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ABSTRACT. Recently, Kawasaki and Takahashi [8] defined a broad class of
nonlinear mappings, called widely more generalized hybrid, in a Hilbert space
which contains generalized hybrid mappings [10] and strict pseudo-contractive
mappings [2]. They proved fixed point theorems for such mappings. In this
paper, we prove fixed point theorems for widely more generalized hybrid non-
self mappings in a Hilbert space by using an idea of Hojo, Takahashi and
Yao [4], and Kawasaki and Takahashi fixed point theorems [8]. Using these
fixed point theorems for non-self mappings, we proved Browder and Petryshyn
fixed point theorem [2] for strict pseudo-contractive non-self mappings and
Kocourek, Takahashi and Yao fixed point theorem [10] for super hybrid non-
self mappings. In particular, we solve a fixed point problem.

1. INTRODUCTION

Let R be the real line and let [0, 7] be a bounded, closed and convex subset of
R. Consider a mapping 7" : [0, 5] — R defined by

1 1
Tx= (14 §x)cosm - 5902

for all 2 € [0, §]. Such a mapping T" has a unique fixed point z € [0, ] such that
cos z = z. What kind of fixed point theorems can we use to find such a unique fixed
point z of T'?

Let H be a real Hilbert space and let C' be a non-empty subset of H. Kocourek,
Takahashi and Yao [10] introduced a class of nonlinear mappings in a Hilbert space
which covers nonexpansive mappings, nonspreading mappings [12] and hybrid map-
pings [17]. A mapping T : C — H is said to be generalized hybrid if there exist
a, B € R such that

(L) allTz = Ty|* + (1 = )|z = Ty|* < BTz — y|I* + (1 = B)l|lz — y|I”
for all z,y € C. We call such a mapping an («, )-generalized hybrid mapping. An
(c, B)-generalized hybrid mapping is nonexpansive for « = 1 and 8 =0, i.e.,
[Tz =Tyl < [l —yll
for all x,y € C. It is nonspreading for « = 2 and 8 =1, i.e.,
2|Tz — Ty|? < [lz — Ty||* + |ly — T||?
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for all z,y € C. Furthermore, it is hybrid for o = % and 8 = %, ie.,

31Tz — Ty|* < lla = Tyl* + lly — Tal* + [y — =|?

forall z,y € C. They proved fixed point theorems and nonlinear ergodic theorems of
Baillon’s type [1] for generalized hybrid mappings; see also Kohsaka and Takahashi
[11] and Iemoto and Takahashi [5]. Very recently, Kawasaki and Takahashi [8]
introduced a more broad class of nonlinear mappings than the class of generalized
hybrid mappings in a Hilbert space. A mapping T from C into H is called widely
more generalized hybrid if there exist «, 3,7, d,¢,(,n € R such that

(1.2) a|Tz—Ty|* + Bllz — Ty||* + 7| Tz — y||* + 6||lz — y||*
+elle = Tzl|* + {lly — Tyl> +nl(z — Tz) — (y — Ty)|*> <0

for all z,y € C. Such a mapping T is called an («, 8,7, 0, €, {, n)-widely more gener-
alized hybrid mapping. In particular, an («, 8,7, d, €, ¢, n)-widely more generalized
hybrid mapping is generalized hybrid in the sense of Kocourek, Takahashi and Yao
[10]ifa+f=—y—d=1lande=(=n=0. An (o, 8,7, 9,¢,(,n)-widely more
generalized hybrid mapping is strict pseudo-contractive in the sense of Browder and
Petryshyn [2] if a = 1,6 =v=0,6 = —1,e = { = 0,n = —k, where 0 < k < 1.
A generalized hybrid mapping with a fixed point is quasi-nonexpansive. However,
a widely more generalized hybrid mapping is not quasi-nonexpansive in general
even if it has a fixed point. In [8], Kawasaki and Takahashi proved fixed point
theorems and nonlinear ergodic theorems of Baillon’s type [1] for such widely more
generalized hybrid mappings in a Hilbert space. In particular, they proved directly
Browder and Petryshyn fixed point theorem [2] for strict pseudo-contractive map-
pings and Kocourek, Takahashi and Yao fixed point theorem [10] for super hybrid
mappings by using their fixed point theorems. However, we can not use Kawasaki
and Takahashi fixed point theorems to solve the above problem. For a nice synthesis
on metric fixed point theory, see Kirk [9].

In this paper, motivated by such a problem, we prove fixed point theorems for
widely more generalized hybrid non-self mappings in a Hilbert space by using an
idea of Hojo, Takahashi and Yao [4], and Kawasaki and Takahashi fixed point
theorems [8]. Using these fixed point theorems for non-self mappings, we proved
Browder and Petryshyn fixed point theorem [2] for strict pseudo-contractive non-
self mappings and Kocourek, Takahashi and Yao fixed point theorem [10] for super
hybrid non-self mappings. In particular, we solve the above problem by using one
of our fixed point theorems.

2. PRELIMINARIES

Throughout this paper, we denote by N the set of positive integers. Let H be

a (real) Hilbert space with inner product (-,- ) and norm || - ||, respectively. From
[16], we know the following basic equality: For z,y € H and A € R, we have
(2.1) IAa + (1= Nyl? = Alle]* + (1 = V]yll® = A1 =Nz - y]*.

Furthermore, we know that for x,y,u,v € H
(2.2) 2(z —y,u—v) = llz —ol* + ly — ull® =l —ull® = [ly — vl

Let C be a non-empty, closed and convex subset of H and let T be a mapping
from C into H. Then, we denote by F(T) the set of fixed points of T. A mapping
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S: C — H is called super hybrid [10, 20] if there exist «, 3, € R such that
(2.3) allSe = SylI* + (1 — a+7)llz = Syl
SB+B-a))Sz—yl?+ (1 -8~ (B-a-1)y)]z—yl?
+(a =Bz — Szl* +~lly — Syl

for all z,y € C. We call such a mapping an («, 8, 7)-super hybrid mapping. An (a,
B, 0)-super hybrid mapping is («, 5)-generalized hybrid. Thus the class of super
hybrid mappings contains generalized hybrid mappings. The following theorem was
proved in [20]; see also [10].

Theorem 2.1 ( [20]). Let C be a non-empty subset of a Hilbert space H and let
a, B and v be real numbers with v # —1. Let S and T be mappings of C into H
such that T = ﬁS + ﬁ[. Then, S is («, B, v)-super hybrid if and only if T
is («, B)-generalized hybrid. In this case, F(S) = F(T). In particular, let C be
a nonempty, closed and convex subset of H and let o, B and v be real numbers
with v > 0. If a mapping S : C — C is («, B, 7v)-super hybrid, then the mapping

T= ﬁS + ﬁ[ is an («, B)-generalized hybrid mapping of C into itself.

In [10], Kocourek, Takahashi and Yao also proved the following fixed point the-
orem for super hybrid mappings in a Hilbert space.

Theorem 2.2 ([10]). Let C be a non-empty, bounded, closed and convex subset of
a Hilbert space H and let o, B and ~y be real numbers with v > 0. Let S : C' — C be
an (a, B, v)-super hybrid mapping. Then, S has a fixed point in C. In particular,
if S:C — C be an (a, ()-generalized hybrid mapping, then S has a fized point in
C.

A super hybrid mapping is not quasi-nonexpansive in general even if it has a
fixed point. There exists a class of nonlinear mappings in a Hilbert space defined
by Kawasaki and Takahashi [7] which covers contractive mappings and generalized
hybrid mappings. A mapping T from C into H is said to be widely generalized
hybrid if there exist a, 3,7, 96,¢,( € R such that

al| Tz — Ty|? + Blla=Ty|* +yl|ITz — yl|* + 8]l — y|I?
+max{el|z — T, (lly — Ty|*} <0

for any xz,y € C. Such a mapping T is called (¢, 3,7, 9, ¢, ()-widely generalized
hybrid. Kawasaki and Takahashi [7] proved the following fixed point theorem.

Theorem 2.3 ([7]). Let H be a Hilbert space, let C' be a non-empt,y closed and
convez subset of H and let T be an («, 8,7, 6, €, ()-widely generalized hybrid mapping
from C into itself which satisfies the following conditions (1) and (2):

(1) a+B8+v+d>0;

2) e+ta+y>0,or{+a+p>0.
Then, T has a fized point if and only if there exists z € C' such that {T"z | n =
0,1,...} is bounded. In particular, a fized point of T is unique in the case of
a+ B +v+9 >0 on the condition (1).

Very recently, Kawasaki and Takahashi [8] also proved the following fixed point
theorem which will be used in the proofs of our main theorems in this paper.
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Theorem 2.4 ([8]). Let H be a Hilbert space, let C' be a non-empty, closed and
convex subset of H and let T be an («, 8,7, 6, ¢, (,n)-widely more generalized hybrid
mapping from C into itself, i.e., there exist o, B,7,9,¢,(,n € R such that

al| Tz=Ty|* + Bllz — Tyl* +yl|Tz — yl|* + 8]l — y|I?
+elle =T +¢lly = Tyll* +nll(z - Tz) — (y = Ty)|* <0
for all z,y € C. Suppose that it satisfies the following condition (1) or (2):
1) a+B+v+d>0,a+v+e+n>0and(+n>0;
(2) a+p+v+0>0,a+B8+(+n>0andec+n>0.
Then, T has a fized point if and only if there exists z € C such that {T"z | n =

0,1,...} is bounded. In particular, a fized point of T is unique in the case of
a+ B+ —+ >0 on the conditions (1) and (2).

In particular, we have the following theorem from Theorem 2.4.

Theorem 2.5. Let H be a Hilbert space, let C' be a non-empty, bounded, closed
and convex subset of H and let T be an (a, B,7,0,¢,(,n)-widely more generalized
hybrid mapping from C into itself which satisfies the following condition (1) or (2):
(1) a+B+7v+0>0,a+v+e+n>0and(+n>0;
(2) a+B8+v+6>0,a+B+C¢+n>0ande+n>0.
Then, T has a fized point. In particular, o fived point of T is unique in the case of
a+ B +v+3>0 on the conditions (1) and (2).

3. FIXED POINT THEOREMS FOR NON-SELF MAPPINGS

In this section, using the fixed point theorem (Theorem 2.5), we first prove the
following fixed point theorem for widely more generalized hybrid non-self mappings
in a Hilbert space.

Theorem 3.1. Let C' be a non-empty, bounded, closed and conver subset of a
Hilbert space H and let v, B,7,6,6,{,n € R. LetT : C — H be an («, 8,7,d,e,(,n)-
widely more generalized hybrid mapping. Suppose that it satisfies the following
condition (1) or (2):
(1) a+pf+v+06>20,a+v+e+n>0,a++(+n>0and (+n>0;
(2) a+p+v+06>20,a+8+C+n>0,a+v+e+n>0ande+n>0.
Assume that there exists a positive number m > 1 such that for any x € C,
Te=x+t(y—x)
for somey € C andt with0 <t < m. Then, T has a fized point in C. In particular,

a fized point of T is unique in the case of a+ 4+ v+ 0 > 0 on the conditions (1)
and (2).

Proof. We give the proof for the case of (1). By the assumption, we have that for
any = € C, there exist y € C and ¢t with 0 < ¢ < m such that Tx = z + t(y — z).
From this, we have Tx = ty + (1 — t)x and hence
1 t—1
= To+——u.
Y P T+ 7 T
Define Uz € C as follows:

t 4 t t (1 t—1 1 -1
Ue=(1-—|z+—y=(1——|z+—|-Te+ —=2 :—Term x.
m m m m \ 't t m m
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Taking A > 0 with m =1 + A, we have that

_ s A
RIS I

Ux

and hence
(3.1) T=(14+MNU- A

Since T : C — H is an (a, 8,7, 0, ¢,(,n)-widely more generalized hybrid mapping,
we have from (3.1) and (2.1) that for any z,y € C,

a1+ MUz — Az — (1 + AUy — A\y) |I?
+ Bl = (L+ Uy =) |2+ (1 + Uz = Az —y||* + 8z — yl|?
+ellz = ((L+NUz = xx) |2+ ¢l(1+ Uy — Ay —y|?
+illz = (L+ MUz = Az) = (y — (1 +\Uy = Ay)) ||
= a1+ N)(Uz - Uy) = Az —y)||?
+BIA+ N (@ = Uy) = Mz =) * +4l(1+ ) (Uz - y) = Mz — y)|?
+ 8z =yl +ell(L+ N (@ — U)|” + ¢lI(L+ M) (y — Uy)|®
+ll(1+ M) (z = Uz) = (1+X)(y — Uy)|?
= a(l+N)[[Uz = Uy|]* = aA||z =yl + aA(1 + N)||lz —y — (Uz — Uy)||?
+ AL+ Nz = Uyl? = BAllz =yl + BAL + N)|ly — Uyl
+y(1L+N)Uz =yl =Xz = yl> + A1+ )|z = Uz|® + 6]z - y|?
+e(L+ N[z = Uzl” + ¢(1+ N)?[ly — Uyl
+0(L+ A2z — Uz — (y — Uy)|?
= a(l+ MUz = Uy|* + (L + N)llz = Uyl + (1 + N)|[Uz - y|?
+ (oA = A = A+ 8) ||z — y||®
+ (A +ed+e) 1+ Nz — Uzl + (BA+ A+ O+ N)|ly — Uy|?
+ (@A A+ )+ N)[lz —y — (Uz = Uy)|* <0.
This implies that U is widely more generalized hybrid. Since o+ 5 +~v+§ > 0,
a+v+e+n>0,a+F+(+n>0and (+n >0, we obtain that

A1+ N+ 81+ N 471+ N —ar—BA—gA+d=a+B+7+8>0,

AT+ F+7(1+A) + (A +ed+e)(1+N) + (@A + 72 +7)(1 4+ N)
=1+Na+y+e+n+Ay+e+a+n)
=1+ N*(a+y+e+n) >0,

(BA+CA+ L+ A) + (@A + A+ 1) (1+A)
=((a+B+C+mMA+C+n) 1+ >0.

By Theorem 2.5, we obtain that F(U) # (). Therefore, we have from F(U) = F(T)
that F(T) # 0. Suppose that o + 8+~ + 8 > 0. Let p; and ps be fixed points of
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T. We have that
al|Tpy — Tpa|* + Bllpr — T2l + A1 Tp1 — pal* + 8llp1 — p2?
+ellpr = Tpu|* + Cllp2 — Tp2> + nll(pr — Tpr) — (p2 — Tp2)|1?
=(a+B+y+0)|p1 —pl® <0

and hence p; = po. Therefore, a fixed point of T' is unique.
Similarly, we can obtain the desired result for the case when o+ g+~ + 4 > 0,
a+8+(+n>0,a+v+ec+n>0and e+ n>0. This completes the proof. [

The following theorem is a useful extension of Theorem 3.1.

Theorem 3.2. Let H be a Hilbert space, let C' be a non-empty, bounded, closed
and convex subset of H and let T be an (a, B,7,0,¢,(,n)-widely more generalized
hybrid mapping from C into H which satisfies the following condition (1) or (2):
(1) a+B+y+0>0,a+y+e+n>0,a+B+(+n>0
and [0, 1) N{X | (a+B)A+(+n >0} #0;
(2) a+p+v+06>0,a+8+C+n>0,a+y+ec+n>0
and [0,1) N{X | (a + )X +e+n >0} #0.
Assume that there exists m > 1 such that for any x € C,

Te=x+t(y—x)

for some y € C and t with 0 <t < m. Then, T has a fized point. In particular,
a fixed point of T is unique in the case of a+ + v+ 0 > 0 on the conditions (1)
and (2).

Proof. Let A € [0,1) N {X | (a + B)A+ ( +n > 0} and define S = (1 — A\)T + Al

Then S is a mapping from C into H. Since A # 1, we obtain that F(S) = F(T).
Moreover, from T = 125 — 1251 and (2.1), we have that

1 Y 1 A
(1_f%‘1_ﬂ9‘(1_x%‘1_A@

1 A 2 1 A
+6I<1—X%1—AQ Fw<1—X%1—AQy

+6]|z — yl?
1 A ? 1 A
x—(lASx—le> +'CH‘”_(1A&’_1A9>
1 A 1 A
(e (s 250)) - (o (s 2)
A 2
(Sz = Sy) = 7@~y

1
1-A

2

«

2

2

+e

2

1-A

2

(z — Sy) —

A
+BH T (@)

2
+ 8[|z — yl?

1 A
1| Ze-0- 25t
2
+e

? 1
(@ s0)| +¢| 1250

1-A
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1 2

1-A

(v~ 82) ~ Ty~ 5y)
B

1-A

|

«
= ﬁHSx—SyW—!— l — Syl|*

258 -yl 4 (=2 lat 840) 4 8) llo - yl?

1 1—A

EA gz SEBA e
+(1_)\)2||T/ Sz|” + =N ly — Syl
N+ a
+m||(x—5$)—(y—5y)”2§0~

T T Ton SN A=N2* =22
widely more generalized hybrid mapping. Furthermore, we obtain that

Therefore S is an ( o P s (et B4 + 6, S, AEL, Ates )_

a B Y
J— = >
Tt Tt et ti=atf+y+d20,
o ~y e+ A n+a\  at+yte+n
T S B W R | A R |y R VR
@ B ¢+ BA N+ al a+B8+C+n
= >
Tt T T oo Tasayr T asay =%
¢+ BA N+ aA _(a+,6’))\+C+77>0
@=X22 " (1-x2 (1=  ~7

Furthermore, from the assumption, there exists m > 1 such that for any =z € C,
Sz =(1-XNTz+ \x
=1=-N(@+tly—=x)+ I
=t(1 =Ny —=z)+=z,
where y € C and 0 <t <m. jFrom 0 < A < 1, we have 0 < ¢(1 — A\) < m. Putting
s =t(1 — X), we have that there exists m > 1 such that for any = € C,
Sz =x+s(y—x)
for some y € C' and s with 0 < s < m. Therefore, we obtain from Theorem 3.1
that F'(S) # (. Since F(S) = F(T), we obtain that F(T) # 0.
Next, suppose that « + 5+~ + 3 > 0. Let p; and py be fixed points of T. As in
the proof of Theorem 3.1, we have p; = py. Therefore a fixed point of 7" is unique.
In the case of a + 8 +v+d6 >0, a++C+n>0,a+~v+ec+n >0 and
0, )N{X ]| (a+7)A+e+n >0} # 0, we can obtain the desired result by replacing
the variables = and y. ]
Remark 1. We can also prove Theorems 3.1 and 3.2 by using the condition
—fB—-04+e+n>0, or —y—04+e+n>0
instead of the condition
a+v+e+n>0, or a+B+(+n>0,

respectively. In fact, in the case of the condition —3 — d + &+ n > 0, we obtain
from ao+ 8+ v+ 9 > 0 that

0<-B-d+et+n<at+y+e+n.
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Thus we obtain the desired results by Theorems 3.1 and 3.2. Similary, in the case
of —y—Jd+e+mn > 0, we can obtain the results by using the case of a+5+(+n > 0.

4. FIXED POINT THEOREMS FOR WELL-KNOWN MAPPINGS

Using Theorem 3.1, we first show the following fixed point theorem for gener-
alized hybrid non-self mappings in a Hilbert space; see also Kocourek, Takahashi
and Yao [10].

Theorem 4.1. Let H be a Hilbert space, let C' be a non-empty, bounded, closed
and conver subset of H and let T be a generalized hybrid mapping from C into H,
i.e., there exist o, B € R such that
a| Tz = Ty|* + (1 - a)llz = Ty|* < BTz —y|* + (1 = B)lla - y|?

for any x,y € C. Suppose a — 3 > 0 and assume that there exists m > 1 such that
for any x € C,

Ter=xz+t(y— )
for somey € C and t with 0 <t < m. Then, T has a fixed point.
Proof. An (o, 8)-generalized hybrid mapping T from C into H is an (o, 1—a, — 3, —(1—
5),0,0,0)-widely more generalized hybrid mapping. Furthermore, o + (1 — «) —
B—-1-8)=0a+(1-a)+404+0=1>0,a—F4+0+0=a—0 >0 and
0+ 0 = 0, that is, it satisfies the condition (2) in Theorem 3.1. Furthermore, since
there exists m > 1 such that for any = € C,

Ter=xz+t(y— )

for some y € C' and t with 0 < ¢ < m, we obtain the desired result from Theorem 3.1.
O

Using Theorem 3.1, we can also show the following fixed point theorem for
widely generalized hybrid non-self mappings in a Hilbert space; see Kawasaki and
Takahashi [7].

Theorem 4.2. Let H be a Hilbert space, let C' be a non-empty, bounded, closed
and convez subset of H and let T be an (a, B,7,0,¢,()-widely generalized hybrid
mapping from C into H which satisfies the following condition (1) or (2):

1) a+B8+~v+6>0,a+y+e>0anda+5>0;
(2) a+p+v+06>0,a+B+(>0and o+~ >0.
Assume that there exists m > 1 such that for any x € C,
Te=x+t(y—x)
for somey € C andt € R with0 <t <m. Then, T has a fized point. In particular,
a fixed point of T is unique in the case of a+ f+ v+ 0 > 0 on the conditions (1)
and (2).
Proof. Since T is (o, 8,7, 9, €, ()-widely generalized hybrid, we obtain that
a||Te — Tyl + Bllz — Ty||* + 4[| Tz — y|I* + 8]l — y||*
+max{ellz — Tz|*,¢[ly — Ty[I*} <0
for any x,y € C. In the case of a« + v+ ¢ > 0, from
elle — Tz|* < max{ellz — Tz|?, ¢|ly — Ty|*},
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we obtain that
a||Te = Ty|? + Bllz = Ty||* + y[|Tx — y|I* + 6|l — y||* + elle — Tz||* <0,

that is, it is an («, 3,7, d,¢,0,0)-widely more generalized hybrid mapping. Fur-
thermore, we have that a + 5+ v+ 0 > 0, a+v+e+0=a+v+e > 0,
a+PB+04+0=a+>0and 0+ 0 = 0, that is, it satisfies the condition (1) in
Theorem 3.1. Furthermore, since there exists m > 1 such that for any = € C,

Ter=xz+t(y—x)

for some y € C and t with 0 < ¢ < m, we obtain the desired result from Theorem 3.1.
In thecaseof a+8+v+6d>0,a+ B+ >0and a+~ > 0, we can obtain the
desired result by replacing the variables z and y. (I

We know that an («, 3,7, d, €, ¢, n)-widely more generalized hybrid mapping with
a=1,8=4=e=(=0,6 =—-1and n = —k € (—1,0] is a strict pseudo-
contractive mapping in the sense of Browder and Petryshyn [2]. We also define the
following mapping: T : C' — H is called a generalized strict pseudo-contractive
mapping if there exist 7,k € R with 0 <r <1 and 0 < k < 1 such that

1Tz = Ty|* < rlle—yl* + kll(z - T2) = (y - Ty)|®

for any x,y € C. Using Theorem 3.2, we can show the following fixed point theorem
for generalized strict pseudo-contractive non-self mappings in a Hilbert space.

Theorem 4.3. Let H be a Hilbert space, let C' be a non-empty, bounded, closed
and convex subset of H and let T be a generalized strict pseudo-contractive mapping
from C into H, that is, there exist 1,k € R with 0 <r <1 and 0 < k < 1 such that

|ITx —Ty|* < rlla —y|* + kll(z — Tz) - (y - Ty)|®
for all x,y € C. Assume that there exists m > 1 such that for any x € C,
Ter=x+t(y—x)

for somey € C andt € R with0 <t < m. Then, T has a fized point. In particular,
if 0 <r <1, then T has a unique fixed point.

Proof. A generalized strict pseudo-contractive mapping T from C' into H is a
(1,0,0,—7,0,0, —k)-widely more generalized hybrid mapping. Furthermore, 1 4+
0+0+(—=r)>0,14+0+0+(-k)=1—-k>0,14+0+0+(=k)=1—k >0 and
0,)N{AN ]| (1+0)A+0—Fk >0} = [k, 1) # 0, that is, it satisfies the condition (1)
in Theorem 3.2. Furthermore, since there exists m > 1 such that for any =z € C,

Te=x+t(y—x)

for some y € C' and t with 0 < ¢t < m, we obtain the desired result from Theorem 3.2.
In particular, if 0 <7 < 1, then 1 +0+ 0+ (—r) > 0. We have from Theorem 3.2
that T has a unique fixed point. ([l

us

Let us consider the problem in Introduction. A mapping T : [0, 5] — R was
defined as follows:

1 1
(4.1) Tr=(1+ ix) cosT — 51'2
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for all 2 € [0, §]. We have that

1 1
Ter=(1+ ix) cosT — 5:1:2
1 %JZ
<= Tx + 7T = COST
1+ 35z 1+ 52

Thus we have that for any = € [0, 7]

1+ 1z 1 Ly 14 iz
2 T Tx + 21 + 12>x
1+7 1+§x 1+§ac 1+7m

1+ 14 1414
= +3 cosr+ (11— t 37
1+7m 1+
and hence
1 1+1 -1
Tx + il T = 2xcosac—i—ﬂ- 27
1+ 1+ 1+m 1+7m

Using this, we also have from (2.1) that for any =,y € [0, 7],
2

1 s 1 ™
T — T _—
'1+7T x+1+7rw (1+7r y+1+7ry)

and hence
1 m s
42) ——|Tz-TyP + —— |z —y|* - Tz — Ty)|?
(4.2) 1+W|x y|+1+ww Y| O+WPM y— (Tz — Ty)|
1+ 1z - iz 1+ 1y -1y \
— 2 2 2 2
_‘1 ﬂ_cos:v—&— e (1 7Tcosy—&— T y)
Define a function f : [0, 5] — R as follows:
1+ 1z — 1z
flz) = . 27r cosx + 1+27r
for all z € [0, 5]. Then we have
, : 141
f(x):12ﬂcosmf T 2 smerliﬂfliﬂ
and
" 1 le 1
f(x)——1+ sinx — . 2~ cos g
Since
1 1
’ *+7T i —1+*7T
O — 2 2y — 4
S0 I f%) L+

and " (x) < 0 for all z € [0, %], we have from the mean value theorem that there
exists a positive number r with 0 < 7 < 1 such that

1+ 1z T— iz 1+1 T3
2~ cosx + 2y — 2ycosquizyy
+ 1+7 14+

2

<7l —yf?
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for all 2,y € [0, §]. Therefore, we have from (4.2) that

1
Tin o -y <rle -yl + o~y (T~ Ty)

Tz — Tyl
T =Tyl +

(1+m)?

for all z,y € [0, 5]. Furthermore, we have from (4.1) that
1
Ter=(1+ ix)(cosa: —z)+tx

for all 2 € [0, Z]. Take m = 1+ and let t = 14 2 and y = cosz for all z € [0, Z].
Then we have that

1
Ter=ty—x)+u=, y:cost[O,g] and0<t:1+§x§1+7r.

Using Theorem 3.2, we have that T has a unique fixed point z € [0, %] We also
know that z = T'z is equivalent to cosz = z. In fact,

1
2=T7 z:(1+§z)(cosz—z)+z

1
— 0=(1+ §z)(cosz —2)

< (0=cosz— z.

Using Theorem 3.2, we can also show the following fixed point theorem for super
hybrid non-self mappings in a Hilbert space; see [10].

Theorem 4.4. Let H be a Hilbert space, let C' be a non-empty, bounded, closed
and convex subset of H and let T be a super hybrid mapping from C into H, that
is, there exist v, B,y € R such that

o Tz — Ty|* + (1 — a+ )|z — Tyl?
<B+B-aNTz—yl*+(1=B-(B—a-1)y)|z—yl?
+(o = B)yllz — Tx|” +~lly — Tyl

for all x,y € C. Assume that there exists m > 1 such that for any x € C,
Te=x+t(y—x)

for somey € C and t with 0 <t < m. Suppose that « — 3 >0 or~v > 0. Then, T
has a fized point.

Proof. An («, f3,7)-super hybrid mapping 7" from C into H is an (o, 1 —a+-y, -5 —
B—a)y,-14+ 8+ (B —a—1)y,—(a—B)y,—,0)-widely more generalized hybrid
mapping. Furthermore, a+(1—a+7v)+(—f—(—a)y)+(—=1+5+(8—a—1)v) =0,
at+(1—a+v)+(—y)+0=1>0and a—B—(B—a)y—(a—B)y+0 = a—3 > 0, that
is, it satisfies the conditions a4+ 5+~v+d > 0, a+5+C+n > 0and a+v+e+n >0
in (2) of Theorem 3.2. Moreover, we have that

0, ) {A[(a+ (=B = (B—=a)))A+ (=(a=p)7)+0=0}
=0, )0 {A[(a=B)((1+7)A-7) =0}
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If a— 3 >0, then

0, )N [ (@=B)((1T+7)A=7) =0t =[0,1)N{A| (1 +v)A—~ =0}
[0 if v <0,
,1 if v >0,

that is, it satisfies the condition [0,1) N{\ | (¢ + Y)A+e+n > 0} #  in (2) of
Theorem 3.2. If « — 8 =0, then

0, ) N{A | (= B)(L+7)A =) 20} =1[0,1) #0,
that is, it satisfies the condition [0,1) N{\ | (¢ + Y)A+e+n > 0} # @ in (2) of
Theorem 3.2. If « — 8 < 0 and v > 0, then

0, ) N{A | (a=B) (1 +7)A—~) >0}
=0, DN (T +7)A -y <0}

o

that is, it again satisfies the condition [0, 1) N{A | (e +y)A+e4+n >0} #0 in (2)
of Theorem 3.2. Then we obtain the desired result from Theorem 3.2. Similarly,
we obtain the desired result from Theorem 3.2 in the case of (1). (]
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