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Abstract. Let Ω be a locally compact Hausdorff space. We show that any local C-
linear map (where “local” is a weaker notion than C0(Ω)-linearity) between Banach
C0(Ω)-modules are “nearly C0(Ω)-linear” and “nearly bounded”. As an application, a
local C-linear map θ between Hilbert C0(Ω)-modules is automatically C0(Ω)-linear. If,
in addition, Ω contains no isolated point, then any C0(Ω)-linear map between Hilbert
C0(Ω)-modules is automatically bounded. Another application is that if a sequence of
maps {θn} between two Banach spaces “preserve c0-sequences” (or “preserve ultra-c0-
sequences”), then θn is bounded for large enough n and they have a common bound.
Moreover, we will show that if θ is a bijective “biseparating” linear map from a “full”
essential Banach C0(Ω)-module E into a “full” Hilbert C0(∆)-module F (where ∆ is
another locally compact Hausdorff space), then θ is “nearly bounded” (in fact, it is
automatically bounded if ∆ or Ω contains no isolated point) and there exists a homeo-
morphism σ : ∆ → Ω such that θ(e · ϕ) = θ(e) · ϕ ◦ σ (e ∈ E,ϕ ∈ C0(Ω)).
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1. Introduction

A linear map θ between the spaces of continuous sections of two bundle spaces over
the same locally compact Hausdorff base space Ω is said to be local if for any continuous
section f , one has supp θ(f) ⊆ supp f , or equivalently, for each g ∈ C0(Ω),

fg = 0 =⇒ θ(f)g = 0.

Consequently, local property is weaker than C0(Ω)-linearity. In the case when the domain
and the range bundles are over different base spaces, a more general notion is defined;
namely, disjointness preserving, or separating (see Section 5).

Local and disjointness preserving linear maps are found in many researches in anal-
ysis. For example, a theorem of Peetre [19] states that local linear maps of the space
of smooth functions defined on a manifold modelled on Rn are exactly linear differential
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operators (see, e.g., [17]). This is further extended to the case of vector-valued differen-
tiable functions defined on a finite dimensional manifold by Kantrowitz and Neumann
[16] and Araujo [3].

In the topological setting, similar results have been obtained. Local linear maps of the
space of continuous functions over a locally compact Hausdorff space are multiplication
operators, while disjointness preserving (separating) linear maps between two such spaces
over possibly different base spaces are weighted composition operators (see, e.g., [1, 5, 18,
14, 12, 15]). Among many interesting questions arising from these two notions, quite a
few efforts has been put on the automatic continuity of such maps. See, e.g., [2, 7, 14, 15]
for the scalar case, and [13, 4, 3, 6] for the vector-valued case.

In this paper, we extend this context to local or separating linear maps between spaces
of continuous sections of vector bundles. Note that similar to the correspondence de-
veloped by Swan [20] between finite dimensional vector bundles over a locally compact
Hausdorff space Ω and certain C0(Ω)-modules, the spaces of continuous sections of “Ba-
nach bundles” are certain Banach C0(Ω)-modules (see, e.g., [10], and Section 2 below).

One of the original motivation behind this work is to investigate up to what extend will
a local linear map between two Banach C0(Ω)-modules being C0(Ω)-linear. Surprisingly,
on top of finding that such maps are “nearly C0(Ω)-linear”, we find that they are also
“nearly bounded”. In fact, it is well known that there are many unbounded C-linear maps
from an infinite dimensional Banach space to another Banach space and so, if S is a finite
set, there are many unbounded C(S)-module maps from certain Banach C(S)-module to
another Banach C(S)-module. The interesting thing we discovered is that the above is,
in many cases, the “only obstruction” to the automatic boundedness of C0(Ω)-module
maps (see Proposition 3.5 as well as Theorems 3.7 and 4.2).

More precisely, if θ is a local C-linear map (not assumed to be bounded) from an
essential Banach C0(Ω)-module E to another such module F , then θ is “nearly C0(Ω)-

linear”, in the sense that the induced map θ̃ : E → F̃ is a C0(Ω)-module map (where
F̃ is the image of F in the space of C0-sections on the canonical “(H)-Banach bundle”
associated with F ; see Section 2). Moreover, θ is “nearly bounded” in the sense that
there exists a finite subset S ⊆ Ω such that

sup
ω∈Ω\S

sup
e∈E;
‖e‖≤1

∥∥∥θ̃(e)(ω)
∥∥∥ < ∞.

Furthermore, if F is “C0(Ω)-normed” (in particular, if F is a Hilbert C0(Ω)-module),
then the finite set S consists of isolated points in Ω, and

θ = θ0 ⊕
⊕
ω∈S

θω

where θ0 : EΩ\S → FΩ\S is a bounded C0(Ω \ S)-linear map (where EΩ\S and FΩ\S are
the canonical essential Banach C0(Ω \ S)-modules induced from E and F respectively)
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and θω are (unbounded) C-linear maps (see Theorems 4.2 and 3.7). Consequently, if Ω
contains no isolated point and F is C0(Ω)-normed, then θ is automatically bounded. As
another application, if X and Y are two Banach spaces and if θk : X → Y is a sequence
of C-linear maps (not assumed to be bounded) such that for any (xn) ∈ c0(X), we have
(θn(xn)) ∈ c0(Y ), then there exists n0 with

sup
n≥n0

‖θn‖ < ∞.

On the other hand, we will also study C-linear maps between two Banach modules
over two different base spaces. In this case, we will consider “separating” maps instead
of local maps. More precisely, if Ω and ∆ are two locally compact Hausdorff spaces, E is
a “full” essential Banach C0(Ω)-module (see Remark 3.2(b)), and F is a “full” Banach
C0(∆)-normed module, then for any bijective linear map θ : E → F (not assumed
to be bounded) with both θ and θ−1 being separating, there exists a homeomorphism
σ : ∆ → Ω such that θ(e ·ϕ) = θ(e) ·ϕ◦σ (e ∈ E,ϕ ∈ C0(Ω)), and there exists a finite set
S consisting of isolated points of ∆ such that the restriction of θ from EΩ\σ(S) to F∆\S is
bounded.

This paper is organised as follows. In Section 2, we will first collect some basic facts
about the correspondence between Banach bundles and Banach C0(Ω)-modules. In Sec-
tion 3, we will show two technical lemmas concerning “near C0(Ω)-linearity” and “near
boundedness” of certain mappings. Section 4 is devoted to automatic C0(Ω)-linearity and
automatic boundedness of local linear mappings, while Section 5 is devoted to the au-
tomatic boundedness of bijective biseparating linear mappings between Banach modules
over different base spaces. Finally, as an attempt to a further generalisation, we show in
the Appendix that for an arbitrary C*-algebra A, every bounded local linear map from
a Banach A-module into a Hilbert A-module is A-linear. The boundedness assumption
can be removed in the case when A is finite dimension (Corollary 4.9).

2. Preliminaries and Notations

Let us first set some terminologies and recall (mainly from [10]) some basic terminolo-
gies and results concerning Banach modules and Banach bundles.

Notation 2.1. In this article, Ω and ∆ are two locally compact Hausdorff spaces, E is an
essential Banach C0(Ω)-module, F is an essential Banach C0(∆)-module, and θ : E → F
is a C-linear map (not assumed to be bounded). Furthermore, Ω∞ and ∆∞ are the one-
point compactifications of Ω and ∆ respectively. We denote by NΩ(ω) the set of all
compact neighbourhoods of an element ω in Ω, and by IntΩ(S) the set of all interior
points of a subset S in Ω. Moreover, if U, V ⊆ Ω such that the closure of V is a compact
subset of IntΩ(U), we denote by UΩ(V, U) the collection of all λ ∈ Cc(Ω) with 0 ≤ λ ≤ 1,
λ ≡ 1 on V and the support of λ lies inside IntΩ(U).
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Definition 2.2. Let Ξ be a Hausdorff space and p : Ξ → Ω be a surjective continuous
open map. Suppose that for each ω ∈ Ω,

1). there exists a complex Banach space structure on Ξω := p−1(ω) such that its norm
topology coincides with the topology on Ξω (as a topological subspace of Ξ);

2). {W (ε, U) : ε > 0, U ∈ NΩ(ω)} forms a neighbourhood basis for the zero element
0ω ∈ Ξω where W (ε, U) := {ξ ∈ p−1(U) : ‖ξ‖ < ε};

3). the maps C × Ξ → Ξ and {(ξ, η) ∈ Ξ × Ξ : p(ξ) = p(η)} → Ξ given respectively, by
the scalar multiplications and the additions are continuous.

Then (Ξ,Ω, p) (or simply, Ξ) is called an (H)-Banach bundle (respectively, an (F)-Banach
bundle) over Ω if ξ 7→ ‖ξ‖ is an upper-semicontinuous (respectively, continuous) map
from Ξ into R+. In this case, Ω is called the base space of Ξ, the map p is called the
canonical projection and Ξω is called the fibre over ω ∈ Ω.

If Ξ is an (H)-Banach bundle over Ω and Ω0 ⊆ Ω is an open set, then

ΞΩ0 := p−1(Ω0)

is an (H)-Banach bundle over Ω0 and is called the restriction of Ξ to Ω0. If Ξ is an
(F)-Banach bundle, then so is ΞΩ0 .

Definition 2.3. If Λ is another (H)-Banach bundle over ∆, a map ρ : Ξ → Λ is said
to be bounded if sup ξ∈Ξ;

‖ξ‖≤1

‖ρ(ξ)‖ < ∞. Moreover, ρ is called a fibrewise linear map

(respectively, Banach bundle map) if ρ restricted to a (respectively, bounded) linear map
ρω from Ξω to a fibre in Λ.

For any map e : Ω → Ξ, we denote

|e|(ω) := ‖e(ω)‖ (ω ∈ Ω).

Such an e is called a C0-section on Ξ if e is continuous, p(e(ω)) = ω (ω ∈ Ω), and for
any ε > 0, there exists a compact set C ⊆ Ω such that |e|(ω) < ε (ω ∈ Ω \ C). We put

Γ0(Ξ) := {e : Ω → Ξ | e is a C0−section on Ξ}.

Note that |e| is always upper semi-continuous for every e ∈ Γ0(Ξ) and Ξ is an (F)-Banach
bundle if and only if all such |e| are continuous.

Next, we recall some terminologies and properties concerning an essential Banach
(right) C0(Ω)-module E (regarded as a unital Banach C(Ω∞)-module). For any ω ∈ Ω∞
and S ⊆ Ω∞, we denote

KS := {ϕ ∈ C(Ω∞) : ϕ(S) = {0}}, KE
S := E ·KS and IE

ω :=
⋃

V ∈NΩ∞ (ω)

KE
V .
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For simplicity, we set KE
ω := KE

{ω}. By [10, p.37], there exists an (H)-Banach bundle Ξ̌E

over Ω∞ with Ξ̌E
ω = E/KE

ω . Since Ξ̌E
∞ = {0}, if we set ΞE := p−1(Ω), then Γ0(Ξ

E) ∼=
Γ0(Ξ̌

E) under the canonical identification. Furthermore, there exists a contraction

∼ : E −→ Γ0(Ξ
E)

such that ẽ(ω) = e+KE
ω . We put Ẽ to be the image of ∼.

On the other hand, if θ is as in Notation 2.1, we define

θ̃ : E → F̃ by θ̃(e) = θ̃(e) (e ∈ E).

Definition 2.4. Let E be an essential Banach C0(Ω)-module.

(a) E is called a Banach C0(Ω)-convex module if for any ϕ, ψ ∈ C(Ω∞)+ with ϕ+ψ = 1,
one has ‖xϕ+ yψ‖ ≤ max{‖x‖, ‖y‖}.
(b) E is called a Banach C0(Ω)-normed module if there exists a map | · | : E → C0(Ω)+

such that for any x, y ∈ X and a ∈ A,

i). |x+ y| ≤ |x|+ |y|;
ii). |xa| = |x||a|;
iii). ‖x‖ = ‖|x|‖.

Recall that every Hilbert C0(Ω)-module is C0(Ω)-normed, and every Banach C0(Ω)-
normed module is C0(Ω)-convex. On the other hand, an essential Banach C0(Ω)-module
E is C0(Ω)-convex if and only if ∼ is an isometric isomorphism onto Γ0(Ξ

E) (see e.g. [10,
Theorem 2.5]). In this case, we will not distinguish E and Γ0(Ξ

E). Furthermore, E is
C0(Ω)-normed if and only if E is C0(Ω)-convex and ΞE is an (F)-Banach bundle (see e.g.
[10, p.48]).

For any open subset Ω0 ⊆ Ω, we set EΩ0 := KE
Ω\Ω0

and ẼΩ0 := Γ0(Ξ
E
Ω0

). One can regard

KE
Ω\Ω0

as an essential Banach C0(Ω0)-module under the identification C0(Ω0) ∼= KΩ\Ω0 .

Note that if E is C0(Ω)-convex, then ẼΩ0 = EΩ0 .

Remark 2.5. (a) Let E be a Banach C0(Ω)-convex module and 0ω is the zero element
in the fibre ΞE

ω (ω ∈ Ω). It is well-known that ω 7→ 0ω is a continuous map from Ω into
ΞE. Thus, if {ωi}i∈I is a net in Ω converging to ω0 ∈ Ω and e ∈

⋂
i∈I K

E
ωi

, then e ∈ KE
ω0

.
Consequently, if e /∈ KE

ω , there exists U ∈ NΩ(ω) such that e /∈ KE
α for any α ∈ U .

(b) Let Ω = {ω1, ω2, ...} be a countable compact Hausdorff space and E be a Banach
C(Ω)-module. Then ⋂

ω∈Ω

KE
ω = {0},

or equivalently, the map ∼ is injective. In fact, consider any e ∈
⋂

ω∈ΩK
E
ω and any ε > 0.

For k ∈ N, there exists ϕ̄k ∈ K{ωk} with ‖e−eϕ̄k‖ < ε/2k+1. Thus, there exists ϕk ∈ C(Ω)
with ϕk vanishing on an open neighbourhood Vk of ωk and ‖e − eϕk‖ < ε/2k. Now,
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consider a finite subcover {V1, ..., Vn} for Ω and a continuous partition of unity {ψ1, ...ψn}
subordinated to {V1, ..., Vn}. Then ‖e‖ = ‖e− e

∑n
k=1 ϕkψk‖ ≤

∑n
k=1 ‖e− eϕk‖ < ε.

(c) For any ω ∈ Ω and e ∈ KE
ω , there exists a net {eV }V ∈NΩ(ω) such that eV ∈ KE

V and
‖e− eV ‖ → 0.

3. Some technical results

In this section, we will give two technical lemmas (3.3 and 3.6) which are major in-
gredients for all the results in this paper. Before that, let us give another automatic
continuity type lemma that is needed for these two essential lemmas.

Lemma 3.1. Zθ := {ν ∈ ∆ : θ̃(e)(ν) = 0 for all e ∈ E} is a closed subset (where θ̃ is
as in Section 2). Moreover, if σ : ∆θ → Ω∞ (where ∆θ := ∆ \ Zθ) is a map such that
θ(IE

σ(ν)) ⊆ KF
ν (ν ∈ ∆θ), then σ is continuous.

Proof: It follows from Remark 2.5(a) that Zθ is closed. Suppose on the contrary,
that there exists a net {νi}i∈I in ∆θ that converges to ν0 ∈ ∆θ but σ(νi) 9 σ(ν0).
Then there are U,W ∈ NΩ∞(σ(ν0)) with {i ∈ I : σ(νi) /∈ IntΩ(W )} being cofinal and
U ⊆ IntΩ∞(W ). As Ω∞ is compact, by passing to a subnet if necessary, we can assume
that {σ(νi)} converges to an element ω ∈ Ω∞ such that there exists V ∈ NΩ∞(ω) with
V ∩ U = ∅. Pick any e ∈ E and ϕ ∈ UΩ∞(V,Ω∞ \ U). Since σ(νi) → ω, we see that
e(1− ϕ) ∈ IE

σ(νi)
eventually and so,

θ̃(e(1− ϕ))(νi) = 0 eventually

(by the hypothesis). By Remark 2.5(a), we see that θ̃(e(1 − ϕ))(ν0) = 0. On the other
hand, we have θ(eϕ) ∈ KF

ν0
(because eϕ ∈ IE

σ(ν0)) and so θ(e) ∈ KF
ν0

which gives the
contradiction that ν0 ∈ Zθ. �

Remark 3.2. (a) Note that for any ν ∈ Zθ, one has

(3.1) θ(IE
ω ) ⊆ KF

ν (ω ∈ Ω).

Consequently, if we extend σ in Lemma 3.1 by setting σ(ν) arbitrarily for each ν ∈ Zθ,
then θ(IE

σ(ν)) ⊆ KF
ν (ν ∈ ∆) but one should not expect such σ to be continuous.

(b) θ is said to be full if Zθ = ∅. Moreover, E is said to be full if id : E → E is full (or
equivalently, E 6= KE

ω for any ω ∈ Ω).

(c) One can use our proof for Lemma 3.1 to give the following (probably known) result:

Suppose that σ : ∆ → Ω is a map and Φ : C0(Ω) → Cb(∆) is a C-linear
map such that Φ(λ ·ψ) = Φ(λ) · (ψ ◦σ) (λ, ψ ∈ C0(Ω)), and for any ν ∈ ∆,
there exists λ ∈ C0(Ω) with Φ(λ)(ν) 6= 0. Then σ is continuous.
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Lemma 3.3. Let σ : ∆θ → Ω be a map such that θ(IE
σ(ν)) ⊆ KF

ν (ν ∈ ∆θ).

(a) If Uθ :=
{
ν ∈ ∆ : sup‖e‖≤1 ‖θ̃(e)(ν)‖ = ∞

}
, then Uθ ⊆ ∆θ,

sup
ν∈∆\Uθ;‖e‖≤1

‖θ̃(e)(ν)‖ < ∞

(we use the convention that sup ∅ = 0) and σ(Uθ) is a finite set.

(b) If Nθ,σ :=
{
ν ∈ ∆θ : θ(KE

σ(ν)) * KF
ν

}
, then Nθ,σ ⊆ Uθ and σ(Nθ,σ) consists of non-

isolated points in Ω.

(c) If, in addition, σ is an injection sending isolated points in ∆θ to isolated points in Ω,

then θ̃(e · ϕ) = θ̃(e) · ϕ ◦ σ (e ∈ E,ϕ ∈ C0(Ω)).

Proof: (a) The first conclusion is clear. We put Y to be the c0-direct sum
⊕c0

ν∈∆ ΞF
ν . As

e 7→ θ̃(e)(ν) can be regarded a bounded C-linear map from E into Y when ν ∈ ∆\Uθ and

‖θ̃(e)(ν)‖ ≤ ‖θ(e)‖, the uniform boundedness principle will give the second conclusion.
Assume now that σ(Uθ) is infinite. For n = 1, we can find ν1 ∈ ∆ as well as e1 ∈ E

with ‖e1‖ ≤ 1 and ‖θ̃(e1)(ν1)‖ > 1. Inductively, we can find νn ∈ ∆ and en ∈ E such
that

σ(νn) 6= σ(νk) (k = 1, ..., n− 1), ‖en‖ ≤ 1 and ‖θ̃(en)(νn)‖ > n3.

There exist n1 ∈ N and U1 ∈ NΩ(σ(νn1)) such that {n ∈ N : n > n1 and σ(νn) /∈ U1}
is infinite. Inductively, we can find a subsequence {νnk

} and Uk ∈ NΩ(σ(νnk
)) (k ∈ N)

such that Uk ∩ Ul = ∅ for distinct k, l ∈ N. Without loss of generality, one can assume
that nk = k. Pick Vn ∈ NΩ(σ(νn)) such that Vn is subset of IntΩ(Un). Consider λn ∈
UΩ(Vn, Un) (n ∈ N). Notice that ‖enλ

2
n‖ ≤ 1 and e :=

∑∞
k=1

ekλ2
k

k2 ∈ E. Take any n ∈ N.
Since

n2e− enλ
2
n = n2

(∑
k 6=n

ekλk

k2

)(∑
k 6=n

λk

)
∈ KE

Un
,

we have n2θ̃(e)(νn) = θ̃(enλ
2
n)(νn) (by the hypothesis). On the other hand, as en−enλ

2
n =

en(1− λ2
n) ∈ KE

Vn
, we have,∥∥∥θ̃(e)∥∥∥ ≥
∥∥∥θ̃(e)(νn)

∥∥∥ =
1

n2

∥∥∥θ̃(enλ
2
n)(νn)

∥∥∥ =
1

n2

∥∥∥θ̃(en)(νn)
∥∥∥ > n

which contradicts the finiteness of ‖θ̃(e)‖.
(b) Consider ν ∈ ∆ \ Uθ. Then κ := sup‖e‖≤1

∥∥∥θ̃(e)(ν)∥∥∥ < ∞. Take any e ∈ KE
σ(ν). Pick

eV ∈ KE
V (V ∈ NΩ(σ(ν))) with ‖eV − e‖ → 0. Since θ(eV ) ∈ KF

ν ,∥∥∥θ̃(e)(ν)∥∥∥ =
∥∥∥θ̃(e− eV )(ν)

∥∥∥ ≤ κ ‖e− eV ‖ .

This shows that ν ∈ ∆\Nθ,σ. The second statement is clear because if σ(ν) is an isolated
point in Ω, then {σ(ν)} ∈ NΩ(σ(ν)) and so, θ(KE

σ(ν)) ⊆ KF
ν .
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(c) For any ν ∈ ∆ \Nθ,σ and e ∈ E, we have eϕ− eϕ(σ(ν)) = e(ϕ− ϕ(σ(ν))1) ∈ KE
σ(ν).

Thus,

(3.2) θ̃(eϕ)(ν) = θ̃(e)(ν)ϕ(σ(ν)) (e ∈ E, ν ∈ ∆ \Nθ,σ).

In particular, (3.2) is true when ν ∈ ∆ \ Uθ (by part (b)) or when ν ∈ Uθ is an isolated
point of ∆θ (by the hypothesis as well as part (b)). Suppose that ν ∈ Uθ is a non-isolated
point of ∆θ. As σ is injective, part (a) implies that Uθ is a finite set. Hence, there exists
a net {νi} in ∆θ \ Uθ converging to ν. Now, by Lemma 3.1,

θ̃(eϕ)(ν) = lim θ̃(eϕ)(νi) = lim θ̃(e)(νi)ϕ(σ(νi)) = θ̃(e)(ν)ϕ(σ(ν)).

�

Remark 3.4. Note that since Zθ is closed, isolated points in ∆θ are the same as isolated
points of ∆. Moreover, for any ν ∈ Zθ, we have sup‖e‖≤1 ‖θ̃(e)(ν)‖ = 0 and (3.1) holds.
Therefore, Lemma 3.3 remains valid if we replace all the ∆θ with ∆ (in fact, the current
form is stronger as any injection on ∆ restricted to an injection on ∆θ). The same is
true for all the remaining results in this section.

If σ is injective, then Uθ is finite and we have our first nearly automatically bounded
result which states that if θ is a “module map through an injection σ : ∆ → Ω” (one
can relax this slightly to an injection on ∆θ), then θ is “bounded after taking away finite
number of points from ∆”.

Proposition 3.5. Let Ω and ∆ be two locally compact Hausdorff spaces. Let E and F be
an essential Banach C0(Ω)-module and an essential Banach C0(∆)-module respectively,
and let θ : E → F be a C-linear map (not assumed to be bounded). Suppose that σ : ∆θ →
Ω is an injection such that θ(e · ϕ)(ν) = θ(e)(ν)ϕ(σ(ν)) (e ∈ E,ϕ ∈ C0(Ω), ν ∈ ∆θ).
Then there exists a finite subset T ⊆ ∆ such that

sup
ν∈∆\T

e∈E,‖e‖≤1

‖θ̃(e)(ν)‖ < ∞.

Lemma 3.6. Let σ : ∆θ → Ω be a map such that θ(IE
σ(ν)) ⊆ KF

ν (ν ∈ ∆θ). Suppose, in

addition, that F is a Banach C0(∆)-normed module.

(a) Nθ,σ is an open subset of ∆.

(b) If σ is injective, then Uθ is a finite set consisting of isolated points of ∆. If, in
addition, Uθ 6= ∆, then F = F∆\Uθ

⊕
⊕

ν∈Uθ
ΞF

ν and

θ0 := Pθ,σ ◦ θ|EΩ\σ(Uθ)
: EΩ\σ(Uθ) → F∆\Uθ
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is a bounded linear map (where Pθ,σ : F → F∆\Uθ
is the canonical projection) such that

(3.3) θ0(e · ϕ) = θ0(e) · ϕ ◦ σ (e ∈ EΩ\σ(Uθ), ϕ ∈ C0(Ω \ σ(Uθ)))

(the value of σ on Zθ can be set arbitrarily).

Proof: Note, first of all, that as F is C0(Ω)-convex, one can regard θ̃ = θ.

(a) As ∆θ is open in ∆ and Nθ,σ ⊆ Uθ ⊆ ∆θ, it suffices to show that Nθ,σ is open in ∆θ.
By Lemma 3.3(a),

κ := sup
ν /∈Uθ

sup
‖e‖≤1

‖θ(e)(ν)‖ < ∞.

Let {νi}i∈I be a net in ∆θ \Nθ,σ converging to ν0 ∈ ∆θ, and e be an arbitrary element in
KE

σ(ν0). By Lemma 3.1, we know that σ(νi) → σ(ν0). Suppose that {σ(νi)}i∈I is a finite

set. By passing to subnet, we can assume that σ(νi) = σ(ν0) (i ∈ I). As e(σ(ν0)) = 0
and νi /∈ Nθ,σ, we have θ(e)(νi) = 0 which gives θ(e)(ν0) = 0 and so θ(e) ∈ KF

ν0
. Suppose

that {σ(νi)}i∈I is infinite. If there exists i0 ∈ I such that νj ∈ Uθ for every j ≥ i0, then
we can assume that {σ(νi)}i∈I ⊆ σ(Uθ) which is a finite set, and the above implies that
θ(e) ∈ KF

ν0
. Otherwise, {i ∈ I : νi /∈ Uθ} is cofinal, and by passing to a subnet, we can

assume that νi /∈ Uθ (i ∈ I). For any ε > 0, pick V ∈ NΩ(σ(ν0)) and eV ∈ KE
V with

‖eV − e‖ < ε. When i is large enough, σ(νi) ∈ V and eV (σ(νi)) = 0. Thus,

‖θ(e)(νi)‖ = ‖θ(e− eV )(νi)‖ ≤ κε.

By the continuity of the norm function on ΞF , we have ‖θ(e)(ν0)‖ ≤ κε which implies
that θ(e)(ν0) = 0.

(b) By the hypothesis and Lemma 3.3(a), Uθ is finite. Without loss of generality, we
assume that ∆ 6= Uθ. Let

(3.4) κ := sup
ν∈∆\Uθ

sup
‖e‖≤1

‖θ(e)(ν)‖ < ∞.

Assume on the contrary that there is ν0 ∈ Uθ which is not an isolated point in ∆. As Uθ

is finite, there is a net {νi} in ∆ \ Uθ such that νi → ν0. By the definition of Uθ, there
is e ∈ E with ‖e‖ ≤ 1 and ‖θ(e)(ν0)‖ > κ+ 1 and this will contradicts the continuity of
|θ(e)| (because of (3.4)). Now, as Uθ is a finite set consisting of isolated points in ∆ and
F is the space of C0-sections on ΞF , we see that

F = KF
Uθ
⊕
⊕
ν∈Uθ

ΞF
ν .

By Lemma 3.3(b) and the argument of Lemma 3.3(c) (more precisely, (3.2)), we see
θ0 will satisfy (3.3). On the other hand, the boundedness θ0 follows from (3.4). �

Note that in both Lemmas 3.3(c) and 3.6(b), one can replace the injectivity of σ with
the condition that σ−1(ω) is at most finite for any ω ∈ Ω.
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The following is our second nearly automatic boundedness result that applies, in par-
ticular, when F is a Hilbert C0(∆)-module.

Theorem 3.7. Let Ω and ∆ be two locally compact Hausdorff spaces. Let E be an
essential Banach C0(Ω)-module, let F be an essential Banach C0(∆)-normed module, and
let θ : E → F be a C-linear map (not assumed to be bounded). Suppose that σ : ∆θ → Ω
is an injection such that θ(IE

σ(ν)) ⊆ KF
ν (ν ∈ ∆).

(a) If ∆ contains no isolated point, then θ is bounded.

(b) If σ sends isolated points in ∆θ to isolated points in Ω, then Nθ,σ = ∅ and there exists
a finite set T consisting of isolated points of ∆, a bounded linear map θ0 : EΩ\σ(T ) → F∆\T
as well as linear maps θν : ΞE

σ(ν) → ΞF
ν (ν ∈ T ) such that E = EΩ\σ(T ) ⊕

⊕
ν∈T ΞE

σ(ν),

F = F∆\T ⊕
⊕
ν∈T

ΞF
ν and θ = θ0 ⊕

⊕
ν∈T

θν .

Proof: (a) This follows directly from Lemma 3.6(b).

(b) The first conclusion follows from Lemma 3.3(c) and the second conclusion follows
from Lemma 3.6(b) (note that we have a sharper conclusion because Nθ,σ = ∅). �

4. Applications to local linear mappings

In the section, we assume that ∆ = Ω and σ = id. More precisely, we consider the case
when the C-linear map θ is a local map in the sense that θ(e) · ϕ = 0 whenever e ∈ E
and ϕ ∈ C0(Ω) satisfying e · ϕ = 0. It is obvious that any C0(Ω)-module map is local.

Remark 4.1. Suppose that θ is local. Let U, V ⊆ Ω be open sets with the closure of V
being a compact subset of U , and consider λ ∈ UΩ(V, U). Pick any e ∈ KE

U . For any
ε > 0, there exists ϕ ∈ KU with ‖e− eϕ‖ < ε. Thus, eλ = 0 which implies that θ(e)λ = 0
and θ(e) = θ(e)(1 − λ) ∈ KF

V . This shows that σ = id will satisfy the hypothesis in all
the results in Section 3.

The following theorem (which follows directly from the results in Section 3 as well as
Remark 4.1) is our main result concerning local linear maps.

Theorem 4.2. Let Ω be a locally compact Hausdorff space. Suppose that E and F are
essential Banach C0(Ω)-modules, and θ : E → F is a local C-linear map (not assumed
to be bounded).

(a) θ̃ is a C0(Ω)-module map and the conclusion of Proposition 3.5 holds.

(b) If, in addition, F is C0(Ω)-normed, then θ is a C0(Ω)-module map and the conclusions
of Theorem 3.7 hold.
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It is natural to ask if one can relax the assumption of F being C0(Ω)-normed to C0(Ω)-
convex in the second statement of Theorem 4.2 (i.e. whether every C0(Ω)-module map
from an essential Banach C0(Ω)-module to an essential Banach C0(Ω)-convex module is
automatically bounded provided that Ω contains no isolated point). Unfortunately, it is
not the case as can be seen by the following simple example.

Example 4.3. Let E := C([0, 1]) ⊕∞ X and F := C([0, 1]) ⊕∞ Y , where X and Y are
two infinite dimensional Banach spaces. Then E is an essential Banach C([0, 1])-convex
module under the multiplication: (e, x) ·ϕ = (e ·ϕ, xϕ(0)) (e, ϕ ∈ C([0, 1]); x ∈ X). In the
same way, F is an essential Banach C([0, 1])-convex module. Suppose that R : X → Y is
an unbounded linear map and θ : E → F is given by θ(e, x) = (e,R(x)) (e ∈ C([0, 1]); x ∈
X). Then θ is a C([0, 1])-module map which is not bounded (as its restriction on X is
R). In this case, we have Uθ = {0}.

Corollary 4.4. Let Ω be a locally compact Hausdorff. Any local C-linear θ from an
essential Banach C0(Ω)-module into a Hilbert C0(Ω)-module is a C0(Ω)-module map.
Moreover, if Ω contains no isolated point, then any such θ is automatically bounded.

Remark 4.5. Let LC0(Ω)(E;C0(Ω)) (respectively, BC0(Ω)(E;C0(Ω))) be the “algebraic
dual” (respectively, “topological dual”) of E, i.e. the collection of all (respectively, all
bounded) C0(Ω)-module maps from E into C0(Ω). An application of Corollary 4.4 is that
the algebraic dual and the topological dual of E coincide in many cases:

If Ω is a locally compact Hausdorff space having no isolated point and E is
an essential Banach C0(Ω)-module, then BC0(Ω)(E;C0(Ω)) = LC0(Ω)(E;C0(Ω)).

Corollary 4.6. Let Ξ and Λ be respectively an (H)-Banach bundle and an (F)-Banach
bundle over the same base space Ω. If ρ : Ξ → Λ is a fibrewise linear map (without any
boundedness nor continuity assumption) such that ρ◦e ∈ Γ0(Λ) for every e ∈ Γ0(Ξ), then
there exists a finite subset S ⊆ Ω consisting of isolated points such that ρ restricts to a
bounded Banach bundle map ρ0 : ΞΩ\S → ΛΩ\S.

Let X be a Banach space. We denote by `∞(X) and c0(X) the set of all bounded
sequences and the set of all c0-sequences in X, respectively. We also recall that `∞ ∼=
C(βN) where βN is the Stone-Cech compactification of N (which can be identified with
the collection of all ultrafilters on N).

Proposition 4.7. Let X and Y be Banach spaces, and let θk : X → Y (k ∈ N ∪ {∞})
be linear maps (not assumed to be bounded). For any sequence {xk}k∈N in X, we put
θ({xk}k∈N) := {θk(xk)}k∈N.

(a) If θ(c0(X)) ⊆ c0(Y ), then there exists n0 ∈ N such that supn≥n0
‖θn‖ <∞.
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(b) If limk→∞ θk(xk) = θ∞(x) for any {xk}k∈N ∈ `∞(X) with limk→∞ xk = x, then θ∞ is
bounded, and there is n0 ∈ N with supn≥n0

‖θn‖ <∞.

(c) Suppose that θ(`∞(X)) ⊆ `∞(Y ) and limF θn(xk) = 0 for every {xk}k∈N ∈ `∞(X)
and every ultrafilter F on N with limF xk = 0. Then there exist F1, ...,Fn ∈ βN with

supF 6=F1,...,Fn
‖θF‖ <∞ (where θF : Ξ

`∞(X)
F → Ξ

`∞(Y )
F is the induced map). In particular,

supn≥n0
‖θn‖ <∞ for some n0 ∈ N.

Proof: (a) Let E = c0(X) and F = c0(Y ). Then θ is a C0(N)-module map and we can
apply Theorem 4.2.

(b) Let E = C(N∞, X) and F = C(N∞, Y ). Then θ⊕θ∞ is a well defined C(N∞)-module
map from E into F and Theorem 4.2 implies this part.

(c) Let E = `∞(X) and F = `∞(Y ). Then E and F are unital Banach C(βN)-modules.
For any ultrafilter F ∈ βN, one has

KE
F = {(xn) ∈ E : lim

F
xn = 0} and KF

F = {(yn) ∈ F : lim
F
yn = 0}.

The first hypothesis shows that θ(E) ⊆ F and the second one tells us that θ(KE
F ) ⊆ KF

F .
On the other hand, if n ∈ N and Fn = {U ⊆ N : n ∈ U}, then

KE
Fn

= {(xk) ∈ `∞(X) : xn = 0}
and so, θFn = θn. Now, the conclusion follows from Theorem 4.2. �

Remark 4.8. Note that if F is a free ultrafilter on N, then Ξ
`∞(X)
F and Ξ

`∞(Y )
F can be

identified with the ultrapowers XF and Y F of X and Y (over F) respectively. One can
interpret Proposition 4.7(c) as follows:

If the sequence {θn} as in Proposition 4.7 induces canonically a map θ :
`∞(X) → `∞(Y ) as well as a map θF : XF → Y F for every free ultrafilter
F (none of them assumed to be bounded), then for all but finite number
of ultrafilters F, the map θF is bounded and they have a common bound
(in particular, all but finite number of θn are bounded and they have a
common bound).

It can be shown easily that the converse of the above is also true (but we left it to the
readers to check the details):

If the sequence {θn} is as in Proposition 4.7 and there exists n0 ∈ N with
supn≥n0

‖θn‖ < ∞, then {θn} induces canonically a map from `∞(X) to

`∞(Y ) as well as a map from XF to Y F for every free ultrafilter F.

Another important point in Theorem 4.2 is the automatic C0(Ω)-linearity. In fact, it
can be shown that for every C∗-algebra A, any bounded local linear map from a Banach
right A-module into a Hilbert A-module is automatically A-linear (see Proposition A.1
in the Appendix). Theorem 4.2 tells us that if A is commutative, then one can have
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the same conclusion without the boundedness assumption and the range space can be
relax to a Banach A-convex module. Another application of this theorem is that if A is
a finite dimensional C∗-algebras, then every local linear map between any two Banach
right A-modules is A-linear.

Corollary 4.9. Let A be a finite dimensional C∗-algebra. Suppose that E and F are
unital Banach right A-modules. If θ : E → F is a local C-linear map in the sense of
Proposition A.1 (not assumed to be bounded), then θ is an A-module map.

Proof: Pick any x ∈ E and a ∈ Asa. Let Aa := C∗(a, 1). By Remark 2.5(b), both
E and F are unital Banach Aa-convex modules. Thus, Theorem 4.2 tell us that θ is a
Aa-module map. In particular, θ(xa) = θ(x)a. �

Remark 4.10. (a) Suppose that A is any unital C∗-algebra and F is a unital Banach
right A-convex module in the sense ‖xa + y(1 − a)‖ ≤ max{‖x‖, ‖y‖} for any x, y ∈ F
and a ∈ A+ with a ≤ 1. Then, by the argument of Corollary 4.9, any local linear map
from any unital Banach right A-module into F is automatically A-linear.

(b) If one can show that for any compact subset Ω ⊆ R and any essential Banach C(Ω)-
module F , the map ∼: F → F̃ is injective, then using the argument of Corollary 4.9, one
can show that for any C∗-algebra A, any local linear map between any two Banach right
A-modules is an A-module map (without assuming that θ is bounded). However, we do
not know if it is true.

5. Applications to separating mappings

In this section, we consider Ω and ∆ to be possibly different spaces. In this case,
one cannot define local property any more but one has a weaker natural property called
separating. More precisely, θ is said to be separating if

|θ̃(e)| · |θ̃(g)| = 0, whenever e, g ∈ E satisfying |ẽ| · |g̃| = 0.

In the case when E = C0(Ω) and F = C0(∆), this coincides with the well-known notion
of disjointness preserving (see e.g. [1, 5, 18, 14, 12, 15]).

Lemma 5.1. If θ is separating, there is a continuous map σ : ∆θ → Ω∞ such that
θ(IE

σ(ν)) ⊆ IF
ν (ν ∈ ∆θ).

Proof: Let
Sν := {ω ∈ Ω∞ : θ(IE

ω ) ⊆ IF
ν } (ν ∈ ∆θ).

Assume that there is ν ∈ ∆θ with Sν = ∅. Then for each ω ∈ Ω∞, there exist Uω ∈
NΩ∞(ω) and eω ∈ KE

Uω
with θ(eω) /∈ IF

ν . Let {Uωi
}n

i=1 be a finite subcover of {Uω}ω∈Ω∞

and {ϕi}n
i=1 be a partition of unity subordinate to {Uωi

}n
i=1. Take any g ∈ E. From
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|g̃ϕi||ẽωi
| = 0, we have |θ̃(gϕi)||θ̃(eωi

)| = 0 which implies that θ̃(gϕi)(ν) = 0 (because of
Remark 2.5(a) and the fact that θ(eωi

) /∈ IF
ν ). Consequently,

θ̃(g)(ν) =
n∑

i=1

θ̃(gϕi)(ν) = 0,

and we obtain the contradiction that ν ∈ Zθ. Assume that there is ν ∈ ∆θ with Sν

containing two distinct points ω1 and ω2. Let U, V ∈ NΩ∞(ω1) such that V ⊆ IntΩ∞(U)
and ω2 /∈ U . Take ϕ ∈ UΩ∞(V, U). For any e ∈ E, we have e(1− ϕ) ∈ IE

ω1
and eϕ ∈ IE

ω2

which implies that

θ(e) = θ(e(1− ϕ)) + θ(eϕ) ∈ IF
ν .

This gives the contradiction that ν ∈ Zθ. Therefore, we can define σ(ν) to be the only
point in Sν , and it is clear that θ(IE

σ(ν)) ⊆ IF
ν . The continuity of σ follows from Lemma

3.1. �

Corollary 5.2. Let Ξ be an (H)-Banach bundle over Ω, let Λ be an (F)-Banach bundle
over ∆, and let ρ : Ξ → Λ be a map (not assumed to be bounded nor continuous). Suppose
that σ : ∆ → Ω is an injection sending isolated points in ∆ to isolated points in Ω such
that e 7→ ρ ◦ e ◦ σ defines a linear map θ : Γ0(Ξ) → Γ0(Λ). Then there exists a finite
set T consisting of isolated points of ∆ such that the restriction of ρ induces a bounded
Banach bundle map ρ0 : ΞΩ\σ(T ) → Λ∆\T . Moreover, σ is continuous on ∆ \ Zρ,σ where
Zρ,σ := {ν ∈ ∆ : ρ(e(σ(ν))) = 0 for all e ∈ E}.

Proof: The first conclusion follows from Theorem 3.7. To see the second conclusion,
we note that θ is separating and we can apply Lemma 5.1 (note that Zρ,σ = Zθ). �

Theorem 5.3. Let Ω and ∆ be two locally compact Hausdorff spaces, and let E be a full
(see Remark 3.2(b)) essential Banach C0(Ω) module and F be a full essential Banach
C0(∆)-normed module. Suppose that θ : E → F is a bijective C-linear map (not assumed
to be bounded) such that it is biseparating in the sense that both θ and θ−1 are separating.

(a) There exists a homeomorphism σ : ∆ → Ω such that

θ(e · ϕ) = θ(e) · ϕ ◦ σ (e ∈ E;ϕ ∈ C0(Ω)).

(b) There exists isolated points ν1, ..., νn ∈ ∆ such that the restriction of θ induces a
Banach space isomorphism θ0 : EΩθ

→ F∆θ
, where ∆θ := ∆\{ν1, ..., νn} and Ωθ := σ(∆θ).

Proof: (a) If e ∈ E with ẽ = 0, then θ(e) = θ̃(e) = 0 (as θ is separating and F is

C0(∆)-convex) and e = 0 (as θ is injective). Hence, one can regard θ̃−1 = θ−1 as well.
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The fullness of E and F as well as the surjectivity of θ and θ−1 ensure that Zθ = ∅ and
Zθ−1 = ∅. Therefore, by Lemma 5.1, we have continuous maps

τ : Ω → ∆∞ and σ : ∆ → Ω∞

such that θ−1(IF
τ(ω)) ⊆ IE

ω (ω ∈ Ω) and θ(IE
σ(ν)) ⊆ IF

ν (ν ∈ ∆). Consequently, for any

ν ∈ ∆0 := σ−1(Ω) and ω ∈ Ω0 := τ−1(∆), we have

σ(τ(ω)) = ω and τ(σ(ν)) = ν

(because IE
σ(τ(ω)) ⊆ IE

ω , IF
τ(σ(ν)) ⊆ IF

ν , and E and F are full). Assume that there exists

ν ∈ ∆ \Nθ,σ (Nθ,σ as in Lemma 3.3(b)) with σ(ν) = ∞. Then F = θ(KE
∞) ⊆ KF

ν which
contradicts the fullness of F . Thus,

∆ \Nθ,σ ⊆ ∆0.

On the other hand, as ∆0∩Nθ,σ is a finite set (by Lemma 3.3(a)&(b) and the fact that σ
is injective in ∆0) that is open in ∆ (by Lemma 3.6(a)), we see that ∆0∩Nθ,σ consists of
isolated points of ∆, and so, σ(∆0 ∩Nθ,σ) consists of isolated points of Ω0 (as σ restricts
to a homeomorphism from ∆0 to Ω0). We want to show that

∆0 ∩Nθ,σ = ∅.

Suppose on the contrary that there is ν ∈ ∆0 ∩ Nθ,σ. We know that σ(ν) (6= ∞) is a
non-isolated point of Ω∞ (by Lemma 3.3(b)). Therefore, there exists a net {ωi}i∈I in
Ω \ {σ(ν)} converging to σ(ν). If {i ∈ I : ωi ∈ Ω0} is cofinal, then there is a net in
Ω0 \ {σ(ν)} converging to σ(ν) which contradicts the fact that σ(ν) is an isolated point
in Ω0. Otherwise, ωi ∈ τ−1(∞) eventually which gives the contradiction that ν = ∞
(note that τ(ωi) → ν as ν ∈ ∆0). Consequently,

∆ \Nθ,σ = ∆0.

Assume that Nθ,σ 6= ∅ and ν ∈ Nθ,σ. Since Nθ,σ is an open subset of ∆ (by Lemma
3.6(a)), there exists V ∈ N∆(ν) such that V ⊆ Nθ,σ. Take any f ∈ F with f(ν) 6= 0
(by the fullness of F ) and f vanishes outside V . Thus, f ∈ IF

∞ (as V is compact) and
so, θ−1(f)(ω) = 0 for any ω ∈ τ−1(∞). On the other hand, for any ω ∈ Ω0, one has
τ(ω) ∈ ∆0 and so, f ∈ IF

τ(ω) (as f vanishes on the open set ∆0 containing τ(ω)) which

implies that θ−1(f)(ω) = 0. Hence θ−1(f) = 0 which contradicts the injectivity of θ−1.
Therefore, Nθ,σ = ∅. Now, part (a) follows from Lemma 3.3(c).

(b) This follows directly from Theorem 3.7(b). �

One can apply the above to the case when F is a full Hilbert C0(∆)-module. Another
direct application of Theorem 5.3 is the following theorem which extends and enriches
a result of Chan [8] (by removing the boundedness assumption on θ), as well as results
concerning the product bundle cases discussed in [13, 4]. Notice that if (Ω, {Ξx}, E) is a
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continuous fields of Banach spaces over a locally compact Hausdorff space Ω (as defined
in [11, 9]), then E is a full essential Banach C0(Ω)-normed module.

Theorem 5.4. Let (Ω, {Ξx}, E) and (∆, {Λy}, F ) be continuous fields of Banach spaces
over locally compact Hausdorff spaces Ω and ∆ respectively. Let θ : E → F be a bi-
jective linear map such that both θ and its inverse θ−1 are separating. Then there is a
homeomorphism σ : ∆ → Ω and a bijective linear operator Hν : Ξσ(ν) → Λν such that

θ(f)(ν) = Hν(f(σ(ν))) (f ∈ E, ν ∈ ∆).

Moreover, at most finitely many Hν are unbounded, and this can happen only when ν is
an isolated point in ∆. In particular, if Ω (or ∆) contains no isolated point, then θ is
automatically bounded.

Appendix A. Bounded local linear maps are A-linear

Proposition A.1. Let A be a C∗-algebra, and let θ be a bounded linear map from a
Banach right A-modules E into a Hilbert A-module F . Then θ is a right A-module map
if and only if θ is local (in the sense that θ(e)a = 0 whenever e ∈ E and a ∈ A with
ea = 0).

Proof. Suppose θ is local. Observe, first of all, that E∗∗ and F ∗∗ are unital Banach A∗∗-
modules, and the bidual map θ∗∗ : E∗∗ → F ∗∗ is a bounded weak*-weak* continuous
linear map. Fix x ∈ E and a ∈ A+. Let

Φ : C(σ(a))∗∗ → A∗∗

be the map induced by the canonical normal ∗-homomorphism Ψ : M(A)∗∗ → A∗∗. Pick
α, β ∈ R+ with α < β and define p := Φ(χσ(a)∩(α,β)). Let {fn} and {gn} be two bounded
sequences in C(σ(a))+ such that

fngn = 0, as well as fn ↑ χσ(a)∩(α,β) and gn ↓ χσ(a)\(α,β) pointwisely.

Note that as Ψ(A) ⊆ A, we have an := Φ(fn) ∈ A and we can write bn := Φ(gn) as
cn + γn1 where cn ∈ A and γn ∈ C. Fix n ∈ N. Since an and cn commute, there is
a locally compact Hausdorff space Ω with C∗(an, cn) ∼= C0(Ω). By considering bn ∈
C(Ω∞)+

∼= C∗(1, an, cn)+, one can find a net {di}i∈I in C0(Ω)+ ⊆ A+ such that di ≤ bn
(i ∈ I) and di → bn pointwisely. As 0 ≤ di ≤ bn and anbn = 0 in C(Ω∞), we see that
andi = 0. Now, the relation θ(xan)di = 0 and θ(xdi)an = 0 imply that θ∗∗(xan)bn = 0
and θ∗∗(xbn)an = 0. Since the multiplication in the bidual of the linking algebra of F
is jointly weak* continuous on bounded subsets, we see that θ∗∗(xp)(1 − p) = 0 and
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θ∗∗(x(1− p))p = 0 which implies that θ∗∗(xp) = θ∗∗(x)p. Finally, there exists rk ∈ R and
αk, βk ∈ R+ such that αk ≤ βk and

sup
t∈σ(a)

∣∣∣∣∣a(t)−
M∑

k=1

rkχσ(a)∩(αk,βk)(t)

∣∣∣∣∣→ 0.

Thus, by the weak* continuity again, we see that θ∗∗(xa) = θ∗∗(x)a as required. �
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