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Abstract. In this paper we consider the general variational inequality GVI(F, g, C) where

F and g are mappings from a Hilbert space into itself and C is the fixed points set of a

nonexpansive mapping. We propose two iterative algorithms to find approximate solutions of

the GVI(F, g, C). Strong convergence results are established and applications to constrained

generalized pseudoinverse are included.
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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. Let C

be a nonempty closed convex subset of H and let F : H → H be a nonlinear operator and let

g : H → H be a continuous mapping, respectively. We consider in this paper the following

problem of finding a point u∗ ∈ H such that g(u∗) ∈ C and

GVI(F, g, C) : 〈F (u∗), v − g(u∗)〉 ≥ 0, ∀v ∈ C.

The above problem was studied by Pang and Yao (Ref. 12) by employing the concept of

generalized normal map.

If g is the identity mapping of H, then the GVI(F, g, C) reduces to finding a point u∗ ∈ C

such that

VI(F, C) : 〈F (u∗), v − u∗〉 ≥ 0, ∀v ∈ C

which is called a variational inequality. Variational inequalities were initially studied by

Stampacchia (cf. Ref. 8) and subsequently have been being widely studied because they

cover various problems such as partial differential equations, optimal control, optimization,

mathematical programming, mechanics and finance. The reader is referred to Refs. 6-8, 11,

18 and the references therein.
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It is known that when F is strongly monotone on C, the VI(F, C) has a unique solution, e.g.

see Ref. 18. Moreover, a great deal of effort has been devoted to the study of constructively

iterative algorithms to find approximate solutions of VI(F, C), e.g., see Refs. 6 and 9.

On the other hand it is easy to see that the GVI(F, g, C) is equivalent to the fixed-point

problem

u∗ = u∗ − g(u∗) + PC(g(u∗)− µF (u∗))

where µ > 0 is an arbitrarily fixed constant and PC is the (nearest point) projection from H

onto C, i.e., PCx = arg miny∈C ‖x− y‖ for each x ∈ H. If F and g are strongly monotone and

Lipschitzian on C and µ > 0 is small enough, then the mapping determined by the right-hand

side of this equation is a contraction. Hence the Banach contraction principle guarantees that

the Picard iterates converge in norm to the unique solution of the GVI(F, g, C). Such a method

is called the projection method. It has been widely extended to develop various algorithms for

finding solutions of various classes of variational inequalities and complementarity problems;

see Zeng (Refs. 19-21). It is remarkable that the fixed-point equation involves the projection

PC which may not be easy to compute due to the complexity of the convex set C.

Recently Yamada (Ref. 17, see also Ref. 3) introduced a hybrid steepest-descent method

for solving the VI(F, C) to reduce the complexity probably caused by the projection PC . His

idea is stated now. Let C be the fixed point set of a nonexpansive mapping T : H → H; that

is, C = Fix(T ) = {x ∈ H : Tx = x}. Recall that T is nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖
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for all x, y ∈ H. Let F be η-strongly monotone and κ-Lipschitzian on C. Take a fixed number

µ ∈ (0, 2η/κ2) and a sequence {λn} of real numbers in (0, 1) satisfying the conditions below:

(L1) limn→∞ λn = 0,

(L2)
∑∞

n=1 λn = ∞,

(L3) limn→∞(λn − λn+1)/λ
2
n+1 = 0.

Starting with an arbitrary initial guess u0 ∈ H, one can generate a sequence {un} by the

following algorithm:

un+1 := Tun − λn+1µF (Tun), n ≥ 0. (1)

Then Yamada (Ref. 17) proved that {un} converges strongly to the unique solution of the

VI(F, C). An example of the sequence {λn} which satisfies conditions (L1)-(L3) is given by

λn = 1/nσ where 0 < σ < 1. Note that condition (L3) was first used by Lions (Ref. 10).

Furthermore if C is expressed as the intersection of the fixed-point sets of N nonexpansive

mappings Ti : H → H with N ≥ 1 an integer, Yamada (Ref. 17) proposed another algorithm,

un+1 := T[n+1]un − λn+1µF (T[n+1]un), n ≥ 0 (2)

where T[k] := TkmodN for integer k ≥ 1 with the mod function taking values in the set

{1, 2, ..., N}; that is, if k = jN + q for some integers j ≥ 0 and 0 ≤ q < N, then T[k] = TN

if q = 0 and T[k] = Tq if 1 ≤ q < N, where µ ∈ (0, 2η/κ2) and where the sequence {λn} of

parameters satisfies conditions (L1), (L2), and (L4) stated below:

(L4)
∑∞

n=1 |λn − λn+N | is convergent.
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Under these conditions Yamada (Ref. 17) proved the strong convergence of {un} to the

unique solution of the VI(F, C). Note that condition (L4) was first used by Bauschke (Ref.

1). In the special case of N = 1, (L4) was introduced by Wittmann (Ref. 13).

In 2003, Xu and Kim (Ref. 16) further considered and studied the hybrid steepest-descent

algorithms (1) and (2). Their major contribution is that the strong convergence of algorithms

(1) and (2) holds with condition (L3) replaced by the condition

(L3)’ limn→∞ λn/λn+1 = 1 or equivalently limn→∞(λn − λn+1)/λn+1 = 0,

and with condition (L4) replaced by the condition

(L4)’ limn→∞ λn/λn+N = 1 or equivalently limn→∞(λn − λn+N)/λn+N = 0.

It is clear that condition (L3)’ is strictly weaker than condition (L3), coupled with con-

ditions (L1) and (L2). Moreover (L3)’ includes the important and natural choice {1/n} for

{λn} while (L3) does not. It is easy to see that if limn→∞ λn/λn+N exists then condition (L4)

implies condition (L4)’. However in general, conditions (L4) and (L4)’ are not comparable:

neither of them implies the other (see Ref. 15 for details). In addition, under conditions (L1),

(L2), (L3)’ and (L4)’, they gave the applications of algorithms (1) and (2) to the constrained

generalized pseudoinverses.

Remark 1.1. Although algorithms (1) and (2) have successfully been applied to find-

ing the unique solution of the VI(F, C), it is clear that they can not be directly applied to

computing solutions of the GVI(F, g, C) due to the appearance of g. Therefore, an important
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problem is how to apply hybrid steepest-descent methods to solving the GVI(F, g, C).

Remark 1.2. In the case when H = Rn the n-dimensional Euclidean space, we can give

a nontrival example; that is, the unique solution u∗ of the VI(F, C) is also a fixed point of a

mapping g : H → H which is Lipschitzian and δ-strongly monotone on Rn with δ > 1. Indeed

at first let u∗ = (a∗1, a
∗
2, ..., a

∗
n) ∈ Rn be the unique solution of the VI(F, C).

Case 1: a∗i 6= 0, 1 ≤ i ≤ n. Put r = max{| π
2a∗i
| : 1 ≤ i ≤ n} and define g : H → H by

g(x) = (
3

2
+ r)x−m(x) + x0 ∀x = (a1, a2, ..., an) ∈ Rn,

where x0 = (1− (1
2

+ r)a∗1, 1− (1
2

+ r)a∗2, ..., 1− (1
2

+ r)a∗n) and

m(x) = (sin(
πa1

2a∗1
), sin(

πa2

2a∗2
), ..., sin(

πan

2a∗n
)).

It is easy to see that u∗ is a fixed point of g. Now observe that for all x, y ∈ Rn, x =

(a1, a2, ..., an), y = (b1, b2, ..., bn),

‖m(x)−m(y)‖ =

√√√√ n∑
i=1

(sin(
πai

2a∗i
)− sin(

πbi

2a∗i
))2

≤
√√√√ n∑

i=1

(
π

2a∗i
)2(ai − bi)

2 ≤ r‖x− y‖

and hence

〈g(x)− g(y), x− y〉 = (
3

2
+ r)‖x− y‖2 − 〈m(x)−m(y), x− y〉 ≥ 3

2
‖x− y‖2.

This shows that g is δ-strongly monotone with δ = 3
2
. Obviously g is Lipschitzian on Rn.

Case 2: a∗i0 = 0 and a∗j0 6= 0 for some i0, j0. Without loss of generality, we may assume

that a∗i = 0, 1 ≤ i ≤ k where k < n. Then put r = max{| π
2a∗i
| : k + 1 ≤ i ≤ n} and define
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g : H → H by

g(x) = (
3

2
+ r)x−m(x) + x0, ∀x = (a1, a2, ..., an) ∈ Rn

where x0 = (0, ..., 0, 1− (1
2

+ r)a∗k+1, ..., 1− (1
2

+ r)a∗n) and

m(x) = (0, ..., 0, sin(
πak+1

2a∗k+1

), ..., sin(
πan

2a∗n
).

It is easy to see that u∗ is a fixed point of the mapping g which is Lipschitzian and δ-strongly

monotone on Rn with δ = 3
2
.

Case 3: a∗i = 0, 1 ≤ i ≤ n. Define g : H → H by

g(x) = 2x−m(x) ∀x = (a1, a2, ..., an) ∈ Rn

where m(x) = (1
2
sin a1,

1
2
sin a2, ...,

1
2
sin an). It is also easy to see that u∗ is a fixed point of

the mapping g which is Lipschitzian and δ-strongly monotone on Rn with δ = 3
2
.

In this paper motivated and inspired by algorithms (1) and (2), we introduce the following

hybrid steepest-descent algorithms (I) and (II) for GVI(F, g, C).

Algorithm (I). Let {λn} ⊂ (0, 1), {θn} ⊂ (0, 1] and µ ∈ (0, 2η/κ2). Starting with an

arbitrary initial guess u0 ∈ H, one can generate a sequence {un} by the following iterative

scheme

un+1 := (1 + θn+1)Tun − θn+1g(Tun)− λn+1µF (Tun) n ≥ 0.

Algorithm (II). Let {λn} ⊂ (0, 1), {θn} ⊂ (0, 1] and µ ∈ (0, 2η/κ2). Starting with an
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arbitrary initial guess u0 ∈ H, one can generate a sequence {un} by the following iterative

scheme

un+1 := (1 + θn+1)T[n+1]un − θn+1g(T[n+1]un)− λn+1µF (T[n+1]un) n ≥ 0.

Remark 1.3. If g = I the identity mapping of H, then Algorithms (I) and (II) reduce to

algorithms (1) and (2), respectively. Therefore algorithms (1) and (2) are special cases of our

Algorithms (I) and (II), respectively. For simplicity we discuss the convergence of Algorithms

(I) and (II) only in the case where δ > 1.

Throughout this paper, let g be σ-Lipschitzian and δ-strongly monotone on C such that

δ > 1 and let the unique solution u∗ of the VI(F, C) be a fixed point of g. Assume that {θn}

satisfies the restrictions (R1), (R2), (R3) or the ones (R1), (R2), (R4) where (R1), (R2), (R3)

and (R4) are defined as follows:

(R1) {θn} ⊂ (0, 2(δ − 1)/(σ2 − 1)];

(R2) limn→∞ θn = 0, limn→∞ λn/θn = 0;

(R3)
∑∞

n=1 |θn+1 − θn| < ∞;

(R4)
∑∞

n=1 |θn+N − θn| < ∞.

Firstly under conditions (L1), (L2), (L3)’ and restrictions (R1), (R2), (R3), we prove that the

sequence {un} generated by Algorithm (I) converges in norm to the unique solution of the

VI(F, C) (i.e., a solution of the GVI(F, g, C)).
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Secondly under conditions (L1), (L2), (L4)’ and restrictions (R1), (R2), (R4), we prove

that the sequence {un} generated by Algorithm (II) converges in norm to the unique solution

of the VI(F, C) (i.e., a solution of the GVI(F, g, C)). Furthermore we give applications of

these two results to constrained generalized pseudoinverse.

2. Preliminaries

The following lemma will be used in the proofs of the main results of this paper in Section

3.

Lemma 2.1. (See Lemma 2.5 in Ref. 14.) Let {sn} be a sequence of nonnegative real

numbers satisfying

sn+1 ≤ (1− αn)sn + αnβn + γn, ∀n ≥ 0,

where {αn}, {βn}, and {γn} satisfy the conditions:

(i) {αn} ⊂ [0, 1],
∑∞

n=0 αn = +∞;

(ii) limn→∞ βn ≤ 0;

(iii) γn ≥ 0 (∀n ≥ 0),
∑∞

n=0 γn < +∞.

Then limn→∞ sn = 0.

Lemma 2.2. Demiclosedness Principle. (See Ref. 5.) Assume that T is a nonexpansive

self-mapping of a closed convex subset C of a Hilbert space H. If T has a fixed point, then
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I − T is demiclosed; that is, whenever {xn} is a sequence in C weakly converging to some

x ∈ C and the sequence {(I−T )xn} strongly converges to some y, it follows that (I−T )x = y.

Here I is the identity operator of H.

The following lemma is an immediate consequence of an inner product.

Lemma 2.3. In a real Hilbert space H, there holds the inequality

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉 ∀x, y ∈ H.

3. Convergence of Hybrid Steepest-Descent Algorithms

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let

F : H → H be an operator such that for some constants κ, η > 0, F is κ-Lipschitzian and

η-strongly monotone on C; that is, F satisfies the conditions

‖Fx− Fy‖ ≤ κ‖x− y‖ ∀x, y ∈ C, (4)

〈Fx− Fy, x− y〉 ≥ η‖x− y‖2 ∀x, y ∈ C. (5)

Since F is strongly monmotone, VI(F, C) has a unique solution u∗ ∈ C.

Let g : H → H be a mapping such that g is σ-Lipschitzian and δ-strongly monotone on C

for some constants σ > 0 and δ > 1. Assume also that the unique solution u∗ of the VI(F, C)

is a fixed point of g.
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Denote by PC the projection of H onto C. Namely for each x ∈ H, PCx is the unique

element in C satisfying

‖x− PCx‖ = min{‖x− y‖ : y ∈ C}.

It is known that the projection PC is characterized by the inequality

〈x− PCx, y − PCx〉 ≤ 0 ∀y ∈ C.

Thus it follows that the VI(F, C) is equivalent to the fixed-point problem

u∗ = PC(I − µF )u∗

where µ > 0 is an arbitrary constant.

In this section assume that T : H → H is a nonexpansive mapping with Fix(T ) = C.

Note that obviously Fix(PC) = C. Let 0 < µ < 2η/κ2. For any given numbers λ ∈ (0, 1] and

θ ∈ (0, 2(δ− 1)/(σ2− 1)] associated with the nonexpansive mapping T we define the mapping

T (θ,λ)x := (1 + θ)Tx− θg(Tx)− λµF (Tx) ∀x ∈ H.

Algorithm (I). Let {λn} ⊂ (0, 1), and {θn} ⊂ (0, 1] and µ ∈ (0, 2η/κ2). Starting with

an arbitrary initial guess u0 ∈ H, one can generate a sequence {un} by the following iterative

scheme

un+1 := T (θn+1λn+1)un = (1 + θn+1)Tun − θn+1g(Tun)− λn+1µF (Tun), n ≥ 0. (6)
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Theorem 3.1. Assume that 0 < µ < 2η/κ2. Assume that the control conditions (L1),

(L2) and (L3)’ hold for {λn} and also that the restrictions (R1), (R2) and (R3) hold for {θn}.

Assume that u∗ ∈ Fix(g). Then the sequence {un} generated by algorithm (6) converges

strongly to u∗ which is a solution of the GVI(F, g, C).

Proof. First, since u∗ is a solution of VI(F, C) and also a fixed point of g, u∗ is a solution

of the GVI(F, g, C). We divide the proof into several steps.

Step 1. {un} is bounded. Indeed, we have (note that T (θn+1,λn+1)u∗ = u∗−λn+1µFu∗ since

u∗ ∈ Fix(T ) ∩ Fix(g))

‖un+1 − u∗‖ = ‖T (θn+1,λn+1)un − u∗‖
≤ ‖T (θn+1,λn+1)un − T (θn+1,λn+1)u∗‖+ ‖T (θn+1,λn+1)u∗ − u∗‖
≤ ‖T (θn+1,λn+1)un − T (θn+1,λn+1)u∗‖+ λn+1µ‖F (u∗)‖.

(7)

Observe that

‖Tun − Tu∗ − θn+1(g(Tun)− g(Tu∗))‖2

= ‖Tun − Tu∗‖2 − 2θn+1〈g(Tun)− g(Tu∗), Tun − Tu∗〉
+ θ2

n+1‖g(Tun)− g(Tu∗)‖2

≤ (1− 2θn+1δ + θ2
n+1σ

2)‖Tun − Tu∗‖2

≤ (1− 2θn+1δ + θ2
n+1σ

2)‖un − u∗‖2

and

‖θn+1(Tun − Tu∗)− λn+1µ(F (Tun)− F (Tu∗))‖2

= θ2
n+1‖Tun − Tu∗‖2 − 2θn+1λn+1µ〈F (Tun)− F (Tu∗), Tun − Tu∗〉
+ (λn+1µ)2‖F (Tun)− F (Tu∗)‖2

≤ (θ2
n+1 − 2θn+1λn+1µη + (λn+1µ)2κ2)‖Tun − Tu∗‖2

≤ (θ2
n+1 − 2θn+1λn+1µη + (λn+1µ)2κ2)‖un − u∗‖2

= θ2
n+1(1−

2λn+1µη
θn+1

+ (λn+1µ)2κ2

θ2
n+1

)‖un − u∗‖2

= θ2
n+1[(1−

λn+1µκ
θn+1

)2 + 2λn+1µ(κ−η)
θn+1

]‖un − u∗‖2.

We have
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‖T (θn+1,λn+1)un − T (θn+1,λn+1)u∗‖
= ‖(Tun − Tu∗ − θn+1(g(Tun)− g(Tu∗)))

+ [θn+1(Tun − Tu∗)− λn+1µ(F (Tun)− F (Tu∗))]‖
≤ ‖Tun − Tu∗ − θn+1(g(Tun)− g(Tu∗))‖

+ ‖θn+1(Tun − Tu∗)− λn+1µ(F (Tun)− F (Tu∗))‖
≤

√
1− 2θn+1δ + θ2

n+1σ
2‖un − u∗‖

+ θn+1

√
(1− λn+1µκ

θn+1
)2 + 2λn+1µ(κ−η)

θn+1
‖un − u∗‖

≤
√

1− 2θn+1δ + θ2
n+1σ

2‖un − u∗‖

+ θn+1|1− λn+1µκ
θn+1

|
√

1 + (2λn+1µ(κ−η)
θn+1

)/(1− λn+1µκ
θn+1

)2‖un − u∗‖.

(8)

Now we can see that (R2) yields

lim
n→∞

(
λn+1µκ

θn+1

− η

κ
)/(1− λn+1µκ

θn+1

) = −η

κ
.

Hence noticing (L1) and (R2), we infer that there exists an integer N0 ≥ 0 such that for all

n ≥ N0,

1

2
λn+1µη < 1, 1− λn+1µκ

θn+1

> 0 and (
λn+1µκ

θn+1

− η

κ
)/(1− λn+1µκ

θn+1

) < − η

2κ
.

Thus we deduce that for all n ≥ N0,

θn+1|1− λn+1µκ
θn+1

|
√

1 + (2λn+1µ(κ−η)
θn+1

)/(1− λn+1µκ
θn+1

)2

≤ θn+1(1− λn+1µκ
θn+1

)(1 + (λn+1µ(κ−η)
θn+1

)/(1− λn+1µκ
θn+1

)2)

= θn+1 − λn+1µκ + λn+1µ(κ−η)

1−λn+1µκ

θn+1

= θn+1 +
−λn+1µκ+

(λn+1µκ)2

θn+1
+λn+1µκ−λn+1µη

1−λn+1µκ

θn+1

= θn+1 + λn+1µκ[(λn+1µκ
θn+1

− η
κ
)/(1− λn+1µκ

θn+1
)]

≤ θn+1 − 1
2
λn+1µη.

(9)

Observe that σ ≥ δ implies 1− 2δ + σ2 ≥ 0 and hence 2(δ − 1)/(σ2 − 1) ≤ 1. From (R1),

we obtain

0 < θn+1 ≤
2(δ − 1)

σ2 − 1
≤ 1.
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Therefpre we conclude that

0 < θn+1 ≤ 2(δ−1)
σ2−1

⇔ θ2
n+1(σ

2 − 1) ≤ 2θn+1(δ − 1)

⇔ θ2
n+1(σ

2 − 1) + 1 ≤ 2θn+1(δ − 1) + 1
⇔ (1− θn+1)

2 ≥ 1− 2θn+1δ + θ2
n+1σ

2

⇔ 1 ≥ θn+1 +
√

1− 2θn+1δ + θ2
n+1σ

2.

(10)

Consequently it follows from (8), (9) and (10) that for all n ≥ N0,

‖T (θn+1,λn+1)un − T (θn+1,λn+1)u∗‖
≤

√
1− 2θn+1δ + θ2

n+1σ
2‖un − u∗‖+ (θn+1 − 1

2
λn+1µη)‖un − u∗‖

= (θn+1 +
√

1− 2θn+1δ + θ2
n+1σ

2 − 1
2
λn+1µη)‖un − u∗‖

≤ (1− 1
2
λn+1µη)‖un − u∗‖.

(11)

Substituting (11) into (7), we obtain for all n ≥ N0,

‖un+1 − u∗‖ ≤ (1− 1

2
λn+1µη)‖un − u∗‖+ λn+1µ‖F (u∗)‖.

By induction, it is easy to see that

‖un − u∗‖ ≤ max{ max
0≤i≤N0

‖ui − u∗‖, 2

η
‖F (u∗)‖} n ≥ 0.

Step 2. ‖un+1 − Tun‖ → 0 n → ∞. Indeed by Step 1, {un} is bounded and so are

{Tun − g(Tun)} and {F (Tun)}. Hence

‖un+1 − Tun‖ = ‖θn+1(Tun − g(Tun))− λn+1µF (Tun)‖
≤ θn+1‖Tun − g(Tun)‖+ λn+1µ‖F (Tun)‖ → 0.

Step 3. ‖un+1 − un‖ → 0, n → ∞. Indeed by using the proof similar to that of (11), we

can see that there exists an integer N1 ≥ 0 such that for all n ≥ N1,

‖T (θn+1,λn+1)un − T (θn+1,λn+1)un−1‖ ≤ (1− 1

2
λn+1µη)‖un − un−1‖
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which implies that for all n ≥ N1,

‖un+1 − un‖ = ‖T (θn+1,λn+1)un − T (θn,λn)un−1‖
≤ ‖T (θn+1,λn+1)un − T (θn+1,λn+1)un−1‖+ ‖T (θn+1,λn+1)un−1 − T (θn,λn)un−1‖
≤ (1− 1

2
λn+1µη)‖un − un−1‖+ |λn+1 − λn|µ‖F (Tun−1)‖+ γn+1

where γn+1 = |θn+1 − θn|‖Tun−1 − g(Tun−1)‖. Putting

M = max{sup
n≥0

‖F (Tun)‖, sup
n≥0

‖T (un)− g(Tun)‖},

we obtain

‖un+1 − un‖ ≤ (1− 1

2
λn+1µη)‖un − un−1‖+ (

1

2
λn+1µη)βn+1 + γn+1

where

βn+1 = Mµ|λn+1 − λn|/(
1

2
λn+1µη) → 0 (using (L3)′)

and

∞∑
n=N1

γn+1 ≤ M
∞∑

n=N1

|θn+1 − θn| < ∞ (using (R3)).

By Lemma 2.1, we deduce that ‖un+1 − un‖ → 0.

Step 4. ‖un − Tun‖ → 0. This is an immediate consequence of Steps 2 and 3.

Step 5. lim supn→∞〈−F (u∗), un − u∗〉 ≤ 0. To prove this, we pick a subsequence {uni
} of

{un} so that

lim sup
n→∞

〈−F (u∗), un − u∗〉 = lim
i→∞

〈−F (u∗), uni
− u∗〉.

Without loss of generality, we may further assume that uni
→ ũ weakly for some ũ ∈ H. But

by Lemma 2.2 and Step 4, we have ũ ∈ Fix(T ) = C. Since u∗ is the unique solution of the
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VI(F, C), we obtain

lim sup
n→∞

〈−F (u∗), un − u∗〉 = 〈−F (u∗), ũ− u∗〉 ≤ 0.

Step 6. un → u∗ in norm. Indeed by Step 1, we know that there exists an integer N0 ≥ 0

such that for all n ≥ N0,

‖T (θn+1,λn+1)un − T (θn+1,λn+1)u∗‖ ≤ (1− 1

2
λn+1µη)‖un − u∗‖.

This together with Lemma 2.3 implies

‖un+1 − u∗‖2 = ‖(T (θn+1,λn+1)un − T (θn+1,λn+1)u∗) + (T (θn+1,λn+1)u∗ − u∗)‖2

≤ ‖T (θn+1,λn+1)un − T (θn+1,λn+1)u∗‖2 + 2〈T (θn+1,λn+1)u∗ − u∗, un+1 − u∗〉
≤ (1− 1

2
λn+1µη)‖un − u∗‖2 + 2λn+1µ〈−F (u∗), un+1 − u∗〉

≤ (1− 1
2
λn+1µη)‖un − u∗‖2 + (1

2
λn+1µη) · 4

η
〈−F (u∗), un+1 − u∗〉.

An application of Lemma 2.1 combined with Step 5 yields that ‖un − u∗‖ → 0. 2

Next we consider a more general case where

C =
N⋂

i=1

Fix(Ti)

with N ≥ 1 an integer and Ti : H → H being nonexpansive for each 1 ≤ i ≤ N.

We consider now another hybrid steepest-descent algorithm for solving the GVI(F, g, C)

with C defined above.

Algorithm (II). Let {λn} ⊂ (0, 1), {θn} ⊂ (0, 1] and µ ∈ (0, 2η/κ2). Starting with an

arbitrary initial guess u0 ∈ H, one can generate a sequence {un} by the following iterative
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scheme

un+1 = T
(θn+1,λn+1)
[n+1] un

= (1 + θn+1)T[n+1]un − θn+1g(T[n+1]un)− λn+1µF (T[n+1]un), n ≥ 0.
(12)

Theorem 3.2. Let µ ∈ (0, 2η/κ2), let conditions (L1), (L2) and (L4)’ be satisfied and

also let restrictions (R1), (R2) and (R4) be satisfied. Assume in addition that

C =
N⋂

i=1

Fix(Ti) = Fix(T1T2...TN). (13)

Suppose that u∗ ∈ Fix(g). Then the sequence {un} generated by algorithm (12) converges in

norm to u∗ which is a solution of the GVI(F, g, C).

Proof. We shall again divide the proof into several steps.

Step 1. {un} is bounded. Indeed, as in Step 1 of the proof of Theorem 3.1, we know that

there exists an integer N0 ≥ 0 such that for all n ≥ N0,

‖T (θn+1,λn+1)
[n+1] un − T

(θn+1,λn+1)
[n+1] u∗‖ ≤ (1− 1

2
λn+1µη)‖un − u∗‖

from which we obtain (note that T
(θn,λn)
[n] u∗ = u∗ − λnµF (u∗) for all n ≥ 1)

‖un+1 − u∗‖ = ‖T (θn+1,λn+1)
[n+1] un − u∗‖

≤ ‖T (θn+1,λn+1)
[n+1] un − T

(θn+1,λn+1)
[n+1] u∗‖+ ‖T (θn+1,λn+1)

[n+1] u∗ − u∗‖
≤ (1− 1

2
λn+1µη)‖un − u∗‖+ λn+1µ‖F (u∗)‖.

By induction, it is easy to see that

‖un − u∗‖ ≤ max{ max
0≤i≤N0

‖ui − u∗‖, 2

η
‖F (u∗)‖} n ≥ 0.
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Step 2. ‖un+1 − Tun‖ → 0, n → ∞. Indeed, by Step 1, {un} is bounded and so are

{T[n+1]un − g(T[n+1]un)} and {F (T[n+1]un)}. Hence

‖un+1 − Tun‖ = ‖θn+1(T[n+1]un − g(T[n+1]un))− λn+1µF (T[n+1]un)‖
≤ θn+1‖T[n+1]un − g(T[n+1]un)‖+ λn+1µ‖F (T[n+1]un)‖ → 0.

Step 3. ‖un+N − un‖ → 0. As a matter of fact, by using the proof similar to that of (11),

we can see that there exists an integer N1 ≥ 0 such that for all n ≥ N1,

‖T (θn+N ,λn+N )
[n+N ] un+N−1 − T

(θn+N ,λn+N )
[n+N ] un−1‖ ≤ (1− 1

2
λn+Nµη)‖un+N−1 − un−1‖. (14)

Noticing T[n+N ] = T[n] and utilizing (14), we deduce that for all n ≥ N1,

‖un+N − un‖
= ‖T (θn+N ,λn+N )

[n+N ] un+N−1 − T
(θn,λn)
[n] un−1‖

≤ ‖T (θn+N ,λn+N )
[n+N ] un+N−1 − T

(θn+N ,lambdan+N )
[n+N ] un−1‖+ ‖T (θn+N ,λn+N )

[n+N ] un−1 − T
(θn,λn)
[n] un−1‖

≤ (1− 1
2
λn+Nµη)‖un+N−1 − un−1‖+ |λn+N − λn|µ‖F (T[n]un−1)‖+ γn

where γn = |θn+N − θn|‖T[n]un−1 − g(T[n]un−1)‖. Putting

M = max{sup
n≥1

‖F (T[n]un−1)‖, sup
n≥1

‖T[n]un−1 − g(T[n]un−1)‖},

we obtain

‖un+N − un‖ ≤ (1− 1

2
λn+Nµη)‖un+N−1 − un−1 |+ (

1

2
λn+Nµη)βn + γn

where

βn = Mµ|λn+N − λn|/(
1

2
λn+Nµη) → 0 (using (L4)′)

and

∞∑
n=N1

γn ≤ M
∞∑

n=N1

|θn+N − θn| < ∞. (using (R4)),
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Now we apply Lemma 2.1 to see that ‖un+N − un‖ → 0.

Step 4. un − T[n+N ]...T[n+1]un → 0 in norm. Indeed noting that each Ti is nonexpansive

and using Step 2, we get the finite table

un+N − T[n+N ]un+N−1 → 0,

T[n+N ]un+N−1 − T[n+N ]T[n+N−1]un+N−2 → 0,

...

T[n+N ]...T[n+2]un+1 − T[n+N ]...T[n+1]un → 0.

Adding up this table yields that un − T[n+N ]...T[n+1]un → 0 in norm.

Step 5. lim supn→∞〈−F (u∗), un−u∗〉 ≤ 0. To see this we pick a subsequence {uni
} of {un}

such that

lim sup
n→∞

〈−F (u∗), un − u∗〉 = lim
i→∞

〈−F (u∗), uni
− u∗〉.

Since {un} is bounded, we may also assume that uni
→ ũ weakly for some ũ ∈ H. Since

the pool of mappings {Ti : 1 ≤ i ≤ N} is finite, we may further assume (passing to a further

subsequence if necessary) that for some integer k ∈ {1, 2, ..., N}, T[ni] ≡ Tk ∀i ≥ 1. Then it

follows from Step 4 that uni
− T[i+N ]...T[i+1]uni

→ 0. Hence by Lemma 2.2, we deduce that

ũ ∈ Fix(T[i+N ]...T[i+1]).

which together with assumption (13) implies that ũ ∈ C. Now since u∗ solves the VI(F, C),
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we obtain

lim sup
n→∞

〈−F (u∗), un − u∗〉 = 〈−F (u∗), ũ− u∗〉 ≤ 0.

Step 6. un → u∗ in norm. Indeed by Step 1, we know that there exists an integer N0 ≥ 0

such that for all n ≥ N0,

‖T (θn+1,λn+1)
[n+1] un − T

(θn+1,λn+1)
[n+1] u∗‖ ≤ (1− 1

2
λn+1µη)‖un − u∗‖.

This together with Lemma 2.3 implies

‖un+1 − u∗‖2 = ‖(T (θn+1,λn+1)
[n+1] un − T

(θn+1,λn+1)
[n+1] u∗) + (T

(θn+1,λn+1)
[n+1] u∗ − u∗)‖2

≤ ‖T (θn+1,λn+1)
[n+1] un − T

(θn+1,λn+1)
[n+1] u∗‖2 + 2〈T (θn+1,λn+1)

[n+1] u∗ − u∗, un+1 − u∗〉
≤ (1− 1

2
λn+1µη)‖un − u∗‖2 + 2λn+1µ〈−F (u∗), un+1 − u∗〉

≤ (1− 1
2
λn+1µη)‖un − u∗‖2 + (1

2
λn+1µη) · 4

η
〈−F (u∗), un+1 − u∗〉.

By Lemma 2.1 and Step 5, we obtain that ‖un − u∗‖ → 0. 2

Remark 3.1. Recall that a self-mapping T of a nonempty closed convex subset K of a

Hilbert space H is said to be attracting nonexpansive (Refs. 1-2) if T is nonexpansive and if

‖Tx− p‖ < ‖x− p‖ for x, p ∈ K with x /∈ Fix(T ) and p ∈ Fix(T ). Recall also that T is firmly

nonexpansive (Refs. 1-2) if 〈x− y, Tx− Ty〉 ≥ ‖Tx− Ty‖2 for all x, y ∈ K. We observe that

any firmly nonexpansive mappings is attracting nonexpansive. It is known that assumption

(13) in Theorem 3.2 is automatically satisfied if each Ti is attracting nonexpansive. Since a

projection is firmly nonexpansive, we have the following consequence of Theorem 3.2.

Corollary 3.1. Let µ ∈ (0, 2η/κ2) and conditions (L1), (L2), (L4)’ be satisfied. Also

let restrictions (R1), (R2) and (R4) be satisfied. Let u0 ∈ H and let the sequence {un} be
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generated by the iterative algorithm

un+1 := (1 + θn+1)P[n+1]un − θn+1g(P[n+1]un)− λn+1µF (P[n+1]un), n ≥ 0,

where Pk = PCk
, 1 ≤ k ≤ N. Suppose that the unique solution u∗ of VI(F, C) is also a fixed

point of g where C =
⋂N

k=1 Ck. Then {un} converges strongly to u∗ which is a solution of

GV I(F, g, C).

In particular, let m0 be an integer satisfying m0 ≥ (σ2 − 1)2/4(δ− 1)2. Then the sequence

{un} determined by the algorithm

un+1 := (1 +
1√

n + m0 + 1
)P[n+1]un −

1√
n + m0 + 1

g(P[n+1]un)− µ

n + 1
F (P[n+1]un), n ≥ 0

converges in norm to a solution u∗ of the GVI(F, g, C).

4. Applications to Constrained Generalized Pseudoinverse

Let K be a nonempty closed convex subset of a real Hilbert space H. Let A be a bounded

linear operator on H. Given an element b ∈ H, consider the minimization problem

min
x∈K

‖Ax− b‖2. (15)

Let Sb denote the solution set. Then, Sb is closed convex. It is known that Sb is nonempty if

and only if PA(K)(b) ∈ A(K). In this case Sb has a unique element with minimum norm; that

is, there exists a unique point x̂ ∈ Sb satisfying

‖x̂‖2 = min{‖x‖2 : x ∈ Sb}. (16)
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Definition 4.1. (See Ref. 4.) The K-constrained pseudoinverse of A (symbol ÂK) is

defined as

D(ÂK) = {b ∈ H : PA(K)(b) ∈ A(K)}, ÂK(b) = x̂ and b ∈ D(ÂK)

where x̂ ∈ Sb is the unique solution to (16).

Now we recall the K-constrained generalized pseudoinverse of A.

Let θ : H → R be a differentiable convex function such that θ′ is a κ-Lipschitzian and

η-strongly monotone operator for some κ > 0 and η > 0. Under these assumptions, there

exists a unique point x̂0 ∈ Sb for b ∈ D(ÂK) such that

θ(x̂0) = min{θ(x) : x ∈ Sb}. (17)

Definition 4.2. (See Ref. 16.) The K-constrained generalized pseudoinverse of A associ-

ated with θ (symbol ÂK,θ) is defined as

D(ÂK,θ) = D(ÂK), ÂK,θ(b) = x̂0, and b ∈ D(ÂK,θ)

where x̂0 ∈ Sb is the unique solution to (17). Note that if θ(x) = ‖x‖2/2, then the K-

constrained generalized pseudoinverse ÂK,θ of A associated with θ reduces to the K-constrained

pseudoinverse ÂK of A in Definition 4.1.

We now apply the results in Section 3 to construct the K-constrained generalized pseudoin-

verse ÂK,θ of A. But first observe that x̃ ∈ K solves the minimization problem (15) if and

23



only if there holds the following optimality condition:

〈A∗(Ax̃− b), x− x̃〉 ≥ 0, x ∈ K,

where A∗ is the adjoint of A. This is equivalent to for each λ > 0,

〈[λA∗b + (I − λA∗A)x̃]− x̃, x̃− x〉 ≥ 0, x ∈ K,

or

PK(λA∗b + (I − λA∗A)x̃) = x̃. (18)

Define a mapping T : H → H by

Tx = PK(A∗b + (I − λA∗A)x), x ∈ H. (19)

Lemma 4.1. (See Ref. 16.) If λ ∈ (0, 2‖A‖−2) and if b ∈ D(ÂK), then T is attracting

nonexpansive and Fix(T ) = Sb.

Theorem 4.1. Assume that 0 < µ < 2η/κ2. Assume that the restrictions (R1), (R2) and

(R3) hold for {θn} and also that the control conditions (L1), (L2), and (L3)’ hold for {λn}.

Given an initial guess u0 ∈ H, let {un} be the sequence generated by the algorithm

un+1 = (1 + θn+1)Tun − θn+1g(Tun)− λn+1µθ′(Tun), n ≥ 0 (20)

where T is given in (19). Suppose that the unique solution x̂0 of (17) is also a fixed point of

g. Then {un} strongly converges to ÂK,θ(b).
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Proof. The minimization problem (17) is equivalent to the following variational inequality

problem:

〈θ′(x̂0), x− x̂0〉 ≥ 0, x ∈ Sb. (21)

Since Fix(T ) = Sb and θ′ is κ-Lipschitzian and η-strongly monotone, using Theorem 3.1 with

F := θ′, we infer that {un} converges in norm to x̂0 = ÂK,θ(b). 2

Lemma 4.2. (See Refs. 1-2.) Assume that N is a positive integer and assume that

{Ti}N
i=1 are N attracting nonexpansive mappings on H having a common fixed point. Then

N⋂
i=1

Fix(Ti) = Fix(T1T2...TN).

Now assume that {S1
b , ..., S

N
b } is a family of N closed convex subsets of K such that

Sb =
⋂N

i=1 Si
b. For each 1 ≤ i ≤ N, we define Ti : H → H by

Tix = PSi
b
(A∗b + (I − λA∗A)x) x ∈ H

where PSi
b

is the projection from H onto Si
b.

Theorem 4.2. Let µ ∈ (0, 2η/κ2), let conditions (L1), (L2) and (L4)’ be satisfied and also

let restrictions (R1), (R2) and (R4) be satisfied. Let u0 ∈ H. Suppose that the unique solution

x̂0 of (17) is also a fixed point of g. Then the sequence {un} generated by the algorithm

un+1 = T
(θn+1,λn+1)
[n+1] un = (1+θn+1)T[n+1]un−θn+1g(T[n+1]un)−λn+1µθ′(T[n+1]un), n ≥ 0 (22)

converges in norm to ÂK,θ(b).
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Proof. In the proof of (Ref. 16, Theorem 4.2), Xu and Kim have proved that

Sb = Fix(T ) =
N⋂

i=1

Fix(Ti). (23)

By Lemmas 4.1 and 4.2, we see that assumption (13) in Theorem 3.2 holds. On account of

(23), Theorem 3.2 ensures that the sequence {un} generated by (22) converges strongly to the

unique solution x̂0 = ÂK,θ(b) of (21). 2

References

1. BAUSCHKE, H. H., The Approximation of Fixed Points of Compositions of Nonexpansive

Mappings in Hilbert Spaces, Journal of Mathematical Analysis and Applications, Vol.

202, pp. 150-159, 1996.

2. BAUSCHKE, H. H., and BORWEIN, J. M., On Projection Algorithms for Solving Convex

Feasibility Problems, SIAM Review, Vol. 38, pp. 367-426, 1996.

3. DEUTSCH, F., and YAMADA, I., Minimizing Certain Convex Functions over the In-

tersection of the Fixed-Point Sets of Nonexpansive Mappings, Numerical Functional

Analysis and Optimization, Vol. 19, pp. 33-56, 1998.

4. ENGL, H. W., HANKE, M., and NEUBAUER, A., Regularization of Inverse Problems,

Kluwer, Dordrecht, Holland, 2000.

26



5. GEOBEL, K., and KIRK, W. A., Topics on Metric Fixed-Point Theory, Cambridge

University Press, Cambridge, England, 1990.

6. GLOWINSKI, R., Numerical Methods for Nonlinear Variational Problems, Springer, New

York, NY, 1984.

7. JAILLET, P., LAMBERTON, D., and LAPEYRE, B., Variational Inequalities and the

Pricing of American Options, Acta Applicandae Mathematicae, Vol. 21, pp. 263-289,

1990.

8. KINDERLEHRER, D., and STAMPACCHIA, G., An Introduction to Variational In-

equalities and Their Applications, Academic Press, New York, NY, 1980.

9. KONNOV, I., Combined Relaxation Methods for Variational Inequalities, Springer, Berlin,

Germany, 2001.

10. LIONS, P. L., Approximation de Points Fixes de Contractions, Comptes Rendus de

L’Academie des Sciences de Paris, Vol. 284, pp. 1357-1359, 1977.

11. ODEN, J. T., Qualitative Methods on Nonlinear Mechanics, Prentice-Hall, Englewood

Cliffs, New Jersey, 1986.

12. PANG, J. S., and YAO, J. C., On a Generalization of a Normal Map and Equations,

SIAM Journal on Control and Optimization, Vol. 33, pp. 168-184, 1995.

27



13. WITTMANN, R., Approximation of Fixed Points of Nonexpansive Mappings, Archiv

der Mathematik, Vol. 58, pp. 486-491,1992.

14. XU, H. K., Iterative algorithms for nonlinear operators, Journal of London Mathematical

Society, Vol. 66, No. 2, pp. 240-256, 2002.

15. Xu, H. K., An Iterative Approach to Quadratic Optimization, Journal of Optimization

Theory and Applications, Vol. 116, pp. 659-678, 2003.

16. XU, H. K., and KIM, T. H., Convergence of Hybrid Steepest-Descent Methods for

Variational Inequalities, Journal of Optimization Theory and Applications, Vol. 119,

pp. 185-201, 2003.

17. YAMADA, I., The Hybrid Steepest-Descent Mathod for Variational Inequality Problems

over the Intersection of the Fixed-Point Sets of Nonexpansive Mappings, Inherently

Parallel Algorithms in Feasibility and Optimization and Their Applications, Edited by

D. Butnariu, Y. Censor, and S. Reich, North-Holland, Amsterdam, Holland, pp. 473-

504, 2001.

18. YAO, J. C., Variational Inequalities With generalized Monotone Operators, Mathematics

of Operational Research, Vol. 49, pp. 691-705, 1994.

19. ZENG, L. C., Completely Generalized Strongly Nonlinear Quasi-Complementarity Prob-

lems in Hilbert Spaces, Journal of Mathematical Analysis and Applications, Vol. 193,

28



pp. 706-714, 1995.

20. ZENG, L. C., Iterative Algorithm for Finding Approximate Solutions to Completely

Generalized Strongly Nonlinear Quasivariational Inequalities, Journal of Mathematical

Analysis and Applications, Vol. 201, pp. 180-194, 1996.

21. ZENG, L. C., On a General Projection Algorithm for Variational Inequalities, Journal

of Optimization Theory and Applications, Vol. 97, pp. 229-235, 1998.

29


