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Abstract. Let X, Y be locally compact Hausdorff spaces and M,N be Banach
algebras. Let θ : C0(X,M) → C0(Y,N ) be a zero-product preserving bounded
linear map with dense range. We show that θ is given by a continuous field of
algebra homomorphisms from M into N if N is irreducible. As corollaries, such a
surjective θ arises from an algebra homomorphism, provided thatM is a W*-algebra
and N is a semi-simple Banach algebra, or both M and N are C*-algebras.

1. Introduction

Let X be a locally compact Hausdorff space. Denote by X∞ = X ∪ {∞} the one-
point compactification of X. In case X is already compact, ∞ is an isolated point
in X∞. For a real or complex Banach algebra M, let C0(X,M) = {f ∈ C(X,M) :
f(∞) = 0} be the Banach algebra of all continuous vector-valued functions from X
into M vanishing at infinity. Note that C0(X,M) is isometrically and algebraically
isomorphic to the (projective) tensor product C0(X)⊗M.

In this paper, we shall study those bounded linear maps θ from C0(X,M) into
another such algebra C0(Y,N ) preserving zero products. Namely, fg = 0 implies
θ(f)θ(g) = 0. In other words,

f(x)g(x) = 0 in M for all x ∈ X =⇒ θ(f)(y)θ(g)(y) = 0 in N for all y ∈ Y.

For example, let σ : Y → X be a continuous function, let h be a uniformly bounded
norm continuous function from Y into the center of N , and let ϕ be a uniformly
bounded SOT continuous function from Y into B(M,N ) such that each ϕy = ϕ(y)
is an algebra homomorphism. Then

(1.1) θ(f)(y) = h(y)ϕy

(
f(σ(y))

)
defines a zero-product preserving bounded linear map from C0(X,M) into C0(Y,N ).
In particular, θ = hϕ for a bounded central element h in the algebra C(Y,N ) and an
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algebra homomorphism ϕ from C0(X,M) into C0(Y,N ). We will investigate when
zero product preserving bounded linear maps arise in this way.

For the scalar case, every zero-product preserving bounded linear map θ from C0(X)
into C0(Y ) is of the expected form (1.1) [13, 11, 14]. Recall that a subalgebra S of the
algebra B(E) of all bounded linear operators on a Banach space E is said to be stan-
dard if S contains all continuous finite rank operators. Using an interesting geometric
approach, Araujo and Jarosz [2] showed that when X, Y are realcompact and M and
N are standard operator algebras, every bijective linear map from C(X,M) onto
C(Y,N ) preserving zero products in both directions is in the form of (1.1). However,
in the non-bijective case it becomes a very difficult task without assuming continuity.
Even discontinuous algebra homomorphisms have complicated structure ([15, 19]).
Finally, readers are referred to [1, 12, 6, 21] for problems of similar interests.

We would like to express our gratitude to Mikhail A. Chebotar and Pjek-Hwee Lee
for many helpful discussions.

2. Results

A linear map θ from C0(X,M) into C0(Y,N ) is said to be strictly separating if

‖f(x)‖‖g(x)‖ = 0 for all x ∈ X =⇒ ‖Tf(y)‖‖Tg(y)‖ = 0 for all y ∈ Y .

Denote by coz(f) = {x ∈ X : f(x) 6= 0} the cozero set of an f in C0(X,M). Then
θ is strictly separating if and only if it preserves the disjointness of cozeroes. We
note that a subset U of X is the cozero of a continuous function in C0(X,M) if and
only if U is σ-compact and open. For any σ-compact open subset U of X, denote by
C0(U,M) the subalgebra of all f in C0(X,M) with coz(f) ⊆ U .

Recall that a representation π : N → B(E) of a Banach algebra N is said to be
faithful if the kernel of π is {0}. We call π an irreducible representation of N if there is
no proper linear subspace F of the Banach space E such that π(N )F ⊆ F . It amounts
to say that for each nonzero vector e in E, the linear subspace π(N )e is the whole
of E. Every irreducible representation of a Banach algebra is automatically bounded
[15]. A Banach algebra N is said to be irreducible if it has a faithful irreducible
representation π : N → B(E).

Theorem 1. Let X and Y be locally compact Hausdorff spaces. Let M and N be
Banach algebras such that N is irreducible, and let θ be a continuous zero-product
preserving linear map from C0(X,M) into C0(Y,N ) with dense range. Then θ is
strictly separating.

Indeed, there exists a continuous map σ : Y → X, and for each y in Y a bounded
zero-product preserving linear map Hy : M→N with dense range such that

θ(f)(y) = Hy (f(σ(y))) for all f ∈ C0(X,M) and y ∈ Y .
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Moreover, the correspondence y 7→ Hy defines a uniformly bounded map H : Y →
B(M,N ) continuous in the strong operator topology.

Proof. Let π : N → B(E) be a faithful irreducible representation of N . Composing
θ with π, we can assume that N is an irreducible subalgebra of B(E) and θ is again
bounded and zero-product preserving with dense range.

Fix y in Y , and denote by

Sy =

{
x ∈ X∞ : for all σ-compact open neighborhood U of x,

there is an f in C0(U,M) such that θ(f)(y) 6= 0,

that is, θ|C0(U,M) is not trivial at y

}
.

Claim 1. Sy 6= ∅.

Suppose not, and for each x in X∞, there is a σ-compact open neighborhood Ux of
x such that θ|C0(Ux,M) is trivial at y. Write

X∞ = U0 ∪ U1 ∪ · · · ∪ Un

for x0 = ∞, and some x1, . . . , xn in X, with a σ-compact open neighborhood Ui for
i = 0, 1, . . . , n, respectively. Let

1 = f0 + f1 + · · ·+ fn

be a continuous partition of the unity such that coz fi ⊆ Ui for i = 0, 1, . . . , n. Then
for all f in C0(X,M),

θ(f) = θ(f0f + f1f + · · ·+ fnf) = 0,

since coz(fif) ⊆ Ui for each i = 0, 1, . . . , n. This is impossible.

Claim 2. x1, x2 ∈ Sy =⇒ x1 = x2.

Suppose x2 6= x1 6= ∞. Let U1 and U2 be disjoint σ-compact open neighborhoods
of x1 and x2, respectively. We can assume that ∞ /∈ U1. Since

f1f2 = f2f1 = 0 for all fi ∈ C0(Ui,M), i = 1, 2,

we have

θ(f1)θ(f2) = θ(f2)θ(f1) = 0 in C0(Y,N ).

Let E1 be the intersection of the kernels of all θ(f1)(y) with f1 in C0(U1,M). Because
both θ|C0(U1,M) and θ|C0(U2,M) are not trivial at y, we have E1 is a proper subspace of
E, that is, {0} 6= E1 6= E.
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Let V be a nonempty open set in Y such that V ⊆ U1. Let g be in C0(X) such
that coz g ⊆ U1 and g|V = 1. For each f in C0(X,M), write

f = fg + f(1− g).

Since coz(fg) ⊆ U1, we have

θ(fg)(y)|E1 = 0.

Hence

θ(f)(y)|E1 = θ(f(1− g))(y)|E1 .

For any k in C0(X,M) with coz k ⊆ V , we have k(f(1− g)) = 0. This implies

θ(k)(y)θ(f)(y)|E1 = θ(k)(y)θ(f(1− g))(y)|E1 = 0 for all f ∈ C0(X,M).

However, {θ(f)(y) : f ∈ C0(X,M)} is dense in N , which is irreducible on E. There-
fore,

θ(k)(y) = 0 for all k ∈ C0(X,M) with coz k ⊆ V .

Since V is an arbitrary nonempty open set with closure contained in U1, we have

θ(k)(y) = 0 for all k ∈ C0(U1,M).

This conflict establishes Claim 2.

By Claims 1 and 2, Sy is a singleton.

Claim 3. If Sy = {x} then

f(x) = 0 =⇒ θ(f)(y) = 0.

By Urysohn’s Lemma, we can assume f vanishes in a neighborhood of x. Now
x /∈ coz f , which is compact in X∞. For each x′ in coz f , there is a σ-compact open
neighborhood U ′ of x′ such that θ|C0(U ′,M) is trivial at y. By a compactness argument
as the one proving Claim 1, we see that θ(f)(y) = 0.

It follows from Claim 3 that Sy 6= {∞} for all y in Y since θ has dense range.
Denote by σ(y) = x if Sy = {x}. Then there is a linear map Hy : M→N such that

θ(f)(y) = Hy (f(σ(y))) for all f ∈ C0(X,M) and y ∈ Y .

In particular, θ is strictly separating.

The rest of the proof follows in a straightforward manner, or one can quote the
standard results about strictly separating maps in [6, 12]. �

The following lemma might be known, although we do not find a proof from the
literature. Remark that it is shown in [17] every non-zero Banach algebra homo-
morphism from B(H) into B(K) is injective if both H and K are separable Hilbert
spaces. However, there is an example in [18] of a non-zero homomorphism from B(H)
into B(H) with compact operators as its kernel, where H is inseparable. Moreover, it
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is known that every irreducible representation of a Banach algebra is norm continu-
ous [15] and every algebra isomorphism between C*-algebras is a ∗-isomorphism [20,
Theorem 4.1.20].

Lemma 2. Let H, K be real or complex Hilbert spaces of arbitrary dimension. Let
B(H) and B(K) be the algebras of all bounded linear operators on H and K, respec-
tively. Then every surjective algebra homomorphism from B(H) onto B(K) is an
isomorphism.

Proof. The case is trivial when H is of finite dimension since B(H) is then a simple
algebra. Suppose the (Hilbert space) dimension of H is an infinite cardinal number
ℵH . For each infinite cardinal number ℵ ≤ ℵH , let Iℵ be the closed two-sided ideal
of B(H) consisting of operators T such that all closed subspaces contained in the
range of T is of dimension less than ℵ. In case H is separable, IℵH

= K(H), the ideal
of compact operators on H. In general, as indicated in [5] that IℵH

is the largest
two-sided ideal of B(H). In fact, every closed two-sided ideal of B(H) is in the form
of Iℵ for some ℵ ≤ ℵH [9, Section 17].

Let θ be an algebra homomorphism from B(H) onto B(K). Then the kernel I of θ
is a closed two-sided ideal of B(H). Since the quotient algebra B(H)/I is isomorphic
to B(K), there is an e in B(H) such that (e + I)B(H)(e + I) = eB(H)e + I is of
one dimension modulo I. Assume I is nonzero. Let ℵ be the infinite cardinal number
such that I = Iℵ. Then the range of e contains a closed subspace of dimension ℵ.
By halving this subspace into two each of dimension ℵ, we see that eB(H)e contains
two elements linear independent modulo Iℵ, a contradiction. This completes our
proof. �

Corollary 3. Let X, Y be locally compact Hausdorff spaces. Let M,N be either the
Banach algebras B(H), B(K) of all bounded operators or K(H),K(K) of compact
operators on real or complex Hilbert spaces H, K, respectively. Let θ : C0(X,M) →
C0(Y,N ) be a continuous surjective zero-product preserving linear map. Then there
exist a continuous function σ from Y into X, a continuous scalar function h on Y ,
and a SOT continuous map y 7→ Sy from Y into B(K, H) such that Sy is invertible
and

(2.1) θ(f)(y) = h(y)Sy
−1f(σ(y))Sy, ∀f ∈ C(X,M),∀y ∈ Y.

Proof. It follows from Theorem 1 that for each fixed y in Y , θ induces a bounded zero-
product preserving linear map H(y) from M onto N . By either [10, Theorem 2.1]
or [7, Corollary 3.2], H(y) is a scalar multiple of a bounded algebra homomorphism
from M onto N . Since K(H) is simple, this algebra homomorphism is indeed an
isomorphism if M and N are K(H) and K(K), respectively. On the other hand, by
Lemma 2 the algebra homomorphism above is again an isomorphism in case M and
N are B(H) and B(K), respectively. Thus, by either [3, Theorem 4] or [8, Corollary
3.2], there exist a scalar h(y) and a bounded invertible operator Sy on K to implement
(2.1). It is then routine to check the continuity of h and the map y 7→ Sy. �
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The following corollary holds, for example, when M is a W ∗-algebra, or a unital
C∗-algebra of real rank zero [4].

Corollary 4. Let X and Y be locally compact Hausdorff spaces such that X is com-
pact. Let M be a unital Banach algebra such that the subalgebra of M generated by
its idempotents is norm dense in M, and let N be a semi-simple Banach algebra. Let
θ be a continuous zero-product preserving linear map from C(X,M) into C0(Y,N )
with dense range. Then θ(1) is in the center of C0(Y,N ), and

θ(1)θ(fg) = θ(f)θ(g) for all f, g ∈ C(X,M).(2.2)

Suppose, in addition, that Y is compact and N is unital. If θ(1) is invertible or θ is
surjective, then θ = θ(1)ϕ for an algebra homomorphism ϕ.

Proof. Let π : N → B(E) be an irreducible representation of N . Then θπ =
π ◦ θ is again a continuous zero-product preserving linear map from C(X,M) into
C0(Y, π(N )) with dense range. By Theorem 1, we find that θπ carries a weighted
composition operator form

θπ(f)(y) = Hy

(
f(σ(y))

)
for all f ∈ C(X,M) and y ∈ Y .

In particular, each Hy is a continuous zero-product preserving linear map from M
into π(N ) with dense range.

By results in [10] (see also [7]), for each y in Y we have θπ(1)(y) = Hy(1) is in the
center of N and

Hy(1)Hy(ab) = Hy(a)Hy(b) for all a, b ∈M.

Hence

π (θ(1)θ(f)− θ(f)θ(1)) = 0

and

π (θ(1)θ(fg)− θ(f)θ(g)) = 0

for all f, g in C(X,M). Being semi-simple, N has a faithful family of irreducible
representations. Thus θ(1) is in the center of C0(Y,N ) and (2.2) holds.

Now, we assume that Y is compact and N is unital. If θ is surjective, 1 = θ(f)
for some f in C(X,M). It follows from θ(1)θ(f 2) = θ(f)2 = 1 that θ(1) is invertible.
Assume θ(1) is invertible. Then θ(1)−1θ is again a bounded zero-product preserving
linear map with dense range, and sends 1 to 1. Suppose now θ(1) = 1. Then (2.2)
ensures that θ is an algebra homomorphism. �

A recent result in [7] states that every surjective zero-product preserving bounded
linear map θ between unital C*-algebras is a product θ = θ(1)ϕ of the invertible
central element θ(1) and an algebra homomorphism ϕ. Since C(X,A) (resp. C(Y,B))
is ∗-isomorphic to the (projective) tensor product C(X)⊗A (resp. C(Y )⊗B) as C∗-
algebras (see, e.g., [16]), we have the following
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Corollary 5. Let X and Y be compact Hausdorff spaces, and A,B be unital C*-
algebras. Let θ be a continuous zero-product preserving linear map from C(X,A) onto
C(Y,B). Then θ(1) is an invertible element in the center of C(Y,B), and θ = θ(1)ϕ
for an algebra homomorphism ϕ.

The following example shows that the irreducibility condition on N cannot be
dropped in Theorem 1, and the map θ in the Corollaries 4 and 5 cannot be written
as a weighted composition operator in the form of (1.1) in general.

Example 6. Let X = {0} and M = C⊕C be the two-dimensional C*-algebra, and let
Y = {1, 2} and N = C be the one-dimensional C*-algebra. Define θ : C(X,M) →
C(Y,N ) by θ(a⊕b) = g with g(1) = a and g(2) = b. Then θ is bijective and preserves
zero products in both directions.

Remark that θ : C(X,M) → C(Y,N ) satisfies the condition stated in Theorem 1.
In fact, let h1(a⊕ b) = a and h2(a⊕ b) = b be the canonical projection of C⊕C onto
its summands, and set σ(1) = σ(2) = 0. Then

θ(f)(y) = hy(f(σ(y))), ∀f ∈ C(X,M),∀y ∈ Y.

However, M is not irreducible and T−1 : C(Y,N ) → C(X,M) does not carry a
weighted composition operator form. Note also that X and Y are not homeomorphic
although both C(X,M) and C(Y,N ) are isomorphic to C⊕C as C*-algebras and θ
implements an algebra isomorphism between them.
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