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ABSTRACT. Let E and F' be two Hilbert C*-modules over C*-algebras A and B,
respectively. Let T be a surjective linear isometry from E onto F' and ¢ a map
from A into B. We will prove in this paper that if the C*-algebras A and B are
commutative, then T preserves the inner products and T is a module map, i.e.,
there exists a *-isomorphism ¢ between the C*-algebras such that

(Tz, Ty) = o((2,y)),
and

T(xa) = T(x)p(a).
In case A or B is noncommutative C*-algebra, T" may not satisfy the equations
above in general. We will also give some condition such that T preserves the inner
products and T is a module map.

1. INTRODUCTION

A (right) Hilbert C*-module over a C*-algebra A is a right A-module E equipped
with A-valued inner product (-,-) which is conjugate A-linear in the first variable
and A-linear in the second variable such that F is a Banach space with respect to
the norm ||z|| = [|{z, z)||*/2.

Let X be a locally compact Hausdorff space and H a Hilbert space, the Banach
space Cy(X, H) of all continuous H-valued functions vanishing at infinity is a Hilbert
C*-module over the C*-algebra Cy(X) with inner product (f, ¢)(z) := (f(z), g(z))
and module operation (f¢)(z) = f(x)¢(x), for all f € Co(X, H) and ¢ € Cy(X).
Every C*-algebra A is a Hilbert C*-module over itself with inner product (a,b) :=
a*b.

Let X and Y be two locally compact Hausdorff spaces, the Banach-Stone theorem
states that every surjective linear isometry between Cy(X) and Cy(Y') is a weighted
composition operator. More precisely, let T" be a surjective linear isometry from
Co(X) onto Cy(Y'), then there exists a continuous function h € Cy(Y') with |h(y)| =
1, for all y in Y, and a homeomorphism ¢ from Y onto X such that T is of the form:

(1) Tf(y) =h)fle(y)),Vf € Co(X),Vy €Y.

Let H, and Hs be two Hilbert spaces. In [7], Jerison characterizes surjective linear
isometries between Cy(X, Hy) and Cy(Y, Hs), see also [12, 6]. It is said that every
surjective linear isometry 7" from Cy(X, Hy) onto Cy(Y, H) is also of the form (1)
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in which h(y) is a unitary operator from H; onto Hy and h is continuous from Y
into (B(Hy, Ha), SOT), the space of all bounded linear operators with the strong
operator topology. In this case, we can find a relationship of inner products of
Co(X, Hy) and Cy(Y, Hy) by a simple calculation:

(T, Tg)(y) = (Tf(),Tg(y)) = (h(y)(f (), bly)(f(L(y))))
= (fleW)), f(ey)) = ([, 9) o ¢(y).
B (Tf,Tg) = (f.9)0¢.
Let R, : Co(X) — Co(Y) be the s-isomorphism defined by R,(¢) = ¢ o . Then T
preserves the inner products with respect to R, i.e.,

(T'f,Tg) = Ro((f,9))-

By (1), it is easy to see that 7" is a module map with respect to R, in the sense
T(fo) =T(f)R,(¢), for all f e Cy(X, Hy) and ¢ € Cp(X).

It is natural to ask if these properties are true for surjective linear isometries between
Hilbert C*-modules over C*-algebras. We will show in this paper that the answer
is yes if the C*-algebras are commutative. Unfortunately, if one of the C*-algebras
is noncommutative, the answer is more complicated. We will give an example (see
Example 3) to explain this is not true in general. And we will give a condition on
T (see Theorem 9) such that 7" is a module map and preserves the inner products.

2. PRELIMINARIES

Let E be a Hilbert C*-module over C*-algebra A. We set (F, E) to be the linear
span of elements of the form (x,y), =,y € E. FE is said to be full if the closed

two-sided ideal (F, E') equal A.

A JB*-triple is a complex vector space V with a continuous mapping V3 —
V, (z,y,z) — {x,y,z}, called a Jordan triple product, which is symmetric and
linear in x, z and conjugate linear in y such that for z,y, z,u,v in V, we have

(1) {2,y {z,u, 0} ) = {{z,y, 2}, w0} = {2, {y, 2, u}, v} + {20, {z, y, 0} };

(2) the mapping z — {z,z, z} is hermitian and has non-negative spectrum;
3) {z 2,2} = [l=]*.

In [5], J. M. Isidro shows that every Hilbert C*-module is a JB*-triple with the
Jordan triple product

{42} = 5 (el 2) + ={,2))

A well-known theorem of Kaup [10] (see also [1]) states that every surjective linear
isometry between JB*-triples is a Jordan triple homomorphism, i.e., it preserves the
Jordan triple product

T{x,y,z} ={Tx, Ty, Tz},Vr,y,z € E.
Hence, if T' is a surjective linear isometry between Hilbert C*-modules, then
(2) T(z(y,2z) + 2(y,x)) = Tx(Ty,Tz) + T=(Ty,Tx),Vr,y,z € E.
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The equation (2) holds if and only if

(3) T(x(x,z)) =Tx(Tx,Tx),Vr € E
by triple polarization
1
2.y, 2} = ¢ > aple+ay+ Bra+ oy + B2)(x + ay + Bz).
at=p2=1

A ternary ring of operators (TRO) between two Hilbert spaces H and K is a
linear subspace R of B(H, K), the space of all bounded linear operators from H
into K, satisfying AB*C € R. Zettl shows in [17] that every Hilbert C*-module is
isomorphic to a norm closed TRO. In this case, Hilbert C*-modules have another
triple product, i.e.,

{z,y,2} == 2{y, 2).
A map between TROs is said to be a triple homomorphism if it preserves the triple

products. In the case of Hilbert C*-modules, a map 7' is a triple homomorphism if
it satisfies

(4) T(x(y,z)) = Ta(Ty,Tz),Vx,y, z.

We have known every surjective linear isometry is a Jordan triple homomorphism,
but it could not be a triple homomorphism, see Example 3.

Let R be a TRO. Then M, (R), the space of all n x n matrices whose entries are in
R, has a TRO-structure. Let T" be a map between TROs R; and R,. For all positive
integer n, define maps T™ : M,(Ry) — M,(Rz) by T™ ((z:;)i;) = (T(24;))i;. We
call T n-isometry if T is isometric and complete isometry if each T™ is isometric
for all n. It has been shown that a surjective linear isometry between TROs is a
triple homomorphism if and only if it is completely isometric. More details about
TROs mentioned above, we refer to [17], see also [14, 3]. In fact, Solel shows in [16]
that every surjective 2-isometry between two full Hilbert C*-modules is necessarily
completely isometric.

3. RESuLTS

Note that in the case of a commutative C*-algebra A = Cy(X), for some locally
compact Hausdorff space X, Hilbert C*-modules over C(X) are the same as Hilbert
bundles, or equivalently, continuous fields of Hilbert spaces, over X.

We showed the following theorem in [4].
Theorem 1. Let EY and F' be two Hilbert C*-modules over commutative C*-algebras

Co(X) and Cy(Y), respectively. Then every surjective linear isometry from E onto
I is a weighted composition operator

Tf(y) =h(y)(fleW)),Vfe EVy Y

Here, ¢ is a homeomorphism from Y onto X, h(y) is a unitary operator between
the corresponding fibers of E and F', for ally inY .

By the similar argument discussed in the introduction, we have
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Corollary 2. Fvery surjective linear isometry between Hilbert C*-modules over com-
mutative C*-algebras preserves the inner products and is a module map.

Now we discuss the case of noncommutative C*-algebras. From equation (4), it
seems that a surjective linear isometry 7' indicates that T" preserves inner products
and that T is a module map. We explain this could be not true in general by a
example.

Ezample 3. Given a positive integer n. The Hilbert column space H is the subspace
of M,(C) consisting of all matrices whose non-zero entries are only in the first
column. Similarly, the Hilbert row space is the subspace consisting of matrices
whose non-zero entries are only in the first row. Clearly, H. and H, are right
Hilbert C*-modules over C*-algebras C and M,,(C), respectively, with the inner
product (A, B) := A*B. Define a surjective linear isometry 7" : H» — H! by
T(A) = A* the transpose of A. Then (T'(A), T(B)) = tr(A, B), the trace of (A, B),
but T is not a module map with respect to the trace. For the surjective linear
isometry T : H? — H", T(A) = A'. Let ¢ : C — M, (C) be defined by p(a) = al.
Then 7' is a module map with respect to ¢, but the equation (I'A, T B) = ¢((A, B))
does not hold. It is clear that 7" does not satisfy the equation (4).

Remark 4. In fact, the corollary above says that there exists a *-isomorphism ¢
between the C*-algebras such that

Tz, Ty) = o((2,y))
and

T(xa) = T(x)p(a).
We have seen in the Example 3 that even if T is a module map or preserves the
inner products, the map ¢ might be just a linear map.

In the following, E and F' stand for two Hilbert C*-modules over C*-algebras A
and B, respectively. T'is a map from E into F' and ¢ is a map from A into B. The
following lemmas explain the relations of T', ¢, when T preserves the inner products
and when T is a module map, see also [8].

Lemma 5. If ¢ is linear, every map T from E into F' which preserves the inner
products with respect to ¢ is linear.

Proof. Since T preserves the inner products with respect to . Then for all x,y and
zin F, ain C,
(T(az + ), T#) = p((0z +y,2)) = ap((z, 2)) + ¢({y, 2)) = (T + Ty, T2).
Similarly, we have
(Te, T(ay + 2)) = (Tx,aTy + Tz).
It is easy to show that
(T(ax +y) — (aTz+Ty), T(azx+y) — (aTx+ Ty)) = 0.

This proves T'(ax +y) = aT'z + Ty and hence T is linear. U

Lemma 6 ([8]). Let T' be a surjective linear map which preserves the inner products
and is a module map w.r.t. ¢. If F' is full, then ¢ is a x-homomorphism.
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Proof. Let ai,as in A and « in C. It is easy to show that

T(x)(plaar + az) — ap(ar) — p(as))
= T(x)p(aar + az) — T (x)p(ar) — T(x)p(az)
= T(azxa; + zay) — aT(zay) — T'(zag) = 0.

and

T(x)(p(araz) — pa1)p(az))
= T(x)p(araz) — T(z)p(ar)p(az)
= T(zajaz) — T(xajaz) = 0.
Since T is surjective and F is full, we have p(aa; + az) = ap(a;) + p(az) and
plaraz) = p(a1)p(az).
Let x,y in A, we have
e((z,y)") = o((y,z)) = (Ty, Tx) = (Tx, Ty)" = o((z,y))".
For a in A,
(T(z)(p(a”) —p(a)), T(x)(p(a®) — ¢(a)’))
p(a®) o((z, z))e(a”) —pla”) e((z,z))p(a)” — pla)e((z, x))e(a®) + pla)e((z, z))p(a)’
= (p({za®, z))p(a”))” = (pla)p((z, 2))p(

a’))" — p((za”, xa")) + (pla)p((z, za")))*
0.
Hence, T'(x)(¢(a*) — ¢(a)*) = 0 for all z in E. Since T is surjective and F is full,
we have p(a*) = ¢(a)*. O

Lemma 7. If ¢ is a x-homomorphism, then every map T which preserves the inner
products w.r.t. @ is a module map w.r.t. .

Proof. Let x and y in ' and a in A. Then
(T'(za), Ty) = p((za,y)) = p(a) v({z,y)) = (T(x)p(a), Ty).

Similarly, we have
(T(2), T(ya)) = (T(x), T(y)p(a)).
It is easy to show that
(T'(xa) = T(x)p(a), T(xa) = T(x)p(a)) = 0.
Hence, T'(xza) = T'(x)p(a). O
Lemma 8 ([13]). Let T be a surjective linear isometry and ¢ a x-isomorphism. If

T is a module map w.r.t. ¢, then T preserves the inner products with respect to .

Proof. 1t suffices to prove that (Tx,Tz) = ¢((z,z)) for all z in E. Note that
la| := (a*a)'/?. For all b in B, let p(a) = b, then

NTlbll* = (16" T2*b]| = KT (2)¢(a), T(x)p(a))

KT (za), T(za)|| = [{za, za)|| = |||zla]* = [le(|z]a)]I* = ll¢(lz)b]*

By Lemma 3.5 in [11], we get |Tz| = (¢(|z|) and hence (Tx, Tz) = ¢((z,z)). O
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Theorem 9. Let T be a surjective linear 2-isometry from E onto F. Then there

exists a x-isomorphism @ from (E, E) onto (F, F) such that, for all x,y in E, and
ain A,

(Tx, Ty) = p((x,y))
and

T(xa) = T(x)p(a).

Proof. We can regard E and F as full modules over (E, E) and (F, F'), respectively.
In this case, as we mentioned above, T is completely isometric and hence it preserves
the triple products

T(z(z,y)) = Tz(Tx,Ty),Vz,y,z € E.
Define ¢ : (E, E) — (F, F) by

SO(Z ai(Ti, yi)) = Z%‘<T$z'7Tyz'>a v,y € B, 0;€C,i=1,--- n

=1

Let z;,y; and z € E, oy € C, i = 1,--- ;n. Then > a;(z;,y;) = 0 if and only if
2(>- ai(xi,y;)) = 0forall zifand only if T'(2) (> i (T, Ty;)) = > T2 (Tx;, Ty;) =
Yoo T(2(xi,y:)) = T(2(> ci{wi, i) = 0 for all z if and only if > a;(Tx;, Ty;) =0

since T is injective, Y a;(z;,y;) € (E, E) and > o;(T'z;, Ty;) € (F, F). This shows

that ¢ is well-defined and injective. From the defintion of v, since T' is surjective, it
is clear that ¢ is a surjective *-homomorphism and 7" preserves the inner products
w.r.t. . By lemma 7, T" is a module map w.r.t . U

Corollary 10. Every surjective linear 2-isometry between two full Hilbert C*-modules
preserves the inner products and is a module map with respect to some x-isomorphism
of underlying C*-algebras.
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