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Abstract. Let C be a nonempty closed convex subset of a real Banach space E. Let S : C' —
C be a quasi-nonexpansive mapping, let T : C' — C be an asymptotically demicontractive
and uniformly Lipschitzian mapping, and let F := {z € C': St = x and Tx = 2} # (). Let
{Zy }n>0 be the sequence generated from an arbitrary zo € C by

Tpi1 = (1 —¢p) Sz, + ¢, T"x,, n>0.

We prove necessary and sufficient conditions for the strong convergence of the iterative se-

quence {z,} to an element of F. These extend and improve recent results of Moore and
Nnoli.
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1. Introduction

Let E be a real normed linear space. Let (-,-) denote the generalized duality pairing
between E and its dual space E*. Let J : E — 2F" be the normalized duality mapping
defined for each x € E by

J(@) ={f" € E": (z. ) = ||l=[I* = [l£"]*}.

It is well known that if E* is strictly convex then J is single-valued. In the sequel we shall
write j for a (single-valued) selection of J.

The various mappings appearing in the following Definition 1.1 have been studied widely
and deeply by many authors; see, e.g., [1-11] for more details.

Definition 1.1. Let C' be a nonempty subset of a Banach space E. A mapping T : C' — C
is called
(i) nonexpansive if
[Tz = Ty|| < [lz —yl, Vz,yeC;

(ii) quasi-nonexpansive if the fixed point set F(T) :={x € C: Tx =z} # 0, and
|Tx —x*|| <[]z —z*||, forallze Candz" e F(T);

iii) asymptotically nonexpansive if there is a sequence {k, },>0 C [1, 00) with lim,, . k, =
Y >
1 such that
|T"x — Ty|| < kn|lx —y|, forall x,y € C and n > 0;

(iv) asymptotically quasi-nonezpansive if F(T) # () and there is a sequence {k,},>0 C
[1,00) with lim,, . k, = 1 such that

|T"x — z*|| < kypllz —2*||, forallz e C, z* € F(T), and n > 0;

(v) asymptotically demicontractive if F(T) # (, there exist a constant k € [0,1) and a
sequence {ay, }n>0, and for each z € C and z* € F(T') there exists j(z — 2*) € J(z — 2*) such
that

(I =T"),j(x —a7)) 2 51 = K)o = Tel* = 5(a; = Dllr — 27"
(vi) uniformly L-Lipschitzian if there exists a constant L > 0 such that

|T"x —T"y|| < L|jx —y||, forall z,y € C and n > 1.

In Hilbert spaces, the concept of an asymptotically demicontractive mapping has been
given very early; see, e.g., [2, 6]. Indeed, for a nonempty subset C' of a Hilbert space, a



mapping T : C' — C with F(T) # () is asymptotically demicontractive if and only if there
exists a sequence {a, }22, with lim,_,« a, = 1 such that

1Tz — 27[* < apllo — 27||* + K|z — T[]

for some k € [0,1) and for all x € C,z* € F(T) and n > 1.

In 1973, Petryshyn and Willianson [7] proved a necessary and sufficient condition for
the strong convergence of the Picard and the Mann iterative schemes to a fixed point of a
quasi-nonexpansive mapping in a Hilbert space. Subsequently, Liu [3, 4] extended the above
results and obtained some necessary and sufficient conditions for an Ishikawa-type iterative
scheme with errors to converge to a fixed point of an asymptotically quasi-nonexpansive map.
Recently, Moore and Nnoli [5] proved necessary and sufficient conditions for the strong con-
vergence of the Mann iteration process to a fixed point of an asymptotically demicontractive
map in a real Banach space. Their theorems thus improve and extend the results of Liu [3, 4],
Osilike [6] and several others.

Theorem 1.2. ([5, Theorems 3.2 and 3.3]) Let E be a real Banach space. Let T : E — E
be a uniformly L-Lipschitzian asymptotically demicontractive map with a nonempty fixed point
set F(T'). Suppose {a,}n>0 is the sequence associated to the asymptotic demicontractivity of
T and {c,}n>0 C [0,1] is a sequence such that

Yok <oo and D cy(al—1) < oc.

n>0 n>0
Let {x,}n>0 be the sequence generated from an arbitrary xo € E by
Tn+1 = (1 - Cn)xn + CnTnxna n > 0. (1)

Then {x,}n>0 converges strongly to a fized point of T if and only if liminf,, . d(x,, F(T)) =
0. In particular, {x,}n>0 converges strongly to an x* € F(T) if and only if there ezists a
subsequence of {x,}n>0 converging strongly to x*.

In this paper, we introduce a new class of asymptotically demicontractive type mappings
in real Banach spaces FE.

Definition 1.3. Let C be a nonempty subset of £ and S : C — C be an operator. A
mapping 7' : C' — C' is said to be asymptotically S-demicontractive if F(T) # () and there
exist real sequences {a, }rn>0, {kn}n>0 C [1,00) and {€,},>0 C [0, 00), and for each = € C" and
x* € F(T) there exists j(x — 2*) € J(x — 2*) such that

(I =T, j(e = 2%)) = =3[k, — Dlle = Tl + (@2 = Dl|e — 2|2 + &)
—(T"Sy — Ty, jla — ")), VyeC.

It is remarkable that if ¢, = 0 and k, = k € [0,1) for all n > 0, and S = I the identity
mapping, then the concept of asymptotically S-demicontractive mapping reduces to the one
of asymptotically demicontractive mapping.



The following is the main result in this paper, which extends and improves recent result
of Moore and Nnoli [5].

Theorem 1.4. Let C' be a nonempty closed convexr subset of a real Banach space E, let
S : C'— C be a quasi-nonexpansive mapping, and let T : C'— C be a uniformly L-Lipschitzian
asymptotically S-demicontractive mapping with sequences {an}n>0, {kn}n>0 C [1,00) and
{en}n>0 C [0,00). Suppose the common fized point set F = F(T)NS(T) # 0, and there
is a real sequence {c, }n>0 C [0, 1] satisfying that

Z 2 < o0, Z cn(a? — 1) < oo, Z Cnlkn —1) <00, and Z CnEn < 00.

n>0 n>0 n>0 n>0
Let {x,}n>0 be the sequence generated from an arbitrary xo € C by
Tpi1 = (1 —¢p)Sxp + ¢, T"x,, n>0. (2)

Then {x,}n>0 converges strongly to an element of F if and only if liminf, . d(z,, F) = 0.
In particular, {z,}n,>0 converges strongly to x* € F if and only if there ezists an infinite
subsequence of {x, }n>0 which converges strongly to x* € F.

2. The proofs

In the sequel we shall make use of the following lemmas.

Lemma 2.1. (Tan and Xu [10, Lemma 1, p. 303]) Let {3, }n>0 and {b,}n>0 be sequences
of nonnegative real numbers satisfying the inequality

ﬁnJrl S ﬁn + bn; n Z 0
If 350 by < 00 then lim, . 3, ewists.

Lemma 2.2. (Chang [1, Lemma 1.1, p. 847]) Let E be a real normed linear space. Then
the following inequality holds:

lz+yl* < ll=lI* + 2y, j(x +y)), forallz,y € Eand jlz+y) € Ja+y).  (3)

Lemma 2.3. Assuming the conditions stated in Theorem 1.4, we have for each x* € F
and n,m > 1,

(a) there exists M > 0 such that ||z, — x| < M,
(b) lim,, o ||z, — x*|| exists,
(¢) Iwns1 — 2% < (14 ) l|wn — 2*|* + g for some {pin}nzo with 50 s < 00,
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() T — 2|2 < Dy — 27| + D Syng i, where D = 220,

2

Proof of (a) and (b). From (2), (3) and Definition 1.1 (v) with y = x,, we obtain

Observe that

and

lznsr — 2| < (1= en)?[|San — 27| + 260 (T2 — 27, j(n 41 — 7))
)2

< (1= cn)?[lon — 2*|* + 2e, (T 20 — 2%, j(Tng1 — %))
= (1= cp)?|on — 2*|? = 25 (Tp41 — T"¥ng1, § (Tngr — 7))
+ 200 (Tny1 — 2%, j(Tn1 — 7)) + 200 (T 00 — T 2041, j(Tngr — 27))
<(1- Cn)2Hxn - :U*H2 + cn(kn — D)[|wpg1 — TnanHQ
+ en(@? — V)| wnr — 2*||* + 2, (T Sz, — T2, j (201 — %)) + Crén
+ 2| Tns1 — ¥|)* + 26, (T" 2y, — T i1, J (T — )
= (1= cp)?[Jon — 2*[* + cn(bn — Dl|@nss — T 1 |
+ Cn(ai = Dfzp — '73*H2 + 26 |70 g1 — .CE*H2
+ 20, (T" STy, — T"Tpi 1, J (Tna1 — %)) + Cnén
< (1= c)?llzn — 2|1 + cu(kn = Dllznsr = T"@npa|?
+ cn(ay — Dllzn — 2% 4 2¢a |20 — 2*|?
+ 2¢, || T"Sxy, — T i1 ||| Tnsr — 2| + cnén.

< (1= e)l|San — o + e[ T, — 2°|
< (1= co)||zn — 2| + enLllzn — 2| (5)
< (14 Ley)||lzn — 2%,

[ 21 — 27|

[Zn1 — 2% + [T @ gr — 27|

(1+L)Hxn+1 _I*H (6)
(1+ L)(1+ Ley)||en — x|

(L4 L)?[|zn — 2],

Hxn—l—l - T”xn+1||

<
<
<
<

TSz, — Ty < L||Szp — xpia| = Len||T" @, — Sy ||
< LT, — 0| + |5 — a7 .
< e L(1 + L)z, — z*||
<c,(1+ L)z, — x*]|.

Substituting (5)-(7) in (4), we have

[z — 2 < (1= c)?lon — 2*|° + culkn — (A + L)z — 2|7

+ cp(a® = 1)(1 + L)?||xn — 2*||? + 2¢,(1 + Lep)? ||z, — o*||?
2 3 ]2 (8)
+2c.(1+ L)°||xn, — ¥ + cnen
= (1+y)l|@n — 2*|” + cnen,

where v, = ¢, (kn—1)(1+L)* +¢,(a2 —1)(14+ L)*+ 2[1+2(2L+ L?*¢,) +2(1+ L)?]. According
to the conditions that 3,502 < 00, Y50 calaZ —1) < 0o and ¥,,5¢ ¢n(k, — 1) < 00, we know



that Y,>0 v < 0o. From (8) we obtain

[Zps1 — 27 < (L4 7) (1 + Y- [21 — 2|1 + (1 +90) 1801 + can
< (14 7) @+ Y1) (1 + yo2) |02 — 2*|
+ (1 + ’771)(1 + ’Yn—l)cn—25n—2 + (]- + %)Cn—15n—1 + Cnén

n—1 n

::1: ..

(L+v)llwo — 2* P+ D ey [T (L +7%) + cacn
z:O j =0 —j+1
H(l +%)Hx0 - ”2 + H (14 chg]
=0 =0 7=0

@20z — 7|2 4 0 T ey,

IN

and hence ||z, — z*|| < M for some M > 0. If we set 3, = ||z, — z*||* and b,, = 1, M? + cpep
then, by Lemma 2.1, lim,, . ||z, — 2*|| exists.

Proof of (c). From (8) we get
g1 — %> < [L4 & + Mo ||lzn — 2¥|1> + catn,

where A, =7, — 2 = ¢, (k, — 1)(1 + L)* + ¢, (a® — 1)(1 + L)* + 2¢2[(2L + L3c,,) + (1 + L)3].

Moreover,
[z — 2|7 < (L4 + Anllen — 2%|° + cacn
(1+ cn)H:cn — ]2+ M\ M? + Cpen

(1 +ci)llzn — 2|1 + pn,
c2)M? + ¢,e,. Observe that 3,50 s < 00.

A IA

QI\D

where p, = \,M? + c e, = (Yn —

Proof of (d). From (c) we obtain for each n,m > 1,

| Znim — I*HQ <1+ Cn+m ITnim — = H + Hntm—1
< (]' + 672’L+m—1)(1 + cg+m—2)||xn+m2—2 -z ”2 + (]' + 072’L+Tr§—1)un+m—2 + Mntm—1
< (1 + Cn-i-m—l)(l + cn+m—2)(1 + Cn+m—3)”xn+m*3 - .Z'*H

+(1+ 0721+m71)(1 + Ci+m72)ﬂn+m73 +(1+ Ci+m71)ﬂn+mf2 + Uprm—1

. n+m—1 n+m—1 n+m—1
< H (1+ c))llwn — 27> + H (1+¢) Z i
n+m—1
ez +m—1 2 xn_x*HQ + -1 2 Z ILLZ

< Dllz, — 2*||* + DZM;

>0

where D = ¢2i>0% | This completes the proof.



Proof of Theorem 1.4. From Lemma 2.3 (¢) we obtain
[d(zni1, F))? < (1+ ) d(2n, F)]? + fin,

where F':= F(T)NS(T) # 0 and 3,5 ptn, < 00. Since liminf, . d(z,, F') = 0, from Lemma
2.3 (d) we derive the boundedness of {d(z,, F))}. Hence it follows from Lemma 2.1 that

Jim d(z, F)=0.
It now suffices to show that {z,} is a Cauchy sequence in C. Indeed, put 7 = [[32,(1+c?).

Then 1 < 7 < oo. Since lim, .o d(,, F) = 0 and 3,5 ptn, < 00, for arbitrarily given € > 0
there exists a positive integer N; such that for all n > NV,

€ i €
d(r,, F') < — and < —.
o B) < Jgz o L

In particular there exists & € F' such that d(zn,, %) < €/v/87. Now from Lemma 2.3 (c) we

conclude that

lzn = 2[* < (L4 i)l — 2 + ptns
<4+ o)llwa—z — 2>+ (1 + i) a2 +

' n—1 n—2 n—1

< [T a+Dlen —2*+ D2 ny [T A +¢) + s
i=N1 j=N1 i=j+1
n—1 n—1

< [T O+ Dlllen, =217+ Y :
’i=N1 1 j:Nl

< rllleny =212+ D p)
Jj=N1

o
< tlllan, =2+ ) pl
2 2 2 =N
<rlg+gl=g

for all n > N;. Consequently, we deduce that for all n > Ny and m > 1
€ €
i = 2all? < 2 = 32+ 2 — 2P <2 G 42 S =,

and hence ||,1., — .|| < €. Thus, lim,, . z, exists due to the completeness of E. Note that

C' is closed. We may suppose that lim, .. x, = & € C. We now show that z € F'. Indeed,
for arbitrarily given € > 0 there exists a positive integer No > N; such that for all n > N,

€ €
n — T PP d d n7F .
lzn — 2| < 20+1L) ™ (0, F) < 201+ L) 9)



Thus, there exists y* € F' such that

lzn, =y || = d(zn,, y") < m

We then have the following estimates:

1Tz — z|] S ITZ — T, || + [ T2x, =yl + ly” — 2wl + [lov, - 2]
< (L Dllrw, =2+ 1+ L)y, =yl
SA+L) gt (A4 L) 555 =€

and
15z —z|| <|[[ST = Son | + [[Sone —y* | + [y — 2 || + [[on, — Z]
< 2||'TN2 - .QZH + 2H$N2 -y H
<2 (1+L) +2- 2(1+L) - 1+L
Since € > 0 is arbitrary, we infer that Tx = & and Sx = . This completes the proof. O
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