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1. INTRODUCTION AND PRELIMINARIES

Let X be a real locally convex space with its dual X∗ and K be a non-empty convex

subset of X. Let ϕ : K ×K −→ R be a bifunction and f ∈ X∗. Gwinner [9] considered

the problem of finding u0 in K such that

ϕ(u0, v) ≥ 〈f, v − u0〉, for all v in K, (1)

where 〈·, ·〉 denotes the pairing between X∗ and X. (1) is called the nonlinear inequality.

Such types of nonlinear inequalities model some equilibrium problems drawn from

operations research as well as some unilateral boundary value problems stemming from

mathematical physics. The existence theory and abstract stability analysis of (1) have

been investigated by Gwinner [9] in the setting of reflexive Banach spaces.

When ϕ(u, v) = 〈T (u), v−u〉, where A : K −→ X∗ is an ?operator?, (1) reduces to the

classical variational inequality problem introduced by Lions and Stampacchia [12], that

is, to find a u0 in K such that

〈T (u0), v − u0〉 ≥ 〈f, v − u0〉, for all v in K. (2)
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Even more specifically, when ϕ(u, v) = 〈T (u), v − u〉 and f ≡ 0, (1) becomes the

original variational inequality problem (see, e.g. [4], [10]), that is, to find a u0 in K such

that

〈T (u0), v − u0〉 ≥ 0, for all v in K. (3)

Many authors have studied this type of problems in the context of reflexive Banach

spaces (see, for example [4], [14], [11]). Watson [18] established the existence of solutions to

problem (3) in the setting of not necessarily reflexive Banach spaces and pseudomonotone

and hemicontinuous maps. His assumptions are weaker than those needed in [6].

When ϕ(u, v) = 〈T (u), η(v, u)〉 and f ≡ 0, where η : K ×K −→ X is a ?map?, (1) is

equivalent to find a u0 in K such that

〈T (u0), η(v, u0)〉 ≥ 0, for all v in K. (4)

Inequality (4) is known as a variational-like inequality which has lot of applications in

operations research, optimization and mathematical programming. For further details,

we refer [13], [7], [19], [16].

In case f ≡ 0 and ϕ(u, u) = 0, for all u in K, (1) reduces to the equilibrium problem

considered in [1]-[3], that is, to find a u0 in K such that

ϕ(u0, v) ≥ 0, for all v in K. (5)

Apparently, our nonlinear inequality (1) contains all above variational inequalities and

equilibrium problems as special cases.

The main object of this paper is to establish an existence result for the nonlinear in-

equality (1) for general maps without any pseudomonotone assumption. We shall employ

Fan-Browder [5, 8] type fixed point theorems due to Tarafdar [17]. As a consequence of

our result, we shall derive some existence results for the variational inequality (3) and the

variational-like inequality (4) without any kind of monotonicity assumption.

The following fixed point theorem will be used in this paper. We denote by 2Y the

family of all non-empty subsets of a set Y .

Theorem 1. [17] Let K be a non-empty convex subset of a Hausdorff topological vector

space X. Let Q : K −→ 2K be a multifunction such that

(a) for each x in K, Q(x) is a non-empty convex subset of K;

(b) for each y in K, Q−1(y) contains relatively open subset Oy of K (Oy may be empty

for some y in K) such that
⋃

y∈K Oy = K;
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(c) K contains a non-empty subset D0 which is contained in a compact convex subset

D1 of K such that the set D =
⋂

x∈D0
Oc

x is either empty or compact, where Oc
x

denotes the complements of Ox in K.

Then there exists a point x0 in K such that x0 ∈ Q(x0).

2. MAIN RESULTS

We now prove the main result of this paper.

Theorem 2. Let K be a non-empty convex subset of a Hausdorff topological vector

space X (over the real field). Let f be a non-zero continuous linear functional on X. Let

ϕ : K ×K −→ R be a bifunction vanishing on the diagonal, i.e. ϕ(u, u) = 0, for all u in

K, and satisfying the following conditions.

1. ϕ is convex in the second variable.

2. lim infu→u∗ ϕ(u, v) ≤ ϕ(u∗, v) for all v in K whenever u → u∗ in K.

3. There is a compact convex subset D1 of K such that for each u in K \D1 there is

a v in D1 with

ϕ(u, v) < 〈f, v − u〉.

Then the nonlinear inequality (1) has a solution in K.

Proof. We define A(v) = {u ∈ K : ϕ(u, v) ≥ 〈f, v − u〉} for each v in K. Then the

solution set of (1) is S =
⋂

v∈K A(v). We note that for each v in K, A(v) is closed. Indeed,

let {uλ}λ∈Λ be a net in A(v) such that uλ −→ u in K. Then for all f in X∗ we have

〈f, uλ − v〉 −→ 〈f, u− v〉. Since uλ ∈ A(v) and lim infuλ→u ϕ(uλ, v) ≤ ϕ(u, v), for all v in

K, we have

ϕ(u, v) ≥ lim inf
uλ→u

ϕ(uλ, v) ≥ lim inf
uλ→u

〈f, uλ − v〉 = 〈f, u− v〉.

Hence u ∈ A(v). So for all v in K, A(v) is closed.

Now we shall prove that the solution set S is non-empty. Assume contrary that S = ∅.
Then for each u in K, the set

B(u) = {v ∈ K : u /∈ A(v)} = {v ∈ K : ϕ(u, v) < 〈f, v − u〉} 6= ∅.

Since ϕ is convex in the second variable, we have for each u in K, B(u) is convex. Thus

B : K −→ 2K defines a multifunction such that for each u in K, B(u) is non-empty and
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convex. Now for each v in K, the set

B−1(v) = {u ∈ K : v ∈ B(u)}
= {u ∈ K : ϕ(u, v) < 〈f, v − u〉}
= {u ∈ K : ϕ(u, v) ≥ 〈f, v − u〉}c

= [A(v)]c

= Ov

is open in K. We claim that
⋃

v∈K Ov =
⋃

v∈K B−1(v) = K. To see this, let u ∈ K. As

B(u) 6= ∅, we can choose a v from B(u). Hence u ∈ B−1(v) = Ov.

From the last condition of the theorem, for each u in K \D1 there is a v in D1 with

ϕ(u, v) < 〈f, v − u〉, that is, u /∈ A(v). This implies that D =
⋂

v∈D1
Oc

v =
⋂

v∈D1
A(v) ⊂

D1. Since for each v in K, A(v) is closed, D is a closed subset of the compact set

D1 and hence D is compact. Thus the multifunction B : K −→ 2K satisfy all the

conditions of Theorem 1, so there exists a point u0 in K such that u0 ∈ B(u0), that is,

0 = ϕ(u0, u0) < 〈f, u0 − u0〉 = 0 which is a contradiction. Hence the solution set S is

non-empty. Therefore, the nonlinear inequality (1) has a solution in K. 2

In case K is compact, the last condition in Theorem 2 is automatically satisfied since

we can set D1 = K. Meanwhile, if a Hausdorff locally convex space X is barreled then

every weak* closed and bounded subset K of X∗ is weak* compact (see, for example, [15,

p. 141]).

Corollary 1. Let X be a Hausdorff locally convex space with dual X∗. Let K be a

weak* compact convex subset of X∗ and f ∈ X. Let ϕ : K ×K −→ R be a bifunction

vanishing on the diagonal, convex in the second variable, and satisfying the condition that

lim infu→u∗ ϕ(u, v) ≤ ϕ(u∗, v), for all v ∈ K whenever u → u∗ in K. Then the nonlinear

inequality (1) has a solution in K.

Corollary 2. Let K be a weak* compact convex subset of the dual space X∗ of a Hausdorff

locally convex space X. Let η : K×K −→ X∗ be a bifunction vanishing on the diagonal.

Let T be a function from K into X such that h(v) := 〈η(v, u), T (u)〉 is convex in v,

for each fixed u in K, and lim infu→u∗〈η(v, u), T (u)〉 ≤ 〈η(v, u∗), T (u∗)〉 for each v in K

whenever u → u∗ in the weak∗ topology of K. Then the variational like inequality (4)

has a solution in K.

Corollary 3. Let K be a closed convex subset of the dual space X∗ of a Hausdorff locally

convex barreled space X. Let T be a function from K into X such that lim infu→u∗〈v −
u, T (u)〉 ≤ 〈v − u∗, T (u∗)〉, for each v in K, whenever u → u∗ in the weak∗ topology of

K. Further assume that there is a compact subset D of K such that for each u in K \D

4



there is a v in D such that 〈v−u, T (u)〉 < 0. Then the variational inequality problem (3)

has a solution in K.

Proof. We note that the convex hull of a totally bounded subset of any locally convex

space is totally bounded as well. On the other hand, the dual space X∗ of the Hausdorff

locally convex barreled space X is quasi-complete in its weak* topology, that is, closed and

bounded subsets of X∗ are complete (in fact, weak* compact). As a result, the convex hull

D1 of the weak* compact subset D of X∗ is still weak* compact. Consequently, Theorem

2 applies. 2

Corollary 4. Let X be a Hausdorff locally convex space with dual X∗. Let T be a

function from X∗ into X such that

1. lim infu→u∗〈v − u, T (u)〉 ≤ 〈v − u∗, T (u∗)〉, for each v in X∗, whenever u → u∗ in

the weak∗ topology of X∗;

2. there exists a weak∗ compact convex subset D1 of X∗ such that for each u not in

D1 there is a v in D1 with 〈v − u, T (u)〉 < 0.

Then T has a zero u0 in X∗, i.e. T (u0) = 0. In case X is barreled, the convexity

assumption on D1 can be dropped.
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