 N W10, where z is a
unique fized point in F(S)N(A+B)~0NW 10 of Pr(s)n(a+B)-10nw-10(I—V+7g).

Proof. Let z € F(S)N(A+B)~10NW~10. We have that z = Sz, 2 = J) (I -\, A)z
and z =T, z. Putting w, = J\,(I — \,A)T,., x, and u,, = T, z,, we obtain that
1Swn = 2[* < Jwn — 2|2

= ||, (tn — AnAuy) — Jx, (2 — Ay Az)|?

< lun = AnAu, — (2 — A A2)|?
(3.1) = [[tn — 2 = An(Auy, — A2)|?

= [lun — 2[1* = 2\ (un — 2, Au, — A2) + A2 || Auy, — Az||?

< un = 2| = 200 | Auy, — Az||* + A2 || Au,, — A2

<Nz = 212 4+ An(An — 2a) || Auy, — Az

< Jarn = 2)1*.

Putr=7%5- % Using lim,, o a,, = 0, we have that for any =,y € H,
[(I~anV)a — (I —anV)y|* = ||z —y — an(Vz — Vy)|?

= ||z —y|? = 20n{x —y,Va = Vy) + ai|[Vz - Vy|?
< llz = yl* = 20071z — y|* + ai L[l — y|?

(32) = (1 - 20,7+ oy L% ||z — y|?

(1= 207 — ap L2p + 0% L) ||z — y|?

(1 — 20,7 — an(L?pn — anL?) + 272z — y||?

(

(

IN A

1 — 20,7 + a27%)||z — y|?

1 —an7)?|z —yl*.
Since 1 — a,, 7 > 0, we obtain that for any x,y € H,
(3.3) (I = anV)z— (I —anV)yl| < (1 = an7)llz =yl
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Putting ¥, = anyg(zn)+(T—a,V)SJIy, (I-AA)T, p, from z = @, Vz+z—a,Vz,
(3.1) and (3.3) we have that

lyn = zll = llon(vg(zn) = V2) + (I — anV)Swy — (I — anV)z||
< any klzn — 2l + anllvg(2) = V| + (1 — ant) [|Swy — 2|
<{l—an(r =7 B)}lon — 2] + anllvg(z) — Vz|.
Using this, we get

[#nt1 = 2] = [|Bn(zn = 2) + (1 = Bn)(yn — 2)
< B llzn — 2l + (1 = Bn) llyn — =
< B [lzn — 2||

+ (1= Bn)({1 = an(r =7 B)} lzn — 2l + anllvg(z) = Vz])

={1-Q1=Bn)an(t =7 k)}Hzn — 2]

z)=Vz
(L= Ban(r 7 k2D VAL
T—vk
Putting K = max{||z1 — z||, W}, we have that ||z, — z|| < K for all n € N.
Then {z,} is bounded. Furthermore, {u,}, {w,} and {y,} are bounded. Using
Lemma 9, we can take a unique 29 € F(S) N (A + B)~10 N W10 such that

20 = Pp(syna+B)-tonw-10({ =V +79)20-
From the definition of {x,}, we have that
Tpt1 — T = Bnn + (1 = B){anyg(zn) + (I — @, V)Sw,} — zy,
and hence
Tpy1 — Tn—(1 = Bn)anvg(wn) = Bnzn + (1 = Ba)(I — anV)Sw, — xp
=(1-06){(I-a,V)Sw, — 2}
= (1= ) (Swy, — xp, — a, VSw,,).
Thus we have that
(Tns1—2n — (1= Bn)anyg(n), Tn — 20)
(3.4) = ((1 = Bn)(Swy, — 2y — a, VSwy,), Ty — 20)
= —(1 = Bu){xn — Swn,xn — 20) — (1 — Bn)an(VSwy, z, — 20).
From (2.3) and (3.1), we have that
2zn — Swn, Tn—20) = |20 — 20* + [|Sws — a||* = || Swy — 20|
(3.5) > ||z = zoll* + [|Swn — @nl® — |25 — 20|
= [|Swn, — @ %
From (3.4) and (3.5), we also have that
—2(xy, — Tpt1, Tn — 20) = 2(1 = Bp)an(yg(zn), zn — 20)
(3.6) —2(1 = Bp){xn — Swp, Ty — 20) — 2(1 — Br)an(V Swp, 2, — 20)
< 2(1 = Bn)an{yg(@n), n — 20)
— (1= B)|Swp — 2 ||* = 2(1 = Br)an (VSwy, 2, — 20).
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Furthermore using (2.3) and (3.6), we have that
l#nt1 = 20llP=ll2n — Znial® = llzn — 20|17
< 2(1 - Bn)an<'yg(xn)7$n - ZO>
— (1= 6n)||Sw, — xn||2 —2(1 = Bp)an{VSwy, x, — 20).
Setting ', = ||z, — 20l|?, we have that
Fn—i—l - Fn - Hxn - xn+1||2
(37) < 2(1 - /Bn)an<’yg(xn)7xn - ZO>
— (1 = B)ISwn — zn||* = 2(1 = Bp)an(VSwy, z, — 20).
Noting that
[Zns1 — @l = (1 = Bo)an(yg(@n) — VSwy,) + (1 = Bn)(Swy — )|
(3~8) < (1 - ﬁn)(stn - xn” + O‘nH'Y.g(xn) - VSU)HH)’
we have that
2
g1 — 2l < (1 5n)2(||5wn — | + anllvg(an) — sznH)
(3.9) =(1- 571)2H5wn - anz + (1 - ﬂn)2204n||5wn — zp|||vg(zn) — V.Sw,||
+ (1 - ﬂn)gaiH'yg(xn) - szn||2~

Thus we have from (3.7) and (3.9) that
FnJrl - Fn < ”fn - $n+1H2 + 2(1 - 6n)an<’yg(xn)axn - ZO>

— (1= B)Swy, — 2 ||* = 2(1 = Bn)an(V Swy, 2, — 20)

< (1= Bp)?[|Swn — @ + (1 = Bn) 200 [|Swy, — znlllyg(2n) = V Sw,||
+ (1= Bn)?aillvg(wn) = VSwall® + 2(1 = Ba)an(vg(wn), 20 — 20)
— (1= Bn)||Sw, — xn||2 —2(1 = Bpn)an(VSwy,, x, — zo)

and hence
Log1 = Dnt8n(1 = Bo) || Swy — $n||2 <(1- 6%)22O‘n||swn — znlllvg(7n) — V Swy ||
(310) + (1 - ﬂn)2ai||79(mn) - VvS’wnH2 + 2(1 - ﬁn)an<vg(mn)7l‘n - ZO>

—2(1 = Bp)an(VSwy, z, — 20).

We will divide the proof into two cases.

Case 1: Suppose that I';,;; < T, for all n € N. In this case, lim, o, ', exists
and then lim, oo (Tp41 —I'y) = 0. Using 0 < liminf,, o 5, < limsup,,_, ., Gn <1
and lim,,_, o ay, = 0, we have from (3.10) that

(3.11) nlingo [|Swy, — x,|| = 0.
Using (3.8), we also have that
(3.12) nllrr;o |Xnt1 — znl = 0.
Since xp 41 — Xy = (1 — Bn) (Yn — @), we have from (3.12) that
(3.13) lim ||y, — 2n|| = 0.
n—00



ITERATIVE COMMON SOLUTIONS 9

We also have from (2.6) that
2||un — ZOH2 =2\, zn — TmZO”2
< 2(xp — 20, Un — 20)
= llzn = 20l% + llun = 201 = llun — znlf?
and hence
(3.14) [un — ZOH2 < lzn — ZO||2 = Jun — $n||2
From (3.1) we have that
[Swn = 20l1* < llun — 20l* < llzn — 20]1* = llun — znl|?
and hence
[un =] < llzn = 20]* = [[Swy — 20 < M|[Swy — x|,

where M = sup{||z,, — 20| + [|Swn — 20| : n € N}. Thus from (3.11) we have that

(3.15) lim |lu, —x,] =0.

We will show limy, o ||Sw, — wy,|| = 0. Since || - ||? is a convex function, we have
that

(3.16) |z n+1 = 20ll” < Br ll2n = 20[1* + (1 = Ba) Iy — 20l -

From zg = a,Vzp + 20 — @, Vzg and (2.1) we also have that
[yn = 20l = llan(vg(2n) = Vzo) + (I = anV)Swy — (I — V) zol|?
< (1= an7)?||Swn — 2ol|* + 20 (vg(xn) — V20, Y — 20)
(3.17) < (1= an7)?|lwn — 2oll* + 20 (vg(2n) — V20, yn — 20)
< Nwn — 20ll? + 200 (v9(@n) — V20, 4 — 20)
< o = 207 + An(hn — 20) [ duy — Az
+ 200 (9(2n) = V20, Yn — 20)-
Using (3.16) and (3.17), we have that
st = 20l12 < Bu 2 — 202 + (1 = Ba) ll2n — 20
+ (1= B2) An(An = 20) Ay — Azo” + 200 (79 (w0) = V20, yn — 70))
(3.18) =@ — 20]* + (1 = Bn) An(An — 20) || Aup, — Azol|?
+ 2an(yg(2n) — V20, yn — 20))-
Thus we have that
(1= Bn)An(20 = An) || Aun — Az’
(3.19) <wn = 217 = llznsr — 2II* + (1 = Ba)20n (vg () = V20, Y — 20)-
Then we have that

(3.20) lim ||Au, — Az|| = 0.
n—oo
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Since Jy, is firmly nonexpansive, we have that
2w —z0l> = 2 {1, (wn — AnAuy) = J, (20 — AnAzo)||?
< 2(uy — ApAuy, — (20 — AnAzp), Wy — 20)
= [Jtn — AnAuy — (20 — MAz0)|)* + [wn — 20]
— Ntn = An A, — (20 — AnAzo) — (wn — 20) |
< Jlun = 20]|* + [[wn — 20]®
— Nup — wy — A (Auy, — Az0)|\2
<l = 20/l + llwn — 20[|* = [Jun — wa®
+2X, (U, — W, Auy — Azg) — A2 || Au, — Az
Thus we get

(3.21) lwn = 20l* < llzn = 20/1” = [[un — wa?
+ 2 (U — W, Aty — Azg) — A2 || Ay, — Azl
Using (3.17), we obtain

|2ns1 — 20ll* < Ba llzn — 20ll* + (1 = Ba)llym — 2012
< B llzn — 2ol* + (1 = Ba)(wn — 20l|* + 20m (vg(@n) — V20, Y — 20))
< Bn llen — 20ll* + (1 = Bn) l&n — 20l”
— (1= B) l[tn — wal* + (1 = Ba)27n (tn, — wr,, Auy, — Azg)
— (1= Bu)A% [[Auy — Azo]|* + (1 = B,)20m (Y9 (xn) = V20, Yn — 20)
= [l&n = 20l* = (1 = Bn) l[tn — wa®
+ (1= Ba)2An (tn — Wi, A — Azo) — (1= B,) A2 || Aup, — Azol|?
+ (1 = B)20 (Y9(n) — V20, Yyn — 20)-
So we have that
(1=8n) |10 — wn|* < [l&n — 20|
— ||znt1 — zo||2 + 2, (U, — Wy, Au,, — Azp)
— X2 [|Aun — Azo||* + 200 (v9(z0) — V20, yn — 20)).

Then we have

(3.22) lim |Ju, —wy,| = 0.

From (3.22) and (3.15) we have that
(3.23) lim |z, —wy| =0.
Since ||Swy, — wy || < ||Swn — zpl|| + ||2n — wy]|, we have that

(3.24) lim ||Sw, —w,| = 0.
n—od
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Take Ag € R with 0 < a < )\ < b < 2« arbitrarily. Put s, = (I — A, A)u,. Using
up =Ty xp and w, = Jy, (I — A\, A)u,, we have from Lemma 4 that

[ Txg (I = Ao A)tpn, — wpl| = || Ing (I — Mo A)upn — In, (I — ApA)uy||
= H']/\O (I - )‘OA)un - Jko (I - )\nA)U'n

(3.25) + Do (I = A A)up — In, (I — Ay A)ug||
<[ = AoA)un — (I = ApA)unl| + || Txgsn — I, snll
|)‘0 - )‘n|

< [Xo = Anll|Aunl| + [ Ixg8n — Snll-

Ao
We also have from (3.25) that
(3:26)  lun — Ja(T = Mo AVl < ltm — wall + ltm — Jao (T — Ao AVl

We will use (3.25) and (3.26) later.
Let us show that limsup,,_, ((V —~vg)z0, Zn — 20) > 0. Put
A =limsup (V —vg)z0, Tn, — 20) -

Without loss of generality, there exists a subsequence {z,,} of {x,} such that
A =lim; o ((V —v9)20, Tn, — 20) and {z,, } converges weakly some point w € H.
From ||z, — w,| — 0 and ||z, — u,|| — 0, we also have that {w,,} and {u,,}
converge weakly to w € C. On the other hand, from {\,,} C [a,b] there exists a
subsequence {/\mj} of {An,} such that An;; — Ao for some A € [a,b]. Without loss
of generality, we assume that w,, — w, u,, — w and \,, — Ag. From (3.24) we
know lim,, e ||Sws — wy|| = 0. Thus we have from Lemma 3 that w = Sw. Since

W is a monotone operator and % € Wuy,, we have that for any (u,v) € W,

7‘,,,,1

Ty, — Un,

(u — Up,, v — ) >0.

Tn,
Since liminf,, oo 7 > 0, up, = w and z,, — u,, — 0, we have
(u—w,v) > 0.

Since W is a maximal monotone operator, we have 0 € Ww and hence w € W—10.
Since A,, — Ag, we have from (3.25) that

HJ)\O (I - )‘OA)unz — Wn, H — 0.
Furthermore, we have from (3.26) that
Hunz - J)\o (I - )‘OA)U‘M

Since Jy, (I — Mg A) is nonexpansive, we have that w = Jy, (I — A\gA)w. This means
that 0 € Aw + Bw. Thus we have

we F(T)N(A+ B)~'onwo.

— 0.

Then we have
(3.27) A= lim ((V —~g)z0,zn, — 20) = {((V — vg)z0, w — 20) > 0.

Since yn, — 20 = an(v9(xn) — Vzo) + (I — anV)Sw, — (I — an,V)zg, we have
lyn = zol* < (1 = @am)? | Swn — 20* + 2cn (y9(2n) = V20,4 — 20) -
Thus we have

lyn = 20l* < (1 = @nm)? farn = 20]1” + 200 (9 (20) = V2o, Y — 20)
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Then we have that
n41 = 200> < Ba ll2n = 20lI* + (1 = Ba) llyn — 20]”
< B ll&n — 2oll”
+ (1= Ba) (1= anm)? lwn = 20ll” + 20m (19(wn) = V0,50 = 20))
= (Bn + (1= Bu)(1 = 7)) iz — 20/
+2(1 = Bn)an (v9(xn) — V20, Yn — 20)
< (1= (1= B2)2anT = (an7)?)) 20 — 20|
+2(1 = Ba)any kllzn — 20l + 2(1 = Bn)an(v9(20) = V20, Yn — 20)
= (1=2(1 = Bo)an(r — 7 K)) & — 20|
+ (1= Ba)(ant)? |20 = 20l” + 2(1 = Ba)an(v9(20) = V20, yn — 20)
= (1=2(1 = Bo)an(r =7 k) [lzn — 20|

2 2 . B
+2(1 = Bn)an(t — v k) (a”;(ﬂx—’ly kZ)0| " (v9(20) - Yio,kyn Zo>> .

By (3.27) and Lemma 5, we obtain that z, — z, where

20 = Pp(syna+s)-tonw-10(I =V +79)z0-
Case 2: Suppose that there exists a subsequence {I'y,;} C {T',} such that T, <
Iy, 41 for all ¢ € N. In this case, we define 7 : N — N by

7(n) =max{k <n: Tk < Ty1}.

Then we have from Lemma 6 that I';(,y < I'z(n)41. Thus we have from (3.10) that
for all n € N,

Br(m) 1=Brm)|SWr(n) = T (my|I”
< (1= Brm) 20 () |1Swr(n) — () 179 (T () — V S )
(3.28) + (1= Brm))* 0 (N9 (@7 (n)) = VSwr (I
+2(1 = Brn)) e (n) (V9(@ 7 (n))s Tr(n) — 20)
= 2(1 = Br(n)) ar () (VSWr(n), T7(n) — 20)-

Using lim,, oo ap, = 0 and 0 < liminf,,_,. 3, < limsup,,_, ., Bn < 1, we have from
(3.28) and Lemma 6 that

(3.29) nh_)rrgo |Swr(n) —z,(n)|| = 0.
As in the proof of Case 1 we also have that

(3.30) Jim |27y 11 — o[ = 0
and

(3.31) Jim lyr () = @2 [| = 0.

Furthermore, we have that lim,, . oo [|[tr () =2+ ) || = 0, limy, oo || Aty (ny—Azo|| = 0,

lim,, o HuT(n) — Wr(n) H =0 and lim,,_, er(n) — Wr(n) H = 0. From these we have

that lim, oo [[Swr(n) — wrn)|| = 0. As in the proof of Case 1, we can show that
lim sup <(V —79)20, Tr(n) — z0> > 0.

n—00
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We also have that
2 2
Hy'r(n) - ZOH < (1 - a‘r(n)T)2 Hx'r(n) - ZOH + 2O‘T(n) <’7g(x'r(n)) - VZOvy‘r(n) - ZO>
and then
2 2
||IT(TL)+1 - ZOH < (1 - 2(1 - ﬂT(TL))aT(n)(T -7 k)) ||x7'(n) - ZOH
+ (1 - ﬁr(n))(ar(n)7)2||x7(n) - ZO||2 + 2(1 - ﬁr(n))a'r(n) <vg(z0) — Vz, Yr(n) — ZO>'
From ') < T'7(n)41, we have that

2
2(1 - ﬂ‘r(n))ar(n) (T -7 k)) H'r‘r(n) - ZOH

< (1= Brm) (Qrm)T) [ Tr(m) — 20l1° + 2(1 = Br(n)) @z (n) (79(20) — V20, Yr(n) — 20)-
Since (1 — Br(n))0r(n) > 0, we have that

2
2(1 = k) ||2r(n) — 20|
< aT(n)T2||$T(n) — z0/* + 2(vg(20) — V20, Yr(n) — 20)-

Thus we have that
limsup 2(7 — v k) er(n) - ZOHQ <0

n—oo
and hence [z;(,) — 20|l — 0 as n — oo. Since z(,) — Tr(n)41 — 0, we have
|2+ (ny+1 — 20/ — 0 as n — oo. Using Lemma 6 again, we obtain that

||mn — 2ol < ||x7(n)+1 - ZOH -0

as n — oo. This completes the proof. ([l

4. APPLICATIONS

In this section, using Theorem 10, we can obtain well-known and new strong
convergence theorems for in a Hilbert space. Let H be a Hilbert space and let f
be a proper lower semicontinuous convex function of H into (—oo,o0]. Then, the
subdifferential 0f of f is defined as follows:

of(x) ={z€ H: f(x)+ (2,y —x) < f(y), Yy € H}

for all x € H. From Rockafellar [25], we know that 0f is a maximal monotone
operator. Let C' be a nonempty closed convex subset of H and let ic be the
indicator function of C, i.e.,

. 0, =ze€C,

ic(z) = {

oo, x¢C.

Then, i¢ is a proper lower semicontinuous convex function on H and then the
subdifferential di¢ of i¢ is a maximal monotone operator. So, we can define the
resolvent Jy of di¢ for A > 0, i.e.,

I = (I+ /\8ic)71$
for all x € H. We know that Jyz = Pox for all x € H and A > 0; see [30].

Theorem 11. Let H be a real Hilbert space and let C' be a nonempty closed convex
subset of H. Let S be a generalized hybrid mapping of C into C. Suppose F(S) # (.
Let u,x1 € C and let {x,} C C be a sequence generated by

Tnyl = 5nxn + (]— - ﬂn){anu =+ (1 - an)an}



14 WATARU TAKAHASHI, NGAI-CHING WONG, AND JEN-CHIH YAO

for all n € N, where {8,} C (0,1) and {an} C (0,1) satisfy

n—oo

o0
lim «, =0, E Q= 00
n=1

and 0 < liminf 3, <limsup g, < 1.

n—oo

Then the sequence {x,} converges strongly to zo € F(S), where zg = Pp(g)u.

Proof. Put A =0, B=W = 0ic and A\, =1, = 1 for all n € N in Theorem 10.
Then we have Jy, = T,, = P for all n € N. Furthermore, put g(z) = u and
V(x) = x for all x € H. Then, we can take ¥ = L = 1. Thus we can take p = 1.
On the other hand, since ||g(z) — g(y)|| = 0 < %|lz — y|| for all z,y € H, we can
take k = % So, we can take v = 1. Then for u,z; € C, we get that

Tpt1 = Pnxn + (1= Bu){anu+ (I — ap)Sx,}
for all n € N. So, we have {z,} C C. We also have
20 = Ppsync(I =V +79)20 = Pr(s)(20 — 20 + 1 - u) = Pp(g)u.
Thus we obtain the desired result by Theorem 10. ]

Theorem 11 solves a problem posed by Kurokawa and Takahashi [16]. The
following result is a strong convergence theorem of Halpern’s type [10] for finding
a common solution of a monotone inclusion problem for the sum of two monotone
mappings, of a fixed point problem for nonexpansive mappings and of an equilibrium
problem for bifunctions in a Hilbert space.

Theorem 12. Let H be a real Hilbert space and let C' be a nonempty closed convex
subset of H. Let a > 0 and let A be an a-inverse strongly-monotone mapping of C
into H. Let B and W be mazimal monotone operators on H such that the domains
of B and W are included in C. Let Jy = (I + AB)™' and T, = (I + W)~ be
resolvents of B and W for A\ > 0 and r > 0, respectively. Let S be a nonexpansive
mapping of C into H. Let 0 < k <1 and let g be a k-contraction of H into itself.
Let V' be a 7-strongly monotone and L-Lipschitzian continuous operator with 7 > 0
and L > 0. Take p,v € R as follows:
2
k

Suppose F(S)N(A+ B)"'0NW=t0#0. Let vy =x € H and let {x,} C H be a
sequence generated by

Tpt+1 = ﬂnxn + (1 - ﬂn){an’yg(xn) + (I - anV)SJAn (I - )‘nA)TTnxn}

for alln € N, where {a,} € (0,1), {Bn} C (0,1), {\,} C (0,00) and {r,} C (0,00)
satisfy

27y
O<u<ﬁ, 0<y<

lim «, =0, Zan =00, 0<liminfg, <limsupg, <1,
n=1

n—oo n—oo

liminfr, >0 and 0<a<\, <b<2a.

n—oo
Then the sequence {x,,} converges strongly to zy € F(S) N (A + B)~'0 N W10,
where zo = Pr(s)na+B)-tonw-10(I =V +79)z0-
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Proof. We know that a nonexpansive mapping T of C into H is a (1,0)-generalized
hybrid mapping. So, we obtain the desired result by Theorem 10. O

The following lemmas were given in Combettes and Hirstoaga [8] and Takahashi,
Takahashi and Toyoda [27]; see also [1].

Lemma 13 ([8]). Let H be a real Hilbert space and let C be a nonempty closed
convex subset of H. Assume that f : C x C — R satisfies (Al) — (A4). Forr >0
and x € H, define a mapping T, : H — C' as follows:

1
Trx:{zEC:f(z,y)—&-T(y—Z,Z—@20, V?JGC}

for all x € H. Then, the following hold:

(1) T, is single-valued;
(2) T, is a firmly nonexpansive mapping, i.e., for all x,y € H,

[Tz — Toyl|* < (Trx — Ty, x — y);

(3) F(T.) = EP(f);
(4) EP(f) is closed and convez.

We call such T, the resolvent of f for r» > 0.

Lemma 14 ([27]). Let H be a Hilbert space and let C' be a nonempty closed convex
subset of H. Let f : C'xC — R satisfy (A1) —(A4). Let Ay be a set-valued mapping
of H into itself defined by

)0, vaéc.

Then, EP(f) = A;lo and Ay is a mazimal monotone operator with D(Ay) C C.
Furthermore, for any x € H and r > 0, the resolvent T, of f coincides with the
resolvent of Ay, i.e.,

Too=(I+7rAp) 'z

Using Lemmas 13, 14 and Theorem 10, we also obtain the following result for
generalized hybrid mappings of C' into H with equilibrium problem in a Hilbert
space.

Theorem 15. Let H be a real Hilbert space and let C' be a nonempty closed convex
subset of H. Let S be a generalised hybrid mapping of C into H. Let f be a
bifunction of C x C into R satisfying (A1) — (A4). Let 0 < k < 1 and let g be a
k-contraction of H into itself. Let V' be a 7-strongly monotone and L-Lipschitzian
continuous operator of H into itself with 5 > 0 and L > 0. Take p,yv € R as
follows:

~_ Lp

O<pu< =L, 0<y< 2.
1% 12 Y %

Suppose that F(S)NEP(f) #0. Let xy =« € H and let {z,} C H be a sequence
generated by

2y

1
f(unvy)+7<y7unaun*xn> 207 VyGC’,

n

Tny1 = ﬂnxn + (1 - Bn){anvg(xn) + (I - O[nV)SUn}
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for alln € N, where {8,} C (0,1), {an,} C (0,1) and {r,} C (0,00) satisfy
o0
Jlrrgoan =0, Zan = 00, linrr_ligfrn > 0,
n=1

and 0 <liminf g, <limsupf, < 1.

Then the sequence {x,} converges strongly to zo € F(S) N EP(f), where zp =
Prsynepr)(I =V +79)20-

Proof. Put A = 0 and B = Oi¢ in Theorem 10. Futhermore, for the bifunction
f:C xC — R, define A; as in Lemma 14. Put W = A; in Theorem 10 and let
T, be the resolvent of A; for v, > 0. Then we obtain that the domain of A; is
included in C and T, z, = u, for all n € N. Thus we obtain the desired result by
Theorem 10. (]
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