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Abstract. We define type A, type B, type C as well as C∗-semi-finite C∗-algebras.
It is shown that a von Neumann algebra is a type A, type B, type C or C∗-semi-finite
C∗-algebra if and only if it is, respectively, a type I, type II, type III or semi-finite von
Neumann algebra.

Moreover, any type I C∗-algebra is of type A (actually, type A coincides with the
discreteness as defined by Peligrad and Zsidó), and any type II C∗-algebra (as defined
by Cuntz and Pedersen) is of type B. Moreover, any type C C∗-algebra is of type
III (in the sense of Cuntz and Pedersen), any purely infinite C∗-algebra (in the sense
of Kirchberg and Rørdam) with real rank zero is of type C, and any separable purely
infinite C∗-algebra with stable rank one is also of type C.

We also prove that type A, type B, type C and C∗-semi-finiteness are stable under
hereditary C∗-subalgebras, multiplier algebras and strong Morita equivalence. Further-
more, any C∗-algebra A contains a largest type A closed ideal JA, a largest type B closed
ideal JB, a largest type C closed ideal JC as well as a largest C∗-semi-finite closed ideal
Jsf. Among them, we have JA + JB being an essential ideal of Jsf, and JA + JB + JC

being an essential ideal of A. On the other hand, A/JC is always C∗-semi-finite, and if
A is C∗-semi-finite, then A/JB is of type A.

Finally, we show that these results hold if type A, type B, type C and C∗-semi-
finiteness are replaced by discreteness, type II, type III and semi-finiteness (as defined
by Cuntz and Pedersen), respectively.

1. Introduction

In their seminal works ([27], see also [26]), Murray and von Neumann defined three
types of von Neumann algebras (namely, type I, type II and type III) according to the
properties of their projections. They showed that any von Neumann algebra is a sum
of a type I, a type II, and a type III von Neumann subalgebras. This classification was
shown to be very important and becomes the basic theory for the study of von Neumann
algebras (see e.g. [20]).

Since a C∗-algebra needs not have any projection, a similar classification for C∗-algebras
seems impossible. There is, however, an interesting classification scheme for C∗-algebras
proposed by Cuntz and Pedersen in [14], which captures some features of the classification
of Murray and von Neumann.

Date: December 15, 2012.
The authors are supported by National Natural Science Foundation of China (10771106), and Taiwan

NSC grant (99-2115-M-110-007-MY3).
1



2 CHI-KEUNG NG AND NGAI-CHING WONG

The classification theme of C∗-algebras took a drastic turn after an exciting work of
Elliott on the classification of AF -algebras through the ordered K-theory, in the sense
that two AF -algebras are isomorphic if and only if they have the same ordered K-theory
([16]). Elliott then proposed an invariant consisting of the tracial state space and some
K-theory datum of the underlying C∗-algebra (called the Elliott invariant) which could
be a suitable candidate for a complete invariant for simple separable nuclear C∗-algebras.
Although it is known recently that it is not the case (see [37]), this Elliott invariant still
works for a very large class of such C∗-algebras (namely, those satisfying certain regularity
conditions as described in [18]). Many people are still making progress in this direction
in trying to find the biggest class of C∗-algebras that can be classified through the Elliott
invariant (see, e.g., [17, 35]). Notice that this classification is very different from the
classification in the sense of Murray and von Neumann.

In this article, we reconsider the classification of C∗-algebras through the idea of Murray
and von Neumann. Instead of considering projections in a C∗-algebra A, we consider open
projections and we twist the definition of the finiteness of projections slightly to obtain
our classification scheme.

The notion of open projections was introduced by Akemann (in [1]). A projection p
in the universal enveloping von Neumann algebra (i.e. the biduals) A∗∗ of a C∗-algebra
A (see e.g. [36, §III.2]) is an open projection of A if there is an increasing net {aλ} of
positive elements in A+ with limλ aλ = p in the σ(A∗∗, A∗)-topology. In the case when A
is commutative, open projections of A are exactly characteristic functions of open sub-
sets of the spectrum of A. In general, there is a bijective correspondence between open
projections of A and hereditary C∗-subalgebras of A (where the hereditary C∗-subalgebra
corresponds to an open projection p is pA∗∗p ∩ A; see e.g. [30]). Characterizations and
further developments of open projections can be found in, e.g., [2, 3, 4, 9, 15, 29, 32].
Since every element in a C∗-algebra is in the closed linear span of its open projections, it
is reasonable to believe that the study of open projections will provide fruitful informa-
tion about the underlying C∗-algebra. Moreover, because of the correspondence between
open projections (respectively, central open projections) and hereditary C∗-subalgebras
(respectively, closed ideals), the notion of strong Morita equivalence as defined by Rieffel
(see [33] and also [11, 34]) is found to be very useful in this scheme.

One might wonder why we do not consider the classification of the universal enveloping
von Neumann algebras of C∗-algebras to obtain a classification of C∗-algebras. A reason
is that for a C∗-algebra A, its bidual A∗∗ always contains many minimum projections (see
e.g. [1, II.17]), and hence a reasonable theory of type classification cannot be obtained
without serious modifications. Furthermore, A∗∗ are usually very far away from A, and
information of A might not always be respected very well in A∗∗; for example, c and
c0 have isomorphic biduals, but the structure of their open projections can be used to
distinguish them (see e.g. Example 2.1 and also Proposition 2.3(b)).

As in the case of von Neumann algebras, in order to give a classification of C∗-algebras,
one needs, first of all, to consider a good equivalence relation among open projections.
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After some thoughts and considerations, we end up with the “spatial equivalence” as
defined in Section 2, which is weaker than the one defined by Peligrad and Zsidó in [31]
and stronger than the ordinary Murray-von Neumann equivalence. One reason for making
this choice is that it is precisely the “hereditarily stable version of Murray-von Neumann
equivalence” that one might want (see Proposition 2.7(a)(5)), and it also coincides with
the “spatial isomorphism” of the hereditary C∗-subalgebras (see Proposition 2.7(a)(2)).

Using the spatial equivalence relation, we introduce in Section 3, the notion of C∗-finite
C∗-algebras. It is shown that the sum of all C∗-finite hereditary C∗-subalgebra is a (not
necessarily closed) ideal of the given C∗-algebra. In the case when the C∗-algebra is B(H)
or K(H), this ideal is the ideal of all finite rank operators on H. Moreover, through C∗-
finiteness, we define type A, type B, type C as well as C∗-semi-finite C∗-algebras, and
we study some properties of them. In particular, we will show that these properties are
stable under taking hereditary C∗-subalgebras, multiplier algebras, unitalization (if the
algebra is not unital) as well as strong Morita equivalence. We will also show that the
notion of type A coincides precisely with the discreteness as defined in [31].

In Section 4, we will compare these notions with some results in the literature and give
some examples. In particular, we show that any type I C∗-algebra (see e.g. [30]) is of
type A; any type II C∗-algebra (as defined by Cuntz and Pedersen) is of type B; any
semi-finite C∗-algebras (in the sense of Cuntz and Pedersen) is C∗-semi-finite; any purely
infinite C∗-algebra (in the sense of Kirchberg and Rørdam) with real rank zero and any
separable purely infinite C∗-algebra with stable rank one are of type C; and any type C
C∗-algebra is of type III (as introduced by Cuntz and Pedersen). Using our arguments for
these results, we also show that any purely infinite C∗-algebra is of type III. Moreover, a
von Neumann algebra M is a type A, a type B, a type C or a C∗-semi-finite C∗-algebra if
and only if M is, respectively, a type I, a type II, a type III, or a semi-finite von Neumann
algebra.

In Section 5, we show that any C∗-algebra A contains a largest type A closed ideal JA
A ,

a largest type B closed ideal JA
B, a largest type C closed ideal JA

C as well as a largest
C∗-semi-finite closed ideal JA

sf . It is further shown that JA
A + JA

B is an essential ideal of

JA
sf , and JA

A + JA
B + JA

C is an essential ideal of A. On the other hand, A/JA
C is always a

C∗-semi-finite C∗-algebra, while B/JB
B is always of type A if one sets B := A/JA

C . We

also compare J
M(A)
A , J

M(A)
B , J

M(A)
C and J

M(A)
sf with JA

A , JA
B, JA

C and JA
sf , respectively.

In the Appendix, we give a very general classification scheme and observe that most of
the results in the main body are actually true in a more general context. In particular,
we show that many results in the main body remain valid if one replaces type A, type
B, type C and C∗-semi-finiteness with discreteness, type II, type III and semi-finiteness,
respectively.

Notation 1.1. Throughout this paper, A is a non-zero C∗-algebra, M(A) is the multiplier
algebra of A, Z(A) is the center of A, and A∗∗ is the bidual of A. Furthermore, Proj(A) is
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the set of all projections in A, while OP(A) ⊆ Proj(A∗∗) is the set of all open projections of
A. All ideals in this paper are two-sided ideals (not assumed to be closed unless specified).

If x, y ∈ A∗∗ and E is a subspace of A∗∗, we set xEy := {xzy : z ∈ E}, and denote
by E the norm closure of E. For any x ∈ A∗∗, we set herA(x) to be the hereditary C∗-
subalgebra x∗A∗∗x ∩ A of A (note that if u ∈ A∗∗ is a partial isometry, then herA(u) =
u∗A∗∗u ∩ A = {x ∈ A : x = u∗uxu∗u} = herA(u∗u)). When A is understood, we will use
the notation her(x) instead. Moreover, px is the right support projection of a norm one
element x ∈ A, i.e. px is the σ(A∗∗, A∗)-limit of {(x∗x)1/n}n∈N and is the smallest open
projection in A∗∗ with xpx = x.

Acknowledgement: The authors would like to thank Prof. Larry Brown, Prof. Edward
Effros and Prof. George Elliott for giving us some comments.

2. Spatial equivalence of open projections

In this section, we will consider a suitable equivalence relation on the set of open
projections of a C∗-algebra. Let us start with the following example, which shows that
the structure of open projections is rich enough to distinguish c and c0, while they have
isomorphic biduals (see Proposition 2.3(b) below for a more general result).

Example 2.1. The sets of open projections of c0 and c can be regarded as the collections
X and Y, of open subsets of N and of open subsets of the one point compactification of
N, respectively. As ordered sets, X and Y are not isomorphic. In fact, suppose on the
contrary that there is an order isomorphism Ψ : Y → X. Then Ψ(N) is a proper open
subset of N. Let k /∈ Ψ(N) and U ∈ Y with Ψ(U) = {k}. As U is a minimal element, it
is a singleton set. Thus, U ⊆ N, which gives the contradiction that {k} ⊆ Ψ(N).

Secondly, we give the following well-known remarks which show that open projections
and the hereditary C∗-subalgebras they define, are “hereditarily invariant”. These will
clarify some discussions later on.

Remark 2.2. Let B ⊆ A be a hereditary C∗-subalgebra and e ∈ OP(A) be the open
projection with herA(e) = B.

(a) For any p ∈ Proj(B∗∗), one has herB(p) = herA(p).

(b) OP(B) = OP(A) ∩ B∗∗. In fact, if p ∈ OP(A) ∩ B∗∗ and {ai}i∈I is an approximate
unit in herA(p) = herB(p), then {ai}i∈I will σ(B∗∗, B∗)-converge to p and p ∈ OP(B).

(c) If z ∈ A satisfying zz∗, z∗z ∈ B, then z ∈ B. In fact, as z∗z is dominated by a positive
scalar multiple of e, we see that z∗z ∈ eA∗∗e∩A (as (eA∗∗e)+ is a hereditary cone of A∗∗

+ ).
Thus, by considering the polar decomposition of z, we see that ze = z. Similarly, we have
ez = z.



A MURRAY-VON NEUMANN TYPE CLASSIFICATION OF C∗-ALGEBRAS 5

Let jA : M(A) → A∗∗ be the canonical ∗-monomorphism, i.e. jA(x)(f) = f̃(x) (x ∈
M(A), f ∈ A∗), where f̃ ∈ M(A)∗ is the unique strictly continuous extension of f .
The proposition below can be regarded as a motivation behind the study of C∗-algebras
through their open projections. It could be a known result (especially, part (a)). However,
since we need it for the equivalence of (1) and (5) in Proposition 2.7(a), we give a proof
here for completeness.

Proposition 2.3. Suppose that A and B are C∗-algebras, and Φ : A∗∗ → B∗∗ is a ∗-
isomorphism.

(a) If Φ
(
jA(M(A))

)
= jB(M(B)), then Φ(A) = B.

(b) If Φ(OP(A)) = OP(B), then Φ(A) = B.

Proof: (a) Let pA ∈ OP(M(A)) such that herM(A)(pA) = iA(A). It is not hard to verify

that pA is the support of j̃A, where j̃A : M(A)∗∗ → A∗∗ is the ∗-epimorphism induced by
jA. Consider Ψ := j−1

B ◦ Φ ◦ jA : M(A) → M(B). Since jB ◦ Ψ = Φ ◦ jA, we see that
j̃B ◦ Ψ∗∗ = Φ ◦ j̃A (as Φ is automatically weak-*-continuous). Thus, j̃B(Ψ∗∗(pA)) = 1B∗∗

which implies Ψ∗∗(pA) ≥ pB. Similarly,

(Ψ∗∗)−1(pB) = (j−1
A ◦ Φ−1 ◦ jB)∗∗(pB) ≥ pA

and we have Ψ∗∗(pA) = pB. Consequently, Ψ(herM(A)(pA)) = herM(B)(pB) as required.

(b) If a ∈ M(A)sa and U is an open subset of σ(a) = σ(Φ(jA(a))), then χU(Φ(jA(a))) =
Φ(χU(jA(a))) is an element of OP(B) (by [5, Theorem 2.2] and the hypothesis). Thus,
by [5, Theorem 2.2] again, we have Φ(jA(a)) ∈ jB(M(B)). A similar argument shows
that Φ−1(jB(M(B))) ⊆ jA(M(A)). Now, we can apply part (a) to obtain the required
conclusion. �

Remark 2.4. Note that if A and B are separable and Ψ : M(A) → M(B) is a ∗-
isomorphism, then Ψ(A) = B, by a result of Brown in [10]. However, the same result is
not true if one of them is not separable (e.g. take A = M(B) and Ψ = id, where B is
non-unital). Proposition 2.3(a) shows that one has Ψ(A) = B if (and only if) Ψ extends
to a ∗-isomorphism from A∗∗ to B∗∗.

We now consider a suitable equivalence relation on OP(A). A naive choice is to use
the original “Murray-von Neumann equivalence” ∼Mv. However, this choice is not good
because [23] tells us that two open projections that are Murray-von Neumann equivalent
might define non-isomorphic hereditary C∗-subalgebras. On the other hand, one might
define p ∼her q (p, q ∈ OP(A)) whenever her(p) ∼= her(q) as C∗-algebras. The prob-
lem of this choice is that two distinct open projections of C([0, 1]) can be equivalent (if
they correspond to homeomorphic open subsets of [0, 1]), which means that the result-
ing classification, even if possible, will be very different from the Murray-von Neumann
classification.
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After some thoughts, we end up with an equivalence relation ∼sp on OP(A): p ∼sp q if
there is a partial isometry u ∈ A∗∗ satisfying

u∗ herA(p)u = herA(q) and u herA(q)u∗ = herA(p).

Note that this relation is precisely the “hereditarily stable version” of the Murray-von
Neumann equivalence (see Proposition 2.7(a)(5) below and the discussion following it).

In [31, Definition 1.1], Peligrad and Zsidó introduced another equivalence relation on
Proj(A∗∗): p ∼PZ q if there is a partial isometry u ∈ A∗∗ such that

p = uu∗, q = u∗u, u∗ herA(p) ⊆ A and u herA(q) ⊆ A.(2.1)

It is not difficult to see that ∼PZ is stronger than ∼sp, and a natural description of ∼PZ

on the set of range projections of positive elements of A is given in [28, Proposition 4.3].
However, we decide to use ∼sp as it seems to be more natural in the way of using open
projections (see Proposition 2.7(a) below). In the Appendix, we will give a brief discussion
for the situation when one uses ∼PZ instead of ∼sp.

Let us start with an extension of ∼sp to the whole of Proj(A∗∗).

Definition 2.5. We say that p, q ∈ Proj(A∗∗) are spatially equivalent with respect to A,
denoted by p ∼sp q, if there exists a partial isometry v ∈ A∗∗ satisfying

(2.2) p = vv∗, q = v∗v, v∗ herA(p)v = herA(q) and v herA(q)v∗ = herA(p).

In this case, we also say that the hereditary C∗-subalgebras herA(p) and herA(q) are
spatially isomorphic.

It might happen that her(p) = 0 but p 6= 0 and this is why we need to consider the first
two conditions in (2.2). We will see in Proposition 2.7(a) that the first two conditions are
redundant if p and q are both open projections.

Obviously, ∼sp is stronger than ∼Mv (for elements in Proj(A∗∗)). Moreover, if p ∼sp q,
then x 7→ v∗xv is a ∗-isomorphism from her(p) to her(q), which means that ∼sp is stronger
than ∼her in the context of open projections.

A good point of the spatial equivalence is that open projections are stable under ∼sp,
as can be seen in part (b) of the following lemma.

Lemma 2.6. (a) ∼sp is an equivalence relation in Proj(A∗∗).

(b) Let p, q ∈ Proj(A∗∗) and u ∈ A∗∗ be a partial isometry. If p is open, u∗pu = q,
herA(p) ⊆ u herA(q)u∗ and herA(q) ⊆ u∗ herA(p)u, then q is open and p ∼sp q. Conse-
quently, if p ∼sp q and p is open, then q is open.

(c) If B ⊆ A is a hereditary C∗-subalgebra and p, q ∈ Proj(B∗∗), then p and q are spatially
equivalent with respect to B if and only if they are spatially equivalent with respect to A.
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Proof: (a) It suffices to verify the transitivity. Suppose that p, q and v are as in Definition
2.5. If w ∈ A∗∗ and r ∈ Proj(A∗∗) satisfy that

p = w∗w, r = ww∗, w herA(p)w∗ = herA(r) and w∗ herA(r)w = herA(p),

then the partial isometry wv gives the equivalence r ∼sp q.

(b) As p is open and herA(p) is contained in the weak-*-closed subspace uA∗∗u∗, one has
p ≤ uu∗. Let v := pu. Then vv∗ = p and v∗v = u∗pu = q. Moreover, it is clear that
herA(p) ⊆ v herA(q)v∗ and herA(q) ⊆ v∗ herA(p)v. Now, it is easy to see that the relations
in (2.2) are satisfied. Furthermore, if {ai}i∈I is an approximate unit in herA(p), then
{v∗aiv} is an approximate unit in herA(q) that weak-*-converges to v∗pv = q, and so q is
open. The second statement follows directly from the first one.

(c) Suppose that p and q are spatially equivalent with respect to A and v ∈ A∗∗ satisfies
the relations in (2.2). As vv∗, v∗v ∈ B∗∗, Remark 2.2(c) tells us that v ∈ B∗∗. Now the
equivalence follows from Remark 2.2(a). �

Proposition 2.7. (a) If p, q ∈ OP(A), the following statements are equivalent.

(1) p ∼sp q.
(2) her(q) = u∗ her(p)u and her(p) = u her(q)u∗ for a partial isometry u ∈ A∗∗.
(3) her(q) ⊆ u∗ her(p)u and her(p) ⊆ u her(q)u∗ for a partial isometry u ∈ A∗∗.
(4) q ≤ v∗v and v her(q)v∗ = her(p) for a partial isometry v ∈ A∗∗.
(5) There is a partial isometry w ∈ A∗∗ such that p = ww∗ and

{w∗rw : r ∈ OP(A); r ≤ p} = {s ∈ OP(A) : s ≤ q}.

(b) If M is a von Neumann algebra and p, q ∈ Proj(M), then p ∼sp q if and only if
p ∼Mv q as elements in Proj(M).

Proof: (a) The implications (1) ⇒ (2) ⇒ (3) and (1) ⇒ (4) are clear.

(3) ⇒ (1). Since q is open, one has q ≤ u∗u. Thus, (uq)∗uq = q and Statement (3)
also holds when u is replaced by uq. As p is also open, a similar argument shows that
Statement (3) holds if we replace u by v := puq and that p = vv∗. Since q is open and
vqv∗ = vv∗ = p, Lemma 2.6(b) tells us that p ∼sp q.

(4) ⇒ (2). This follows from v∗ her(p)v = v∗v her(q)v∗v = her(q).

(1) ⇔ (5). As OP(her(p)) = {r ∈ OP(A) : r ≤ p} (see Remark 2.2(b)), one knows that
p ∼sp q will imply Statement (5). Conversely, suppose that Statement (5) holds. Then we
have q = w∗pw, and the map Φ : x 7→ w∗xw is a ∗-isomorphism from her(p)∗∗ to her(q)∗∗.
By Proposition 2.3(b), we see that Φ(her(p)) = her(q) and Statement (4) holds.

(b) If p ∼sp q, then p ∼Mv q as elements in Proj(M∗∗), which implies that p ∼Mv q as
elements in Proj(M). Conversely, if v ∈ M satisfying p = vv∗ and q = v∗v, then clearly
v∗ her(p)v = her(q). �

One can reformulate Statement (5) of Proposition 2.7(a) in the following way.
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There is a partial isometry w ∈ A∗∗ that induces Murray-von Neumann
equivalences between open subprojections of p (including p) and open sub-
projections of q (including q).

Therefore, we regard this as a kind of “hereditarily stable version” of the Murray-von
Neumann equivalence. Moreover, if v ∈ A∗∗ satisfies the relations in (2.2), then by
Lemma 2.6(b), r ∼sp v∗rv for all r ∈ OP(her(p)), which means that spatial equivalence
is automatically “hereditarily stable”.

Remark 2.8. One might attempt to define p . sp q if there is q1 ∈ OP(A) with p ∼sp q1 ≤ q.
However, unlike the Murray-von Neumann equivalence situation, p . sp q and q . sp p does
not imply that p ∼sp q. This can be shown by using a result of Lin. More precisely, it
was shown in [23, Theorem 9] that there exist a separable unital simple C∗-algebra A as
well as p ∈ Proj(A) and u ∈ A such that uu∗ = 1 and p1 = u∗u ≤ p, but her(p) and A
are not ∗-isomorphic. In particular, p �sp 1. Now, we clearly have p . sp 1. On the other
hand, as u ∈ A, we have

u∗Au = her(p1) and u her(p1)u
∗ = A,

which implies that 1 . sp p.
This example also shows that the same problematic situation appears even if we replace

∼sp with the stronger equivalence relation ∼PZ as defined in (2.1) (because u ∈ A).
Nevertheless, it was shown in [31, Theorem 1.13] that a weaker conclusion holds if one
adds an extra assumption on either p or q, but we will not recall the details here.

Let us end this section with the following well-known example. We give an explicit
argument here for future reference. Note that part (a) of it means that if a, b ∈ A+ are
equivalent in the sense of Blackadar (i.e. there exists x ∈ A with a = x∗x and b = xx∗; see
e.g. [28, Definition 2.1]), then their support projections are spatially equivalence (which
is a corollary of [28, Proposition 4.3], since ∼PZ is stronger than ∼sp).

Example 2.9. Suppose that x ∈ A with ‖x‖ = 1. Set a = x∗x and b = xx∗. Let x = ua1/2

be the polar decomposition.

(a) It is easy to see that aAa = u∗(xAx∗)u and xAx∗ = u(aAa)u∗, i.e. xAx∗ is spatially
isomorphic to aAa (by Proposition 2.7(a)).

(b) Notice that u(aAa)u∗ = xAx∗ ⊇ xx∗Axx∗ ⊇ xx∗xAx∗xx∗ ⊇ ua3/2Aa3/2u∗ = u(aAa)u∗,
and we have xAx∗ = bAb. Similarly, x∗Ax = aAa and x∗A∗∗x = aA∗∗a, which implies
that her(x) = her(a). On the other hand, as aAa is a hereditary C∗-subalgebra of her(a)
and {a1/k}k∈N is a sequence in aAa which is an approximate unit for her(a), one has
aAa = her(a). Consequently, her(x) = x∗Ax.

(c) Suppose that B ⊆ A is a hereditary C∗-subalgebra and x ∈ B. Since aAa = a2Aa2,
we see that aBa = aAa. Therefore, herB(x) = herA(x) by part (b).
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3. C∗-semi-finiteness and three types of C∗-algebras

As in the case of von Neumann algebras ([27]), in order to define different “types” of
C∗-algebras, we need to define “abelian” and “finite” open projections. “Abelian” open
projections are defined in the same way as that of von Neumann algebras. However, in
order to define “finite” open projections, we need to use our “hereditarily stable version”
of Murray-von Neumann equivalence in Section 2. Note that one cannot go very far with
the original Murray-von Neumann equivalence, because there exist p, q ∈ OP(A) with
p ∼Mv q but her(p) and her(q) are not isomorphic (see [23]). Moreover, one cannot use a
direct verbatim translation of the Murray-von Neumann finiteness.

Definition 3.1. (a) Let q ∈ OP(A) and p ∈ Proj(qA∗∗q). The closure of p in q, denoted
by p̄q, is the smallest closed projection of her(q) that dominates p.

(b) Let p, q ∈ OP(A) with p ≤ q. The projection p is said to be

i. dense in q if p̄q = q;
ii. abelian if her(p) is a commutative C∗-algebra;
iii. C∗-finite if for any r, s ∈ OP(her(p)) with r ≤ s and r ∼sp s, one has r̄s = s.

If p is dense in q, we say that her(p) is essential in her(q). We denote by OPC(A) and
OPF(A) the set of all abelian open projections and the set of all C∗-finite open projections
of A, respectively.

The terminology “p is dense in q” is used in many places (e.g. [31]), while the termi-
nology “essential” comes from [38].

Some people might think that the above definition of C∗-finiteness is not perfect since
r̄s = s does not imply r ∼sp s. In the Appendix, we will consider a variant of this definition
which seems more symmetric and is a more direct analogue of the von Neumann algebra
finiteness, but such a definition is eventually rejected for some reasons. Other people
might wonder why we do not use the finiteness as defined in [14]. The reason is that
we want to give a classification scheme for C∗-algebras using open projections (and the
definition of finiteness in [14] seems not related to open projections). Nevertheless, in the
Appendix, we will also give a brief account for the situation when one uses this finiteness
instead.

Remark 3.2. Let p ∈ OP(A).

(a) Suppose that p is abelian. If r, s ∈ OP(her(p)) satisfying r ≤ s and r ∼sp s, then
r = s. Thus, p is C∗-finite.

(b) If her(p) is finite dimensional, then p is C∗-finite.

(c) One might ask why we do not define C∗-finiteness of p in the following way: for any
r ∈ OP(her(p)) with r ∼sp p, one has r̄p = p. The reason is that the stronger condition
in Definition 3.1(b) can ensure every open subprojection of a C∗-finite projection being
C∗-finite. Such a phenomena is automatic for von Neumann algebras.
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(d) A hereditary C∗-subalgebra B ⊆ A is essential in A if and only if for any non-zero
hereditary C∗-subalgebra C ⊆ A, one has B · C 6= {0}. Thus, a closed ideal I ⊆ A is
essential in the sense of Definition 3.1 if and only it is essential in the usual sense (i.e. any
non-zero closed ideal of A intersects I non-trivially).

Definition 3.3. A C∗-algebra A is said to be:

i. C∗-finite if 1 ∈ OPF(A);
ii. C∗-semi-finite if any element in OP(A) \ {0} dominates an element in OPF(A) \ {0};
iii. of Type A if any element in OP(A)∩Z(A∗∗)\{0} dominates an element in OPC(A)\{0};
iv. of Type B if OPC(A) = {0} but each element in OP(A) ∩ Z(A∗∗) \ {0} dominates an

element in OPF(A) \ {0};
v. of Type C if OPF(A) = {0}.

Let us give an equivalent form of the above abstract definition through the relation
between (respectively, central) open projections and hereditary C∗-subalgebras (respec-
tively, ideals). These relations play very important roles in the discussion in this paper.
A C∗-algebra A is

• C∗-finite if and only if for each hereditary C∗-subalgebra B ⊆ A, any hereditary
C∗-subalgebra of B that is spatially isomorphic to B is essential in B;

• C∗-semi-finite if and only if any non-zero hereditary C∗-subalgebra of A contains
a non-zero C∗-finite hereditary C∗-subalgebra;

• of type A if and only if every non-zero closed ideal of A contains a non-zero abelian
hereditary C∗-subalgebra;

• of type B if and only if A does not contain any non-zero abelian hereditary C∗-
subalgebra and every non-zero closed ideal of A contains a non-zero C∗-finite
hereditary C∗-subalgebra;

• of type C if and only if A does not contain any non-zero C∗-finite hereditary
C∗-subalgebra.

Remark 3.4. Suppose that A is simple.

(a) A is either of type A, type B or type C.

(b) We will see in Corollary 4.5 that A is of type A if and only if A is of type I (see, e.g.,
[30, 6.1.1] for its definition). Moreover, if A is of type II (in the sense of [14]), then A is
of type B (by Proposition 4.7 below), while if A is purely infinite (in the sense of [13]),
then A is of type C (by Proposition 4.11(a) below and [39, Theroem 1.2(ii)]). However,
we do not know if the converse of the last two statements hold.

A positive element a ∈ A+ is said to be C∗-finite if her(a) (i.e. aAa) is C∗-finite. Parts
(a) and (b) of the following results follow from the argument of [30, Proposition 6.1.7],
but since the settings are slightly different, we give a brief account here.
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Proposition 3.5. (a) The sum, C(A), of all abelian hereditary C∗-subalgebras of A is a
(not necessarily closed) ideal of A. If C(A)+ := C(A) ∩A+, then C(A) is the vector space
span C(A)+ generated by C(A)+.

(b) The sum, F(A), of all C∗-finite hereditary C∗-subalgebras of A is a (not necessarily
closed) ideal of A. If F(A)+ := F(A) ∩ A+, then F(A) = span F(A)+.

(c) If B ⊆ A is a hereditary C∗-subalgebra, then C(B)+ = C(A) ∩ B+ and F(B)+ =
F(A) ∩B+.

Proof: (a) This follows directly from the arguments of [30, Proposition 6.1.7] (see also
the proof of part (b) below).

(b) Let FA ⊆ A+ be the set of all C∗-finite elements, and KA be the smallest hereditary
cone containing FA. By [30, Proposition 1.4.10] and the fact that any positive element
dominated by a C∗-finite element is again C∗-finite, we see that elements in KA are finite
sums of elements in FA, and so, u∗KAu = KA for any u in the unitary group UM(A) of
M(A). If LA := {x ∈ A : x∗x ∈ KA}, then LA is an ideal of A such that span KA

coincides with L∗
ALA, which is also an ideal of A. Now, it is clear that KA ⊆ F(A) and

F(A) ⊆ span KA (because positive elements in a C∗-finite hereditary C∗-subalgebra are
C∗-finite).

(c) We will only establish the second equality as the argument for the first one is similar.
As KA is a hereditary cone, the argument of part (b) tells us that F(A)+ = KA. It is
clear that F(B) ⊆ F(A) ∩ B. Conversely, if w ∈ KA ∩ B and w1, ..., wn ∈ FA such that
w =

∑n
i=1 wi, then wi ≤ w ∈ B+, which implies that wi ∈ FA ∩ B = FB (see Example

2.9(c)). Consequently, w ∈ KB as required. �

Clearly, C(A) ⊆ F(A). We will see in Theorem 5.2(d) below that the closed ideal C(A)

is of type A, while F(A) is C∗-semi-finite.

Example 3.6. (a) If A is commutative, then A is of type A and is C∗-finite. Moreover,
C(A) = F(A) = A.

(b) Let p ∈ OP(B(`2)) ⊆ B(`2)∗∗ such that her(p) = K(`2) (the C∗-algebra of all compact
operators). Then p 6= 1 but her(1− p) = (0). In fact, if T ∈ her(1− p), we have pT = 0
and ST = SpT = 0 for any S ∈ K(`2), which gives T = 0. Moreover, p is dense in 1
because K(`2) is an essential closed ideal of B(`2) (see Remark 3.2(d)).

(c) If H is an infinite dimensional Hilbert space, then K(H) is a C∗-algebra of type A,
which is not C∗-finite but is C∗-semi-finite. In fact, as K(H) is simple and contains many
rank-one projections, it is of type A. On the other hand, suppose that e ∈ Proj(K(H))
is a rank-one projection. Then 1 − e ∈ OP(K(H)) ⊆ B(H) and there is an isometry
v ∈ B(H) with vv∗ = 1− e. Thus,

v∗ her(1− e)v = K(H) and 1− e ∼sp 1.

Moreover, as e ∈ Proj(K(H)), we see that 1− e is also a closed projection and hence it is
not dense in 1. Finally, as all hereditary C∗-subalgebras of K(H) are given by projections



12 CHI-KEUNG NG AND NGAI-CHING WONG

in B(H), they are of the form K(K) for some subspaces K ⊆ H. Hence, K(H) is C∗-
semi-finite (see Remark 3.2(b)).

(d) Let H be a Hilbert space. Clearly, Proj(K(H)) ⊆ OPF(B(H)). Hence, if F(H) is
the set of all finite rank operators, then F(H) ⊆ F(B(H)). Suppose that B ⊆ B(H)
is a C∗-finite hereditary C∗-subalgebra and p ∈ Proj(B). As p is C∗-finite and pBp =
pB(H)p ∼= B(K) for a subspace K ⊆ H, we see that K is finite dimensional (see part
(c)) and so p ∈ K(H). Since B ⊆ B(H) is a hereditary C∗-subalgebra, B is generated
by its projections. Thus, B is a hereditary C∗-subalgebra of K(H), and B ∼= K(H ′) for a
subspace H ′ ⊆ H. The C∗-finiteness of B again implies that dim H ′ < ∞, and B ⊆ F(H).
Consequently,

F(B(H)) = F(H).

On the other hand, since any finite rank projection is a sum of rank-one projections and
any rank-one projection belongs to C(B(H)), we see that F(H) ⊆ C(B(H)) ⊆ F(B(H)).
Furthermore, by Proposition 3.5(c), we also have F(K(H)) = C(K(H)) = F(H).

Remark 3.7. Let e ∈ OP(A) and z(e) be the central support of e.

(a) z(e) = supu∈UM(A)
ueu∗ (see e.g. [30, Lemma 2.6.3]), and z(e) is an open projection

with her(z(e)) being the smallest closed ideal containing her(e).

(b) Recall that B := her(e) ⊆ A is said to be full if her(z(e)) = A. In this case, B is
strongly Morita equivalent to A (see e.g. [34]). Consequently, her(e) is always strongly
Morita equivalent to her(z(e)).

The following is a key result in this paper. An essential ingredient of its proof (in
particular, part (b)) is a result of Peligrad and Zsidó in [31].

Proposition 3.8. Let A and B be two strongly Morita equivalent C∗-algebras.

(a) A contains a non-zero abelian hereditary C∗-subalgebra if and only if B does.

(b) A contains a non-zero C∗-finite hereditary C∗-subalgebra if and only if B does.

Proof: There exist a C∗-algebra D and e ∈ Proj(M(D)) such that both A and B are
full hereditary C∗-subalgebras of D and we have

A ∼= eDe and B ∼= (1− e)D(1− e)

(see e.g. [8, Theorem II.7.6.9]). Thus, z(e) = 1 = z(1− e).

(a) It suffices to show that A contains a non-zero abelian hereditary C∗-subalgebra when-
ever D does. Let p ∈ OPC(D) \ {0}. As pz(e) = p 6= 0, we see that pueu∗ 6= 0 for
some u ∈ UM(D). By replacing p with u∗pu, we may assume that pe 6= 0, and hence
e herD(p)e 6= (0). If x, y ∈ herD(p) and {bj}j∈I is an approximate unit of herD(p), then
biebj ∈ herD(p) which implies that

xey = lim xbiebjy = lim ybiebjx = yex.

Consequently, e herD(p)e is an abelian hereditary C∗-subalgebra of A.
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(b) It suffices to show that if D contains a non-zero C∗-finite hereditary C∗-subalgebra,
then so does A. Suppose that p ∈ OPF(D) \ {0}. By [31, Theorem 1.9], there exist
e0, e1 ∈ OP(herD(e)) and p0, p1 ∈ OP(herD(p)) satisfying

e0 + e1
e
= e, p0 + p1

p
= p, z(e0)z(p0) = 0 and e1 ∼PZ p1.

Suppose that p1 = 0. Then e1 = 0 and z(e0) is dense in z(e) = 1 (by [31, Lemma 1.8]).
This implies that z(p0) = 0, and we have a contradiction that p0 = 0 is dense in the
non-zero open projection p. Therefore, p1 6= 0 and is C∗-finite. Since herD(e1) ∼= herD(p1)
(note that∼PZ is stronger than∼sp), we see that herD(e1) is a non-zero C∗-finite hereditary
C∗-subalgebra of A = herD(e). �

One may also use the argument of part (b) to obtain part (a), but we keep the alternative
argument since it is also interesting.

Suppose that E is a full Hilbert A-module implementing the strong Morita equivalence
between A and B, i.e. B ∼= KA(E) (see e.g. [22]). If I is a closed ideal of A, then EI
is a full Hilbert I-module and KI(EI) is a closed ideal of B. We also recall from [31,
Definition 2.1] that A is said to be discrete if any non-zero open projection of A dominates
a non-zero abelian open projection.

Theorem 3.9. (a) Let A and B be two strongly Morita equivalent C∗-algebras. Then A
is of type A (respectively, type B or type C) if and only if B is of the same type.

(b) A C∗-algebra A is of type A if and only if it is discrete.

Proof: (a) Suppose that A is of type B. If OPC(B) 6= {0}, then OPC(A) 6= {0} (because
of Proposition 3.8(a)), which is a contradiction. Let J be a non-zero closed ideal of B.
As in the paragraph above, the strong Morita equivalence of A and B gives a closed
ideal J0 of A that is strongly Morita equivalent to J . As J0 contains a non-zero C∗-finite
hereditary C∗-subalgebra, so is J (by Proposition 3.8(b)). This shows that B is of type
B. The argument for the other two types are similar and easier.

(b) It suffices to show that if A is of type A, then it is discrete. Let B ⊆ A be a non-zero
hereditary C∗-subalgebra and J ⊆ A be the closed ideal generated by B (which is strongly
Morita equivalent to B). As J contains a non-zero abelian hereditary C∗-subalgebra, so
does B (by Proposition 3.8(a)). �

The following result follows from Proposition 3.8(b) and the argument of Theorem 3.9.

Corollary 3.10. (a) A is C∗-semi-finite if and only if any non-zero closed ideal of A
contains a non-zero C∗-finite hereditary C∗-subalgebra.

(b) If A is strongly Morita equivalent to a C∗-semi-finite C∗-algebra, then A is also C∗-
semi-finite.

(c) A is of type B if and only if it is anti-liminary and C∗-semi-finite.
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Remark 3.11. As in the case of von Neumann algebra, strong Morita equivalence does
not preserve C∗-finiteness. In fact, for any C∗-algebra A, the algebra A ⊗ K(`2) is not
C∗-finite (using the same argument as Example 3.6(c); note that 1 ⊗ (1 − e) is both an
open and a closed projection of A ⊗K(`2)). Consequently, any stable C∗-algebra is not
C∗-finite.

Recall that a C∗-algebra A has real rank zero in the sense of Brown and Pedersen if the
set of elements in Asa with finite spectrum is norm dense in Asa (see e.g. [12, Corollary
2.6]). The following result follows from Theorem 3.9(b), Corollary 3.10(c) as well as the
fact that any hereditary C∗-subalgebra of a real rank zero C∗-algebra is again of real rank
zero (see e.g. [12, Corollary 2.8]).

Corollary 3.12. Let A be a C∗-algebra with real rank zero.

(a) A is of type A if and only if any projection in Proj(A) \ {0} dominates an abelian
projection in Proj(A) \ {0}.
(b) A is of type B if and only if any projection in Proj(A) \ {0} is non-abelian but
dominates a C∗-finite projection in Proj(A) \ {0}.
(c) A is of type C if and only if A does not contain any non-zero C∗-finite projection.

(d) A is C∗-semi-finite if and only if any projection in Proj(A)\{0} dominates a C∗-finite
projection in Proj(A) \ {0}.

Remark 3.13. Suppose that A is a C∗-finite C∗-algebra with real rank zero. If r, p ∈
Proj(A) satisfying r ≤ p and r ∼Mv p (as element in A), then r ∼sp p and so, r = r̄p = p.

Corollary 3.14. If A is of real rank zero, then the closures of the ideals C(A) and F(A)
(see Proposition 3.5) are the closed linear spans of abelian projections and of C∗-finite
projections in Proj(A), respectively.

Proof: If B ⊆ A is a C∗-finite hereditary C∗-subalgebra, then B is the closed linear span
of Proj(B)∩OPF(B). Thus, F(A) lies inside the closed linear span of Proj(A)∩OPF(A).
Conversely, it is clear that Proj(A) ∩ OPF(A) ⊆ F(A). The argument for the statement
concerning C(A) is similar. �

By Remark 3.13 and Corollary 3.14, if M is a von Neumann algebra, F(M) is dense in
the ideal J(M) generated by finite projections (as defined in [19]).

Corollary 3.15. Let A be of type A (respectively, of type B, of type C or C∗-semi-finite).

(a) If B is a hereditary C∗-subalgebra of A, then B is of type A (respectively, of type B,
of type C or C∗-semi-finite).

(b) If A is a hereditary C∗-subalgebra of B, the closed ideal I ⊆ B generated by A is of
type A (respectively, of type B, of type C or C∗-semi-finite).
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Proof: (a) As the closed ideal J generated by B is strongly Morita equivalent to B, this
result follows directly from Theorem 3.9(a) and Corollary 3.10(b).

(b) This follows from the definitions, and the fact that any hereditary C∗-subalgebra of I
intersects A non-trivially. �

Consequently, we have the following result.

Corollary 3.16. Suppose that A is non-unital, and Ã is the unitalization of A. Then A
is of type A (respectively, of type B, of type C or C∗-semi-finite) if and only if Ã is of
type A (respectively, of type B, of type C or C∗-semi-finite). The same is true when Ã is
replaced by M(A).

Our next lemma is probably well-known.

Lemma 3.17. Let e, f ∈ OP(A) and p, q ∈ OP(A) ∩ Z(A∗∗).

(a) ep ∈ OP(A) and her(ep) = her(e) ∩ her(p).

(b) If e 6= 0 and her(e) ⊆ her(p)+her(q), then her(e)∩her(p) 6= (0) or her(e)∩her(q) 6= (0).

(c) If z(e)z(f) = 0, then her(e) + her(f) = her(e + f).

Proof: Parts (a) and (c) are obvious. To show part (b), note that as her(p) + her(q) ⊆
her(p + q − pq), we have e ≤ p + q − pq. If ep = 0 = eq, one obtains a contradiction that
e = e(p + q − pq) = 0. Thus, the conclusion follows from part (a). �

Lemma 3.18. If {pi}i∈I is a family in OPF(A) with z(pi)z(pj) = 0 for i 6= j, then
p :=

∑
i∈I pi ∈ OPF(A).

Proof: It is clear that p is an open projection and z(p) =
∑

i∈I z(pi). Suppose that
r, q ∈ OP(her(p)) with r ≤ q and r ∼sp q. Let u ∈ A∗∗ with q = u∗u and u her(q)u∗ =
her(r). For any i ∈ I, we set qi := z(pi)q, ri := z(pi)r ∈ OP(A) and ui := z(pi)u. It is
easy to see that q =

∑
i∈I qi, r =

∑
i∈I ri, qi = u∗i ui and ri ≤ qi ≤ z(pi)p = pi. By Lemma

3.17(c), we see that

z(pi) her(q) = z(pi)
(
her(qi) + her

(∑
j∈I\{i}

qj

))
= her(qi).

Similarly, z(pi) her(r) = her(ri) and we have ui her(qi)u
∗
i = her(ri). By Proposition

2.7(a), we know that ri ∼sp qi and the C∗-finiteness of pi tells us that ri is dense in qi. If
e ∈ OP(her(q)) with re = 0, then ei := z(pi)e ∈ OP(her(qi)) with riei = 0, which means
that ei = 0 (because ri

qi = qi). Consequently, e =
∑

i∈I ei = 0 and r is dense in q as
required. �
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Part (a) of the following result is the equivalence of statements (i) and (iii) in [31,
Theorem 2.3], while part (b) follows from the proof of [31, Theorem 2.3], Lemma 3.18,
Theorem 3.9(a) and Corollary 3.15(b).

Proposition 3.19. (a) A C∗-algebra A is of type A if and only if there is an abelian
hereditary C∗-subalgebra of A that generates an essential closed ideal of A.

(b) A C∗-algebra A is C∗-semi-finite if and only if there is a C∗-finite hereditary C∗-
subalgebra of A that generates an essential closed ideal of A.

4. Comparison with existing theories

In this section, we compare our “Murray-von Neumann type classification” with existing
results in the literature. Through these comparisons, we obtain many new examples of
C∗-algebras of different types. Moreover, we will show that a von Neumann algebra is a
type A, type B, type C or C∗-semi-finite C∗-algebra if and only if it is, respectively, a
type I, type II, type III or semi-finiteness von Neumann algebra.

4.1. Type A algebras.

Recall that a C∗-algebra A is said to be of type I if for any irreducible representation
(π, H) of A, one has K(H) ⊆ π(A). We have already seen in Theorem 3.9(b) that type
A is the same as discreteness. Thus, the following result is a direct consequence of [31,
Theorem 2.3]. Note that one can also obtain it using Theorem 3.9(a) and [6, Theorems
1.8 and 2.2].

Corollary 4.1. Any type I C∗-algebra is of type A.

The converse of the above is not true even for real rank zero C∗-algebras, as can be
seen in the following example.

Example 4.2. By Example 3.6(c) and Corollary 3.15(b), we know that B(`2) is of type A.
However, B(`2) is not a type I C∗-algebra (see e.g. [30, 6.1.2]).

Proposition 4.3. (a) A is of type I if and only if every primitive quotient of A is of type
A.

(b) If A is of type A and contains no essential primitive ideal, then A is of type I.

Proof: (a) Because of Corollary 4.1 and the fact that quotients of type I C∗-algebras are
also of type I, we only need to show the sufficiency. Let π : A → B(H) be an irreducible
representation and B be a non-zero abelian hereditary C∗-subalgebra of A/ ker π. If
π̃ : A/ ker π → B(H) is the induced representation, the restriction π̃B : B → B(π̃(B)H)
is non-zero and irreducible. Thus, dim π̃(B)H = 1 and π̃(b) is a rank-one operator (and
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hence is compact) for any b ∈ B \ {0}. This shows that π̃(A/ ker π) ∩K(H) 6= (0), and
π(A) ⊇ K(H).

(b) Suppose that π : A → B(H) is an irreducible representation and J is a non-zero closed
ideal of A with J ∩ ker π = (0). If B ⊆ J is a non-zero abelian hereditary C∗-subalgebra,
the restriction πB : B → B(π(B)H) is non-zero and irreducible. The same argument as
in part (a) tells us that π(A) ⊇ K(H). �

Remark 4.4. (a) Proposition 4.3(a) actually shows that A is of type I if and only if any
primitive quotient contains a non-zero abelian hereditary C∗-subalgebra, which is likely
to be a known fact.

(b) If every quotient of B(`2) were of type A, then Proposition 4.3(a) told us that B(`2)
were a type I C∗-algebra, which contradicted [30, 6.1.2]. Consequently, not every quotient
of a type A C∗-algebra is of type A.

If A is simple and of type A, then by Proposition 4.3(b), it is of type I. This, together
with Example 3.6(c), gives the following.

Corollary 4.5. If A is a simple C∗-algebra of type A, then A = K(H) for some Hilbert
space H. If, in addition, A is C∗-finite, then A = Mn for some positive integer n.

4.2. Type B algebras and C∗-semi-finite algebras.

The following is a direct consequence of Remark 3.4(a) and Corollary 4.5.

Corollary 4.6. Any infinite dimensional C∗-finite simple C∗-algebra is of type B.

In the following, we compare type B and type C with the notions of type II and
type III as introduced by Cuntz and Pedersen in [14]. Let us recall from [14, p.140]
that x ∈ A+ is said to be finite if for any sequence {zk}k∈N in A with x =

∑∞
k=1 z∗kzk

and y :=
∑∞

k=1 zkz
∗
k ≤ x, one has y = x. We also recall that A is said to be finite

(respectively, semi-finite) if every x ∈ A+ \ {0} is finite (respectively, x dominates a non-
zero finite element). Furthermore, A is said to be of type II if it is anti-liminary and finite,
while A is said to be of type III if it has no non-zero finite elements (see [14, p.149]).

Let Ts(A) denote the set of all tracial states on A. It follows from [14, Theorem 3.4]
that Ts(A) separates points of A+ if A is finite.

Proposition 4.7. If Ts(A) separates points of A+, then A is C∗-finite. Consequently, if
A is finite, then A is C∗-finite.
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Proof: Suppose on the contrary that there exist r, q ∈ OP(A) with r ≤ q, r ∼sp q
but r̄q � q. For any τ ∈ Ts(A), if τ̃ is the normal tracial state on A∗∗ extending τ ,
then τ̃(r) = τ̃(q) (because r = vv∗ and q = v∗v for some v ∈ A∗∗). Moreover, if {ai}i∈I

is an approximate unit in her(r), one has τ̃(r) = lim τ(ai). Since r̄q � q, there exists
s ∈ OP(her(q)) \ {0} with rs = 0. If x ∈ her(s)+ with ‖x‖ = 1, one can find τ0 ∈ Ts(A)
with τ0(x) > 0. Thus, we have τ0(ai) + τ0(x) ≤ τ̃0(q) (as aix = 0 and ai + x ≤ q), which
gives the contradiction that τ̃0(r) + τ0(x) ≤ τ̃0(q). �

As in [14], we denote by FA the set of all finite elements in A+. Let B ⊆ A be a
hereditary C∗-subalgebra. Then FB = FA∩B. In fact, it is obvious that FA∩B ⊆ FB.
Conversely, suppose that x ∈ FB. Consider y ∈ A+ and a sequence {zk}k∈N in A
satisfying y ≤ x, y =

∑∞
k=1 zkz

∗
k and x =

∑∞
k=1 z∗kzk. Since B+ is a hereditary cone of A+,

we have y ∈ B+ and z∗kzk, zkz
∗
k ∈ B+ (k ∈ N). By Remark 2.2(c), we know that zk ∈ B

and so, y = x as required.

Corollary 4.8. (a) A is semi-finite if and only if every non-zero hereditary C∗-subalgebra
of A contains a non-zero finite hereditary C∗-subalgebra.

(b) If A is semi-finite (respectively, of type II), then A is C∗-semi-finite (respectively, of
type B).

Proof: (a) For the necessity, let B ⊆ A be a non-zero hereditary C∗-subalgebra. If
y ∈ B+ \ {0}, there is x ∈ FA \ {0} with x ≤ y. By [14, Lemma 4.1] and [14, Theorem
4.8] as well as their arguments, one can find a non-zero finite hereditary C∗-subalgebra
of her(x). More precisely, let f ∈ C(σ(x))+ such that f vanishes on a neighbourhood

of 0 and f(t) ≤ t ≤ f(t) + ‖x‖
2

(t ∈ σ(x)). There exists g ∈ C(σ(x))+ and λ > 0 such
that f = fg and g(t) < λt (t ∈ σ(x)). Then g(x) ∈ FA and f(x) = f(x)g(x), i.e.
f(x) ∈ F0 := {a ∈ A+ : a = ay for some y ∈ FA}. For any z ∈ her(f(x))+, we have
zg(x) = z and z ∈ F0 ∩ her(f(x)) ⊆ FA ∩ her(f(x)) = F her(f(x)). Thus, her(f(x)) is a
non-zero finite hereditary C∗-subalgebra of her(x).

For the sufficiency, let y ∈ A+\{0} and C be a non-zero finite hereditary C∗-subalgebra
of her(y). Observe that C+ = FC = FA ∩ C. Take any x ∈ C+ with ‖x‖ = 1. Since
x1/2yx1/2 ≤ ‖y‖x ∈ FA, we know that y1/2xy1/2 = y1/2x1/2(y1/2x1/2)∗ ∈ FA (because of
[14, Lemma 4.1]). As y1/2xy1/2 ≤ y, we see that A is semi-finite.

(b) This follows from part (a), Proposition 4.7 and Corollary 3.10(c). �

Example 4.9. (a) If A is an infinite dimensional simple C∗-algebra with a faithful tracial
state, then A is of type B (by Corollary 4.6 and Proposition 4.7). In particular, if Γ is an
infinite discrete group such that C∗

r (Γ) is simple (see e.g. [7] for some examples of such
groups), then C∗

r (Γ) is of type B.

(b) Every simple AF algebra which is not of the form K(H) is of type B (because of [14,
Proposition 4.11] as well as Corollaries 4.5 and 4.8(b)).
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4.3. Type C algebras.

The following is a consequence of Proposition 4.7 and the argument of the necessity of
Corollary 4.8(a).

Corollary 4.10. If A is of type C, then it is of type III.

Next, we compare type C with the notion of pure infinity as defined by Cuntz (in the
case of simple C∗-algebras) and by Kirchberg and Rørdam (in the general case). Suppose
that a ∈ Mn(A) and b ∈ Mm(A) (m, n ∈ N). As in [21, Definition 2.1], we write a - b
relative to Mm,n(A) if there is a sequence {xk}k∈N in Mm,n(A) such that ‖x∗kbxk−a‖ → 0.
Recall that an element a ∈ A is said to be properly infinite if a⊕a - a relative to M1,2(A).
Moreover, A is said to be purely infinite if every element in A+ is properly infinite (see
[21, Theorem 4.16]). Note that if A is simple, this notion coincides with the one in [13],
namely, every hereditary C∗-subalgebra of A contains a non-zero infinite projection (see
e.g. the work of Lin and Zhang in [24]).

Proposition 4.11. (a) If A has real rank zero and is purely infinite, then it is of type C.

(b) If A is a separable purely infinite C∗-algebra with stable rank one, then A is of type C.

Proof: (a) By [21, Theorem 4.16], any projection in A is properly infinite, and hence is
infinite (see e.g. [21, Lemma 3.1]), in the sense that it is Murray-von Neumann equivalent
to a proper subprojection. Now, if p ∈ Proj(A) and v ∈ A such that v∗v = p and
q := vv∗ � p, then p ∼sp q but q is not dense in p (because p − q ∈ Proj(A) \ {0}).
Therefore, p is not C∗-finite and Corollary 3.12(c) show that A is of type C.

(b) Suppose on contrary that A contains a non-zero C∗-finite C∗-algebra B and we take
any z ∈ B+ with ‖z‖ = 1. By [21, Theorem 4.16], we see that z ⊕ z - z ⊕ 0 relative to
M2(A), and so, z ⊕ z - z ⊕ 0 relative to M2(her(z)) (by [21, Lemma 2.2(iii)]). Thus, [28,
Proposition 4.13] implies

pz ⊕ pz = pz⊕z -Cu pz⊕0 = pz ⊕ 0

(see [28, §3] for the meaning of -Cu). Now, using [28, 6.2(1)’&(2)’], one has pz ⊕ pz ∼PZ

pz⊕0 (clearly, pz⊕0 -Cu pz⊕z) and hence pz⊕pz ∼sp pz⊕0. This means that M2(her(z)) is
spatially isomorphic (and hence ∗-isomorphic) to its hereditary C∗-subalgebra her(z)⊕(0),
which is not essential in M2(her(z)) (because (0) ⊕ her(z) is a non-zero hereditary C∗-
subalgebra and we have Remark 3.2(d)). As her(z) is ∗-isomorphic to her(z) ⊕ (0) and
hence to M2(her(z)), we know that her(z) is also spatially isomorphic to an inessential
hereditary C∗-subalgebra. Consequently, her(z) is not C∗-finite, which contradicts the
fact that B is C∗-finite. �

Let us make the following conjecture. The proposition above tells us that this conjecture
holds in some interesting cases.
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Conjecture 4.12. Every purely infinite C∗-algebra is of type C.

On the other hand, by Proposition 4.11 and Corollary 4.10, we know that any sep-
arable purely infinite C∗-algebra A having real rank zero or stable rank one is of type
III. This implication actually holds without these extra assumptions, as can be seen in
the following proposition, which gives another evidence for Conjecture 4.12. Note that
this proposition also implies [21, Proposition 4.4]. To show this result, let us recall the
following notation from [28, p.3476]. For any ε > 0, let fε : R+ → R+ be the function

fε(t) =

{
t/ε if t ∈ [0, ε)

1 if t ∈ [ε,∞).
If µ ∈ Ts(A) and a ∈ A+, we define dµ(a) := supε>0 µ(fε(a))

(the definition in [28] is for tracial weights but we only need tracial states here).

Proposition 4.13. Any purely infinite C∗-algebra A is of type III.

Proof: Suppose on the contrary that FA 6= {0}. By the argument of the necessity of
Corollary 4.8(a), there is z ∈ A+ with ‖z‖ = 1 and her(z) being finite. By the argument
of Proposition 4.11(b), one has z⊕ z - z⊕ 0 relative to M2(her(z)). By [28, Remark 2.5],
we see that dµ(z ⊕ z) ≤ dµ(z ⊕ 0) for each µ ∈ Ts(M2(her(z))). Now, if τ ∈ Ts(her(z)),
then τ ⊗ Tr2 ∈ Ts(M2(her(z))) (where Tr2 is the canonical tracial state on M2), and the
above tells us that

sup
ε>0

τ(fε(z)) = sup
ε>0

(τ ⊗ Tr2)(fε(z)⊕ fε(z)) ≤ sup
ε>0

(τ ⊗ Tr2)(fε(z)⊕ 0) = sup
ε>0

τ(fε(z))

2
,

which gives dτ (z) = 0 and hence τ(z) = 0. This contradicts [14, Theorem 3.4]. �

The following remark gives one more evidence of the above conjecture.

Remark 4.14. Suppose that a ∈ A+ and there exist x, y ∈ her(a) with x∗x = a = y∗y
as well as x∗y = 0 (note that this condition implies a being properly infinite; see [21,
Proposition 3.3(iv)]). By Example 2.9(a)&(b), we see that her(a) is spatially isomorphic
to its hereditary C∗-subalgebra her(x∗). As her(x∗) her(y∗) = (0), we see that her(x∗) is
not essential in her(a). Thus, her(a) is not C∗-finite. If one can show that the same is
true for every properly infinite element a ∈ A+, then by [21, Theorem 4.16], every purely
infinite C∗-algebra is of type C.

Example 4.15. For any AF -algebra B, the C∗-algebra O2 ⊗ B is purely infinite (by [21,
Proposition 4.5]) and is of real rank zero (by [12, Theorem 3.2]), which means that O2⊗B is
of type C (by Proposition 4.11(a)). Note that one may replace O2 with any unital, simple,
separable, purely infinite, nuclear C∗-algebra (which has real rank zero because of [39,
Theorem 1.2(ii)]).



A MURRAY-VON NEUMANN TYPE CLASSIFICATION OF C∗-ALGEBRAS 21

4.4. The case of von Neumann algebras.

In this subsection, we consider the case of von Neumann algebras. Let us start with the
following lemma. Note that one implication of this result follows directly from Proposition
4.7, but we give a longer alternative proof here as this argument is also interesting (see
Remark 4.17 below).

Lemma 4.16. Let M be a von Neumann algebra. Then p ∈ Proj(M) is finite as a
projection in M if and only if it is C∗-finite.

Proof: Let ΛM : M∗∗ → M be the canonical ∗-epimorphism. If q ∈ OP(pMp), then
herM(q) ⊆ herM(ΛM(q)) and ΛM(q) ≤ p, which imply that ΛM(q) = q̄p (as q̄p ∈ pMp by
e.g. [2, II.1]).

Suppose that r, q ∈ OP(pMp) such that r ≤ q and r ∼sp q. Consider w ∈ M∗∗ satisfying

q = ww∗, r = w∗w, w∗ her(q)w = her(r) and w her(r)w∗ = her(q).

Define v := ΛM(w). Then ΛM(q) = vv∗ and ΛM(r) = v∗v. Since ΛM(r) ≤ ΛM(q) ≤ p,
the finiteness of p tells us that r̄p = ΛM(r) = ΛM(q) = q̄p. If r̄q � q, there is e ∈
OP(her(q)) \ {0} with re = 0. Since e ∈ OP(her(p)), we obtain a contradiction that
r̄p 6= q̄p (as r ≤ p− e but q � p− e). This shows that p is C∗-finite.

Conversely, suppose that p is C∗-finite and r ∈ Proj(M) ⊆ OP(M) with r ≤ p and
r ∼Mv p. Then Proposition 2.7(b) implies that r ∼sp p and so r = r̄p = p. �

Remark 4.17. (a) If p ∈ M is a (C∗-)finite projection and r ∈ OP(pMp) with r ∼sp p.
The C∗-finiteness of p gives r̄p = p. Suppose that w ∈ M∗∗ and v ∈ M are as in the proof
of Lemma 4.16 for the case when q = p. Then vv∗ = p = r̄p = v∗v, which means that v
is a unitary in pMp. Moreover, v∗ her(r)v = ΛM(w∗ her(r)w) = pMp and her(r) = pMp.
Consequently, r = p (note that one needs r ∈ M in Remark 3.13).

(b) If A is a C∗-algebra and p ∈ OP(A) satisfying r̄p = q̄p for any r, q ∈ OP(her(p)) with
r ≤ q and r ∼sp q, then by the argument of Lemma 4.16, we see that p is C∗-finite.

The following is a direct consequence of Lemma 4.16 and Corollary 3.12.

Theorem 4.18. Let M be a von Neumann algebra.

(a) M is of type A if and only if M is a type I von Neumann algebra.

(b) M is of type B if and only if M is a type II von Neumann algebra.

(c) M is of type C if and only if M is a type III von Neumann algebra.

(d) M is C∗-semi-finite if and only if M is a semi-finite von Neumann algebra.
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5. Factorizations

In this section, we give two factorization type results for general C∗-algebras. Let us first
state the following easy lemma. Notice that if A contains a non-zero abelian hereditary
C∗-subalgebra B, the closed ideal generated by B is of type A (by Corollary 3.15(b) and
Remark 3.7(b)), and the same is true for C∗-finite hereditary C∗-subalgebra.

Lemma 5.1. If A is not of type C, then A contains a non-zero closed ideal of either type
A or type B.

The following is our first factorization type result, which mimics the corresponding
situation for von Neumann algebras.

Theorem 5.2. Let A be a C∗-algebra.

(a) There is a largest type A (respectively, type B, type C and C∗-semi-finite) hereditary
C∗-subalgebra JA (respectively, JB, JC and Jsf) of A, which is also an ideal of A.

(b) JA, JB and JC are mutually disjoint such that JA +JB +JC is an essential closed ideal
of A. If eA, eB, eC ∈ OP(A)∩Z(A∗∗) with JA = her(eA), JB = her(eB) and JC = her(eC),
then

1 = eA + eB
1
+ eC.

(c) JA + JB is an essential closed ideal of Jsf. If esf ∈ OP(A) with Jsf = her(esf), then

esf = eA
esf + eB.

(d) The closure of C(A) and F(A) (in Proposition 3.5) are essential closed ideals of JA

and Jsf, respectively.

Proof: (a) We first consider the situation of type B. Let JB be the set of all type
B closed ideals of A. If JB = {(0)}, then JB := (0) is the largest type B hereditary
C∗-subalgebra of A (see Corollary 3.15(b) and Remark 3.7(b)). Otherwise, suppose that
J1 and J2 are distinct elements in JB. If J1 + J2 contains a non-zero abelian hereditary
C∗-algebra B, then by Lemma 3.17(b), one of the two abelian hereditary C∗-subalgebras
B∩J1 and B∩J2 is non-zero, which contradicts J1, J2 ∈ JB. On the other hand, consider
a non-zero closed ideal I of J1 + J2. Again, by Lemma 3.17(b), we may assume that
the closed ideal I ∩ J1 is non-zero. Thus, I ∩ J1 contains a non-zero C∗-finite hereditary
C∗-subalgebra B. This shows that J1 + J2 ∈ JB and JB is a directed set.

Let JB :=
∑

J∈JB
J . Then eB = w∗-limJ∈JB

eJ , where eJ ∈ OP(A) ∩ Z(A∗∗) with
J = her(eJ). If there is p ∈ OPC(A) \ {0} such that her(p) ⊆ JB, then

p = peB = peBp = w∗-limJ∈JB
peJp,

and one can find J ∈ JB with the abelian algebra her(p) ∩ J being non-zero (because of
Lemma 3.17(a)), which is absurd.

Now, suppose that I is a non-zero closed ideal of JB. The argument above tells us
that I ∩ J 6= (0) for some J ∈ JB, and hence it contains a non-zero C∗-finite hereditary
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C∗-subalgebra. Consequently, JB ∈ JB. Finally, if B ⊆ A is a hereditary C∗-subalgebra
of type B, then by Corollary 3.15(b) and Remark 3.7(b), one has B ⊆ JB.

The arguments for the statements concerning JA, JC and Jsf are similar and easier.

(b) The first statement follows directly from Lemma 5.1 (any non-type C ideal interests
either JA or JB). For the second statement, we obviously have eA + eB ≤ 1− eC. Suppose
that p ∈ OP(A) with eA + eB ≤ 1 − p. Then z(p)(eA + eB) = 0, and Lemmas 3.17(a)
and 5.1 imply that z(p) ≤ eC. Thus, 1 − eC is the smallest closed projection dominating
eA + eB.

(c) This follows from a similar (but easier) argument as part (b).

(d) Clearly, F(A) ⊆ Jsf and C(A) ⊆ JA. Their closure are both essential because of
Proposition 3.19. �

By Proposition 3.19, there is an abelian (respectively, a C∗-finite) hereditary C∗-
subalgebra that generates an essential ideal of JA (respectively, of JB). Moreover, by
Corollary 4.1(a), Theorem 3.9(b) and [31, Theorem 2.3(vi)], the largest type I closed
ideal Apostlim of A is an essential ideal of JA. On the other hand, we recall that A is
anti-liminary if it does not contain any non-zero commutative hereditary C∗-subalgebra.

Remark 5.3. For any closed ideal J of A, we write J⊥ for the closed ideal {a ∈ A : aJ =
(0)}. It is easy to see that if J0 is an essential ideal of J , then J⊥

0 = J⊥.

(a) J⊥
A = A⊥

postlim is the largest anti-liminary hereditary C∗-subalgebra of A (note that

aJAa is a hereditary C∗-subalgebra of JA if a ∈ A+). Furthermore, JB +JC is an essential
ideal of J⊥

A (by Theorem 5.2(b) and Lemma 5.1).

(b) J⊥
sf = (JA + JB)⊥ = JC.

(c) J⊥
A ∩ Jsf = JB (compare with Corollary 3.10(c)).

From now on, we denote by JA
A , JA

B, JA
C and JA

sf , respectively, the largest type A,
the largest type B, the largest type C and the largest C∗-semi-finite closed ideals of a
C∗-algebra A.

The following is a direct application of Theorem 4.18.

Corollary 5.4. Let M be a von Neumann algebra. If MI , MII and MIII are respectively
the type I summand, the type II summand and the type III summand of M , then JM

A = MI ,
JM

B = MII and JM
C = MIII.

Our next theorem is the second factorization type result, which seems to be more
interesting for C∗-algebra (c.f. [14, Proposition 4.13]).

Theorem 5.5. Let A be a C∗-algebra.

(a) A/JA
C is C∗-semi-finite and A/(JA

A )⊥ is of type A.

(b) If A is C∗-semi-finite, then A/JA
B is of type A.
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Proof: (a) If A/JA
C = (0), then it is C∗-semi-finite by the definition. We assume

A/JA
C 6= (0), and consider Q : A → A/JA

C to be the canonical map. Let I be a non-zero
closed ideal of A/JA

C and J := Q−1(I). Since J ) JA
C , one knows that J contains a non-

zero C∗-finite hereditary C∗-subalgebra B. Since B ∩ JA
C = (0), the ∗-homomorphism Q

restricts to an injection on B. Thus, Q(B) ⊆ I is also a non-zero C∗-finite hereditary C∗-
subalgebra, and A/JA

C is C∗-semi-finite (by Corollary 3.10(a)). The proof of the second
statement is similar.

(b) This follows from part (a) and Remark 5.3(c). �

Remark 5.6. (a) If a statement is true for all C∗-algebras of both type A and type B and
is stable under extensions of C∗-algebras, then this statement is true for all C∗-semi-finite
C∗-algebras. If, in addition, this statement is true for all type C C∗-algebras, then it is
true for all C∗-algebras.

(b) If a statement is true for all discrete C∗-algebras as well as all anti-liminary C∗-
algebras and is stable under extensions of C∗-algebras, then this statement is true for all
C∗-algebras.

The following results follows from Theorem 3.9(a).

Corollary 5.7. If A and B are strongly Morita equivalent, then the closed ideal of B that
corresponds to JA

A (respectively, JA
B, JA

C and JA
sf ) under the strong Morita equivalence (see

the paragraph preceding Theorem 3.9) is precisely JB
A (respectively, JB

B, JB
C and JB

sf ).

Remark 5.8. It is natural to ask if the closure C(·) of C(·) (see Proposition 3.5) is also
stable under strong Morita equivalence. Unfortunately, it is not the case. Suppose that
A is any type I C∗-algebra. Then by [6, Theorems 1.8 and 2.2], there is a commutative

C∗-algebra B that is strongly Morita equivalent to A. Notice that C(B) = B and C(A)

is of type I0 (by [30, Proposition 6.1.7]). Thus, if C(·) is stable under strong Morita

equivalence, then any type I C∗-algebra A will coincide with C(A) and hence is liminary
(see e.g. [30, Corollary 6.1.6]), which is absurd.

In the remainder of the section, we compare JA
∗ with J

M(A)
∗ .

Proposition 5.9. (a) If B ⊆ A is a hereditary C∗-subalgebra, then JB
A = JA

A ∩ B,
JB

B = JA
B ∩B, JB

C = JA
C ∩B and JB

sf = JA
sf ∩B.

(b) J
M(A)
A = {x ∈ M(A) : xA ⊆ JA

A }. Similar statements hold for JB, JC and Jsf.

(c) J
M(A)
B = {x ∈ M(A) : xJA

A = (0) and xA ⊆ JA
sf}

(d) J
M(A)
C = {x ∈ M(A) : xJA

sf = (0)} = {x ∈ M(A) : xJA
A = {0} and xJA

B = (0)}.
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Proof: (a) Note that JB
A ⊆ B ∩ JA

A by Theorem 5.2(a). Conversely, since B ∩ JA
A is a

type A closed ideal of B (by Corollary 3.15(a)), we have B ∩ JA
A ⊆ JB

A . The other cases
follow from similar arguments.

(b) We will only consider the case of JB (since the other cases follow from similar and

easier arguments). Notice that J
M(A)
B · A = J

M(A)
B ∩ A = JA

B (by part (a)) and

J
M(A)
B ⊆ J0 := {x ∈ M(A) : xA ⊆ JA

B}.

Suppose that the closed ideal J0 ⊆ M(A) contains a non-zero abelian hereditary C∗-
subalgebra B. The abelian hereditary C∗-subalgebra B∩A = B ·A ·B is contained in JA

B

and so, B · A = (0), which contradicts the fact that A is essential in M(A) (see Remark
3.2(d)). Furthermore, let I be a non-zero closed ideal of J0. Then I ·A = I ∩A 6= (0) and
is a closed ideal of JA

B. Thus, I∩A contains a non-zero C∗-finite hereditary C∗-subalgebra.

Consequently, J0 is of type B and is a subset of J
M(A)
B .

(c) By part (b), we know that xJA
A = (0) if and only if xJ

M(A)
A = (0). Thus, this part

follows from part (b) and Remark 5.3(c).

(d) The first equality follows from a similar argument as part (c) and the second one
follows from Remark 5.3(b). �

Appendix A. Some remarks on classification schemes

In this appendix, we consider other possible classification schemes for C∗-algebras.

A property P concerning C∗-algebras is said to be hereditarily stable if for any C∗-
algebra A satisfying P, all hereditary C∗-subalgebras of A will also satisfy P. A sequence
{P1, ...,Pn} of hereditarily stable properties is said to be compatible if Pi−1 is stronger
than Pi for i = 1, ..., n, where P0 means “the C∗-algebra is zero”.

Let {Pi}i=1,...n be a sequence of compatible hereditarily stable properties. We set Pn+1

to be the property: “the C∗-algebra contains zero” (i.e. a tautology), and say that a
C∗-algebra is of type TP

i (i = 1, ..., n + 1) if

A does not contain a non-zero hereditary C∗-subalgebra with property Pi−1

and any non-zero closed ideal of A contains a non-zero hereditary C∗-algebra
with property Pi.

Moreover, we set OPP
i (A) := {e ∈ OP(A) : her(e) has Property Pi}.

The arguments for the corresponding results in the main body of this article give the
following (note that for part (c), one needs the argument of Proposition 3.8(b)).

Theorem A.1. Let {Pi}i=1,...n be a sequence of compatible hereditarily stable properties
concerning C∗-algebras. Suppose that A is a C∗-algebra and i ∈ {1, ..., n + 1}.
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(a) The sum, Ii(A), of all hereditary C∗-subalgebras of A with property Pi is an ideal of A
and is the linear span of its cone Ii(A)∩A+. If B ⊆ A is a hereditary C∗-subalgebra,
then Ii(B)+ = Ii(A)+ ∩B.

(b) If A is simple, then A is of type TP
j for exactly one j = 1, ..., n + 1.

(c) If A is strongly Morita equivalent to a C∗-algebra of type TP
i , then A is of type TP

i .
(d) If every non-zero closed ideal of A contains a non-zero hereditary C∗-subalgebra with

property Pi, then every non-zero hereditary C∗-subalgebra of A contains a non-zero
hereditary C∗-algebra with property Pi.

(e) If A is a hereditary C∗-subalgebra of a C∗-algebra of type TP
i , then A is of type TP

i .
(f) If A contains an essential hereditary C∗-subalgebra of type TP

i , then A is of type TP
i .

Consequently, A is of type TP
i if and only if M(A) is of type TP

i (equivalently, the
unital C∗-subalgebra of M(A) generated by A is of type TP

i ).
(g) If A has real rank zero, then A is of TP

i if and only if OPP
i−1(A)∩Proj(A) = {0} and

any element in Proj(A) \ {0} dominates an element in OPP
i (A) ∩ Proj(A) \ {0}.

(h) There is a largest type TP
i hereditary C∗-subalgebra JA

TP
i
⊆ A, which is an ideal of A.

Furthermore, JA
TP

1
,..., JA

TP
n+1

are mutually disjoint.

(i) If eTP
i
∈ OP(A) with JA

TP
i

= her(eTP
i
), then

∑n
i=1eTP

i

1
+ eTP

n+1
= 1, and JA

TP
1

+ ...+JA
TP

n+1

is an essential closed ideal of A.
(j) Strong Morita equivalence respects JA

TP
i
.

(k) If every non-zero closed ideal of A contains a non-zero hereditary C∗-subalgebra having
property Pi, then every non-zero closed ideal of A/JA

TP
i

contains a non-zero hereditary

C∗-subalgebra having property Pi−1.

The above provides many classification schemes for C∗-algebras (with appropriate
choices of properties) that could be very different from the one in the main body of
this paper.

Note, however, that different choices of properties might give rise to the same classi-
fication. We give a brief consideration of this in the following result. We say that two
sequences of properties {Pi}i=1,...,n and {P′

i}i=1,...,n are hereditarily equivalent if any non-
zero C∗-algebra satisfying Pi contains a non-zero hereditary C∗-subalgebra satisfying P′

i

and vice versa (for each i ∈ {1, ..., n}).

Proposition A.2. Let {Pi}i=1,...,n and {P′
i}i=1,...,n be two sequences of compatible heredi-

tarily stable properties concerning C∗-algebras. Then {Pi}i=1,...,n and {P′
i}i=1,...,n are hered-

itarily equivalent if and only if type TP
i coincides with type TP′

i for every i = 1, ..., n + 1.

Proof: The sufficiency follows from the definitions and we will only establish the ne-
cessity. Suppose that type TP

i coincides with type TP′
i , for all i ∈ {1, ..., n}. If A 6= (0)

satisfies Pi, then JA
TP

k
= (0) for k > i, and there is j ∈ {1, ..., i} with JA

TP′
j

= JA
TP

j
6= (0) (by

Theorem A.1(i)). Thus, one obtain a non-zero hereditary C∗-subalgebra B ⊆ A satisfying
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P′
j and hence P′

i. By symmetry, {Pi}i=1,...,n and {P′
i}i=1,...,n are hereditarily equivalent. �

If we keep P1 as in the main body of this paper (namely, it stands for “the C∗-algebra
is commutative”) and twist the definition of C∗-finiteness (or P2), we will obtain another
classification, which might or might not be the same as the one in the main body. We
will discuss two such variants in the following. Notice that the first one is weaker than
C∗-finiteness while the second one is stronger than C∗-finiteness.

(I) The first variant is given by replacing our spatial equivalence ∼sp with the stronger
equivalence relation as defined in [31, Definition 1.1] (see Relations (2.1)).

More precisely, we say that a C∗-algebra A satisfies P
(1)
2 if for any q ∈ OP(A) and

r ∈ OP(her(q)) with r ∼PZ q, one has r̄q = q. In order for P
(1)
2 to be unambiguous,

we need to show that ∼PZ is “hereditarily invariant”, in the sense that if B ⊆ A is
a hereditary C∗-subalgebra and p, q ∈ OP(B), then p ∼PZ q as elements in OP(B)
if and only if p ∼PZ q as elements in OP(A).

In fact, it is easy to see that the sufficiency of the above holds (because of Remark
2.2(a)). Conversely, suppose that p ∼PZ q as elements in OP(A), and u ∈ A∗∗

satisfying Relations (2.1). Let e ∈ OP(A) with B = her(e). Since u∗u, uu∗ ∈ B∗∗,
Remark 2.2(c) tells us that u ∈ B∗∗ = eA∗∗e. Thus, if x ∈ her(p), then u∗x ∈
eA∗∗e ∩ A = B. Similarly, u her(q) ⊆ B.

On the other hand, it is not hard to check that everything in the main body of
this paper remains valid if one uses ∼PZ instead of ∼sp. Furthermore, we have the

following “elementwise description” for P
(1)
2 in the case of separable C∗-algebras.

Proposition A.3. (a) If A satisfies P
(1)
2 , then for any a ∈ A+ and x ∈ her(a) with

x∗x = a, the right ideal R := {y ∈ her(a) : x∗y = 0} is zero.

(b) If A is separable, the converse of the above also holds.

Proof: (a) The statement is clear if a = 0 and we assume that ‖a‖ = 1. Let
q, r ∈ OP(A) satisfying her(q) = her(a) and her(r) = her(x∗) ⊆ her(a). If x =

ua1/2 is the polar decomposition, then u∗u = q, u her(q) ⊆ xAa1/2 ⊆ her(q) and

u∗ her(r) ⊆ a1/2Ax∗ ⊆ her(q) (see Example 2.9). Moreover, her(r) = u her(q)u∗ and
her(q) = u∗ her(r)u (again by Example 2.9). Consequently, r ∼PZ q. If R 6= (0),
then B := R∩R∗ is a non-zero hereditary C∗-subalgebra of her(a) with her(x∗)·B =
{0}. Thus, r is not dense in q which contradicts the hypothesis.

(b) Suppose on contrary that there exist q ∈ OP(A) and r ∈ OP(her(q)) with r ∼PZ

q but r̄q � q. The separability of A gives a, b ∈ her(q)+ such that ‖a‖ = ‖b‖ = 1,
her(q) = her(a) and her(r) = her(b) (see e.g. [25, Theorem 3.2.5]). Since r ∼PZ q
as elements in OP(her(a)), there exists x ∈ her(a) with x∗x = a and xx∗ = b (by
[28, Proposition 4.3]). As r̄q � q, there is a non-zero hereditary C∗-subalgebra
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B ⊆ her(q) with her(r) · B = {0}. Thus, if y ∈ B \ {0}, then b1/2y = 0, which
implies that x∗y = 0. Consequently, we have a contradiction that R 6= (0). �

As a finial remark of this first variant, one might also replaces our spatial equiv-
alence ∼sp with the “Cuntz equivalence” ∼Cu as defined by Ortega, Rørdam and
Thiel (see [28, Definition 3.9]). Note that by [28, Corollary 5.9], the resulting prop-

erty is stronger than P
(1)
2 .

(II) The second variant is that P
(2)
2 stands for “the C∗-algebra is finite (in the sense

of [14])”. Notice that any abelian C∗-algebra is finite, and any C∗-subalgebra of a

finite C∗-algebra is again finite. Thus, if P
(2)
1 coincides with P1 as in the above, then

{P(2)
1 , P

(2)
2 } is a compatible sequence of hereditarily stable properties concerning C∗-

algebras.

By Corollary 4.8(a) and Theorem A.1(d), we see that TP(2)

2 is the same as type
II (in the sense of Cuntz and Pedersen). Moreover, by the argument of Corollary

4.8(a), we know that TP(2)

3 is the same as type III (in the sense of Cuntz and

Pedersen). Note, however, that type TP(2)

1 coincides with discreteness (in the sense
of Peligrad and Zsidó) instead of type I (see Example 4.2). Furthermore, Corollary

4.8(b) tells us that type TP(2)

2 is stronger than type B.

On the other hand, it is clear from [14, Theorem 3.4] that a von Neumann algebra
is finite as a von Neumann algebra if and only if it is finite in the sense of [14]. Let
us restate this, together with some statements in Proposition A.1, in the following
result.

Corollary A.4. Suppose that A is a C∗-algebra and M is a von Neumann algebra.
(a) M is a type I (respectively, type II, type III or semi-finite) von Neumann algebra

if and only if M is a discrete (respectively, type II, type III or semi-finite) C∗-
algebra.

(b) If A is strongly Morita equivalent to a discrete (respectively, type II, type III or
semi-finite) C∗-algebra, then A has the same property.

(c) If A is a hereditary C∗-subalgebra of a discrete (respectively, type II, type III or
semi-finite) C∗-algebra, then A also has the same property.

(d) If A contains an essential hereditary C∗-subalgebra that is discrete (respectively,
of type II, of type III or semi-finite), then A also has the same property. Con-
sequently, A is discrete (respectively, of type II, of type III or semi-finite) if and
only if M(A) has the same property.

(e) If A has real rank zero, then A is of type II (respectively, of type III) if and
only if for each p ∈ Proj(A) \ {0}, the C∗-algebra pAp is not commutative but
p dominates a projection q ∈ Proj(A) \ {0} with qAq being finite (respectively,
pAp is not finite).
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(f) The sum of the largest discrete closed ideal, the largest type II closed ideal and
the largest type III closed ideal of A (all of them exist) is essential in A.

(g) The quotient of A by its largest type III closed ideal is semi-finite. Moreover,
if A is semi-finite, then the quotient of A by its largest type II closed ideal is
discrete.

Let us end this appendix with the following questions:

Q1. Is every C∗-algebra satisfying P
(1)
2 contains a non-zero finite element?

Q2. Is every C∗-finite C∗-algebra contains a non-zero finite element?

Clearly, a positive answer to Q1 will give a positive answer to Q2. Moreover, by Proposi-
tion A.2 and the argument of Corollary 4.8(a), a positive answer to Q1 will imply “type

TP(1)

2 = type B = type II” and “type TP(1)

3 = type C = type III”. On the other hand, a
positive answer to Q2 will imply “type B = type II” and “type C = type III”. In any of
these cases, Proposition 4.13 tells us that Conjecture 4.12 holds.
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