
ORTHOGONALITY AND DISJOINTNESS PRESERVING LINEAR
MAPS BETWEEN FOURIER AND FOURIER-STIELTJES

ALGEBRAS OF LOCALLY COMPACT GROUPS

ANTHONY TO-MING LAU AND NGAI-CHING WONG

Abstract. This paper is devoted to the study of orthogonality and disjointness
preserving linear maps between Fourier and Fourier-Stieltjes algebras of locally
compact groups. We show that a linear bijection Ψ : A(G1) → A(G2) (resp.
Ψ : B(G1)→ B(G2)) between two Fourier algebras (resp. Fourier-Stieltjes algebras)
of locally compact groups will induce a topological group isomorphism between G1

and G2, provided that Ψ preserves both disjointness and some kind of orthogonality.
This improves earlier results of J. J. Font and M. S. Monfared, where amenability of
the groups or continuity of the linear maps are assumed. We also study the struc-
ture of bounded and unbounded disjointness preserving linear functionals of Fourier
algebras. In the development, general results about disjointness and orthogonality
preserving linear maps between C*-algebras, W*-algebras and their preduals are
obtained.

1. Introduction

For a locally compact Hausdorff spaces X, let C0(X) denote the space of continuous

complex-valued functions on X vanishing at infinity. It is well known that if X and Y

are locally compact Hausdorff spaces, then every lattice isomorphism Ψ from C0(X)

onto C0(Y ) gives rise to a homeomorphism σ from Y onto X. Indeed, Ψ(f) = λ ·f ◦σ
for all f in C0(X), where the weight function λ is continuous and everywhere positive

on Y (see, e.g., [34, 1]). This is also valid for the space L1(X,µ) of integrable functions

on a measure space (X,µ), with σ-set isomorphisms between the measure σ-algebras

([35, Proof of Theorem 3.1]; see also [40] and [49, §15]).
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A linear map between vector lattices is a lattice homomorphism if and only if it

is positive and disjointness preserving (see, e.g., [3]). We are interested to see if a

weaker condition on Ψ ensures the equivalence of X and Y . In [1, 5, 31, 21, 32, 25], it

is shown that a disjointness preserving linear bijection Ψ between continuous function

spaces is automatically continuous and carries a similar form Ψ(f) = λ · f ◦ σ as in

the case of lattice isomorphisms.

The same is true for the group algebras of locally compact groups (see, e.g.,

[22, 23, 20, 45]). Let G be a locally compact group. Let A(G) be the Fourier al-

gebra of G. Then A(G) is the unique predual of the group von Neumann algebra

VN(G) of G. In particular, A(G) carries two natural ordering. One of them is the

pointwise ordering inherited from the space of bounded continuous complex-valued

functions Cb(G) and the other is the positive definite ordering induced as in the pred-

ual of a von Neumann algebra. Font [19, 20] shows that two locally compact amenable

groups G1 and G2 are homeomorphic if there is a disjointness preserving linear bi-

jection Ψ between the Fourier algebras A(G1) and A(G2). Font’s result is proved

by Monfared [45], where the amenability condition is replaced with the assumption

of boundedness on the linear map. However, neither the induced weight function λ

nor the homeomorphism σ respects the group structure. In [55], Walter shows that if

Ψ : A(G1)→ A(G2) is an isometric algebra isomorphism then G1 and G2 are topolog-

ically and algebraically isomorphic. Using this, Arendt and De Cannière obtain the

same conclusion if Ψ preserves both pointwise order and positive definite order [6, 7].

It is then natural to see what happens if Ψ preserves disjointness in ‘two senses’: the

one with pointwise ordering and the one using positive linear functionals arising from

the fact that A(G1), A(G2) are preduals of von Neumann algebras. Similarly, we also

ask the same question for the Fourier-Stieltjes algebras B(G1), B(G2).

Let M,N be von Neumann algebras (or W*-algebras), and let M∗, N∗ denote their

unique predual spaces, respectively. Following Araki [4] and Bunce and Wright [11],

a linear map Ψ : M∗ → N∗ is said to be orthogonal decomposition preserving, or an

orthogonal decomposable homomorphism if Ψ preserves orthogonal decomposition of

every self-adjoint normal linear functional. In other words, Ψ(ϕ) = Ψ(ϕ+) − Ψ(ϕ−)



ORTHOGONALITY AND DISJOINTNESS PRESERVING LINEAR MAPS 3

is the (unique) orthogonal decomposition of Ψ(ϕ) (into a difference of two disjoint

positive linear functionals) whenever ϕ = ϕ+ − ϕ− is the (unique) orthogonal de-

composition of a self-adjoint linear functional ϕ in M∗. Plainly, Ψ is an orthogonal

decomposable homomorphism if and only if Ψ is positive, i.e., sending positive normal

linear functionals to positive normal linear functionals, and orthogonality preserving

on positive elements, i.e., sending orthogonal positive normal linear functionals to

orthogonal normal linear functionals. In particular, Ψ is automatically continuous.

It is shown in [11] that Ψ : M∗ → N∗ is a bijective orthogonal decomposable homo-

morphism if and only if its dual map Ψ∗ : N → M can be written as Ψ∗ = zπ for

a positive central invertible element z in M and a Jordan ∗-isomorphism π from N

onto M .

In order to show that the disjointness and the orthogonality structures are sufficient

to determine the topological group structures in the case of Fourier algebras, we need

to extend both the results of Bunce and Wright [11] and Font [20] in this paper.

In Section 2, we show that if a bounded bijective linear map between preduals of

two W*-algebras is left or right biorthogonality preserving, then it gives rise to an

algebra ∗-homomorphism. In Section 3, we drop both amenability and boundedness

assumptions and show that a disjointness preserving linear bijection between any two

Fourier algebras of two locally compact groups is automatically bounded and carries

a weighted composition operator form.

In Section 4, we shall present the proof of the main result in this paper:

Main Theorem. Let G1 and G2 be locally compact groups. Let A(G1), B(G1) and

A(G2), B(G2) be the associated Fourier and Fourier-Stieltjes algebras of G1 and G2,

respectively. Then, G1 and G2 are isomorphic as topological groups if and only if there

is a bijective linear map Ψ : A(G1) → A(G2) or Ψ : B(G1) → B(G2), preserving

disjointness and satisfying any one of the following conditions.

(1) Ψ is orthogonal decomposition preserving.

(2) Ψ is left biorthogonality preserving.

(3) Ψ is right biorthogonality preserving.
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(4) Ψ is left-to-right biorthogonality preserving.

(5) Ψ is right-to-left biorthogonality preserving.

The proof of the Main Theorem will be based on some preliminary results in Sec-

tions 2 and 3, which have independent interests. A key step to obtain the Main

Theorem is to characterize the structure of (bounded and unbounded) disjointness

preserving linear functional of a Fourier algebra A(G). This is done by extending the

study of such functionals of an abelian C*-algebra C0(X) developed in [10] in Section

3. In Section 5, we explore further into the general theory of unbounded disjointness

preserving linear functionals of Fourier algebras. In Section 6, applications of our

technique developed in Sections 3 and 5 are demonstrated in the study of extremely

left amenable semitopological semigroups.

All topologies considered in this paper are Hausdorff.

2. Orthogonality preserving bounded linear maps between

C*-algebras, and preduals of W*-algebras

Linear orthogonality preservers between operator algebras have been well studied in

past two decades. They are basically an algebra or Jordan algebra homomorphism or

∗-homomorphism followed by multiplications (see, e.g., [56, 51, 15, 57, 58, 12, 13, 14]).

Motivated by the beautiful work of Bunce and Wright [11], we will develop in this

section a theory of bounded orthogonality linear preservers between C*-algebras, and

preduals of W*-algebras. In [11], orthogonality preserving bounded linear maps are

always assumed to be positive. We shall relax this condition and work with C*-

algebras here.

Two elements a, b in a C*-algebra are said to be orthogonal if a∗b = ab∗ = 0; in

other words, a and b have orthogonal left and right supports. A linear map Φ : A→ B

between C*-algebras is said to be orthogonality preserving on positive elements if Φ(a)

and Φ(b) are orthogonal (but not necessarily be positive) whenever a and b are positive

and orthogonal. A linear map π : A → B is a Jordan homomorphism (resp. Jordan

∗-homomorphism) if it preserves Jordan products π(ab+ ba) = J(a)J(b) + J(b)J(a),



ORTHOGONALITY AND DISJOINTNESS PRESERVING LINEAR MAPS 5

or equivalently, π(a2) = π(a)2 (resp. and involutions J(a∗) = J(a)∗), ∀a, b ∈ A. A

Jordan homomorphism π is orthogonality preserving on positive elements (see, e.g.,

[58, Lemma 2.1]). As shown in [33, 52], if ab = ba in A then π(a)π(b) = π(b)π(a).

In particular, π sends central elements in A to central elements in π(A). Assume

that π is a Jordan ∗-homomorphism. Then, π(A) is a C*-subalgebra of B. Moreover,

π(ab∗a) = π(a)π(b)∗π(a) for all a, b in A. Consequently, π sends partial isometries to

partial isometries. When A,B are W*-algebras and π is weak* continuous, π(A) is a

W*-subalgebra of B.

Two normal positive linear functionals ϕ and τ in M∗ are said to be orthogonal if

they have orthogonal support projections s(ϕ) and s(τ), or equivalently, ‖ϕ ± τ‖ =

‖ϕ‖ + ‖τ‖. In general, we say two normal linear functionals ϕ and τ in M∗ are left

(resp. right) orthogonal if they have orthogonal left (resp. right) support projections

sl(ϕ) = s(|ϕ|) and sl(τ) = s(|τ |) (resp. sr(ϕ) = s(|ϕ∗|) and sr(τ) = s(|τ ∗|)). Here,

ϕ∗(x) = ϕ(x∗) (complex conjugate) and |ϕ| is the absolute value of ϕ. Note that

sl(ϕ) and sr(ϕ)) are the smallest projections in M such that

ϕ(x) = ϕ(sl(ϕ)x) = ϕ(xsr(ϕ)), ∀x ∈M.

Bunce and Wright show:

Proposition 2.1 ([11, Corollary 2.9]). Let M and N be W*-algebras, and let Ψ :

M∗ → N∗ be a bounded bijective linear map. Then the following are equivalent.

(1) Ψ : M∗ → N∗ is orthogonal decomposition preserving, i.e., Ψ is positive and

orthogonality preserving on positive elements of M∗.

(2) Ψ∗ : N → M is orthogonal decomposition preserving, i.e., Ψ∗ is positive and

orthogonality preserving on positive elements of N .

(3) Ψ∗ = zπ, where z = Ψ∗(1) is a positive invertible central element in M and

π : N →M is a surjective weak* continuous Jordan ∗-isomorphism.

Recall that the multiplier algebra M(B) of a C*-algebra B can be identified with

the C*-subalgebra of B∗∗ as

M(B) = {x ∈ B∗∗ : xB +Bx ⊂ B}.
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Write Z(B) and Z(M(B)) for the centers of B and M(B), respectively. Let Φ : A→
B be a bounded linear map between C*-algebra. For simplicity of notations, we write

again Φ for the bidual map Φ∗∗ : A∗∗ → B∗∗, which is also weak*-weak* continuous.

The following is a C*-algebra version of [11, Proposition 1.1] that we shall need.

However, rather than assuming Φ to be positive, we require that Φ has a dense range.

Meanwhile, we also extend the results in [57], where Φ(1) (= Φ∗∗(1)) is assumed

to be a partial isometry and Φ is assumed to preserve all rather than just positive

orthogonal pairs.

Theorem 2.2. Let Φ : A → B be a bounded linear map between two C*-algebras A

and B with dense range. Then Φ is orthogonality preserving on positive elements if

and only if

Φ = Φ(1)π,

where Φ(1) ∈ M(B) with Φ(1)∗Φ(1) = Φ(1)Φ(1)∗ ∈ Z(M(B)) and π : A→ M(B) is

a Jordan ∗-homomorphism, such that Φ(1)π(A) ⊆ B.

Moreover, Φ(1) is invertible if and only if Φ is surjective. In this case, π(A) = B.

Proof. The sufficiency is trivial, and we will show the necessity below.

Let a ∈ A+ with spectrum X ⊆ [0, ‖a‖]. Identify the abelian C*-subalgebra of A∗∗

generated by 1 and a with C(X). Let 0 = α0 < α1 < · · · < αn−1 < αn = ‖a‖ + 1,

and X =
⋃
kXk be the partition of X with Xk = X ∩ [αk−1, αk). In particular,

1 =
∑

k 1Xk , where 1Xk is the characteristic function of Xk for k = 1, . . . , n. Note

that some Xk might be empty, and thus 1Xk = 0 in these cases. Indeed, 1Xk is the

atomic part of the spectral projection Ea(Xk) of a for the subset Xk of its spectrum.

Below, we shall identify f(t) = t with a and 1Xk with Ea(Xk) as (atomic parts of

universally measurable) elements of A∗∗. Note that Φ sends universally measurable

elements to universally measurable elements, and universally measurable elements of

A∗∗, including spectral projections of elements of A, are determined by their atomic

parts (see, e.g., [47, Section 4.3]).
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For 1 < j < k, we can find two sequences of continuous non-negative functions

{fn}n and {gn}n from C(X) ∩ A such that fmgm+p = 0 for all m, p = 1, 2, . . .,

fm → 1Xj , and gm → 1Xk pointwisely on X, and hence in the weak* topology of A∗∗.

By the weak* continuity of Φ (= Φ∗∗), we see that

Φ(1Xk)Φ(fm)∗ = lim
p→∞

Φ(gm+p)Φ(fm)∗ = 0, ∀m = 1, 2, . . . .

Thus

Φ(1Xk)Φ(1Xj)
∗ = lim

m→∞
Φ(1Xk)Φ(fm)∗ = 0, ∀ 1 < j < k.

Similarly, we have

Φ(1Xk)
∗Φ(1Xj) = 0, ∀ 1 < j < k.

When j = 1, set X1m = X1∩ [0, mα1

m+1
). As the (atomic part of the) spectral projection

Ea(X1m) of a for the open subset X1m of its spectrum, 1X1m is (the atomic part of)

an open projection in A∗∗ for m = 1, 2, . . .. Hence, there is an increasing net {aλ}λ
in A+ converging to 1X1m in the weak* topology of A∗∗ (see, e.g., [47, Proposition

3.11.9] or [9]). Using an argument similar to above, we get

Φ(1Xk)Φ(1X1m)∗ = Φ(1Xk)
∗Φ(1X1m) = 0, ∀k = 2, . . . , n, m = 1, 2, . . . .

Letting m→∞, we have

Φ(1Xk)Φ(1X1)
∗ = Φ(1Xk)

∗Φ(1X1) = 0.

Consequently, for each j = 1, 2, . . . , n, we have

Φ(1)Φ(1Xj)
∗ = Φ(1Xj)Φ(1Xj)

∗,(1)

Φ(1)∗Φ(1Xj) = Φ(1Xj)
∗Φ(1Xj),(2)

for all j = 1, . . . , n. Note that a can be approximated in norm by step functions in

the form of
∑

j λj1Xj . Thus, Φ(a) can be approximated in norm by
∑

j λjΦ(1Xj). It

follows from (1) and (2) that

Φ(1)Φ(a2)∗ = Φ(a)Φ(a)∗ = Φ(a2)Φ(1)∗,(3)

Φ(1)∗Φ(a2) = Φ(a)∗Φ(a) = Φ(a2)∗Φ(1),(4)

for all positive a in A. Since Φ has a dense range, we see that Φ(1) ∈M(B).
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Let p be a projection in A∗∗. Let {aλ}λ be a net from A+ such that aλ → p in the

weak* topology. Then (3) and (4) imply

Φ(1)Φ(p)∗ = Φ(p)Φ(p)∗ = Φ(p)Φ(1)∗,(5)

Φ(1)∗Φ(p) = Φ(p)∗Φ(p) = Φ(p)∗Φ(1).(6)

Consequently,

Φ(1)Φ(1)∗Φ(p) = Φ(1)Φ(p)∗Φ(1) = Φ(p)Φ(1)∗Φ(1).

This implies in turn that

Φ(1)Φ(1)∗Φ(a) = Φ(a)Φ(1)∗Φ(1), ∀a ∈ A,(7)

by the weak* continuity of Φ (= Φ∗∗). Therefore, the positive element

(Φ(1)∗Φ(a))∗(Φ(1)∗Φ(a)) = Φ(a)∗Φ(1)Φ(1)∗Φ(a) = Φ(a)∗Φ(a)Φ(1)∗Φ(1).

Hence,

Φ(a)∗Φ(a)Φ(1)∗Φ(1) = Φ(1)∗Φ(1)Φ(a)∗Φ(a), ∀a ∈ A.

Since Φ has a dense range, Φ(1)∗Φ(1) is a central element. By (7), we see that

Φ(1)∗Φ(1) = Φ(1)Φ(1)∗. By (5) and (6), the support projection of Φ(1) is e, the

identity element of B∗∗.

Suppose that Φ(1) is invertible in M(B) and bΦ(1) = e for some element b in

M(B). Inherited from Φ(1), we have b∗b = bb∗ ∈ Z(M(B)). The bounded linear

map π : A → B defined by π(a) = bΦ(a) preserves again orthogonality of self-

adjoint elements. Moreover, π(1) = e. Here, again we write π for the bidual map

π∗∗ : A∗∗ → B∗∗. By (5) and (6), we have

π(p) = π(p)∗π(p) and π(p)∗ = π(p)π(p)∗,

and hence

π(p) = π(p)∗ = π(p)2

for all projections p in A∗∗. This ensures that π is a Jordan ∗-homomorphism from A

into B. Note that Φ = Φ(1)π. Since Φ has a dense range and π(A) is a C*-algebra,

π is surjective. Furthermore, for any y in B, we have Φ(1)−1y ∈ B and thus there
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is an a in A with π(a) = Φ(1)−1y. This gives Φ(a) = Φ(1)π(a) = y, and hence Φ is

surjective.

In the case that Φ(1), or equivalently the central multiplier |Φ(1)| =
√

Φ(1)∗Φ(1),

is not invertible, we identify the abelian W*-subalgebra Z(B∗∗) with C(Y ) and |Φ(1)|
with an f ≥ 0 in C(Y ), where Y is a compact hyperstonean space. Since the support

projection of |Φ(1)| is e, we see that {y ∈ Y : f(y) > 0} is dense in Y . For each

n = 1, 2, . . ., let Kn be the closure in Y of the open set {y ∈ Y : f(y) > 1/n}.
Then each Kn is a clopen subset of Y . Let en be the central projection in B∗∗

arising from the characteristic function of Kn. Clearly, {en} is increasing with en ↑ e,
and enΦ(1) is invertible in enB

∗∗. As discussed above, for the linear orthogonality

preserving map enΦ from A into the C*-subalgebra enB of enB
∗∗ there is a Jordan

∗-homomorphism πn : A → enB
∗∗ such that enΦ(a) = enΦ(1)πn(a), ∀a ∈ A. As

e = e1 +
∑

n≥1(en+1 − en), we have Φ = Φ(1)π where π : A → B∗∗ is a Jordan

∗-homomorphism defined by π(a) = e1π1(a) +
∑

n≥1(en+1 − en)πn(a),∀a ∈ A. Since

π(A) is a C*-algebra and Φ(A) is dense in B, for any a in A it follows from

Φ(A)π(a) = Φ(1)π(A)π(a) ⊆ Φ(1)π(A) = Φ(A) ⊆ B

that π(a) is a right multiplier of B. Because π(a)∗ = π(a∗) is also a right multiplier,

π(a) is a multiplier of B. That is, π sends A into M(B).

Finally, assume that Φ(A) = B. Let {eλ} be an increasing positive approximate

identity in B. It follows from the open mapping theorem that there is a uniformly

bounded net {aλ} in A such that eλ = Φ(aλ) = Φ(1)π(aλ). Let b be a weak* cluster

point of the bounded net {π(aλ)} in B∗∗. We have e = Φ(1)b, and thus Φ(1) is

invertible. As already discussed above, π maps A onto B in this case. �

Example 2.3. (a) Let Φ : C[0, 1]→ C0(0, 1] be the orthogonality preserving bounded

linear map defined by Φ(f)(t) = t exp(i/t)f(t). Then Φ is not positive and the range

of Φ is not self-adjoint. Anyway, Φ has a dense range, and the conclusion of Theorem

4.1 holds. Note that the associative Jordan ∗-homomorphism π(f) = f maps C[0, 1]

outside C0(0, 1].
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(b) Consider the bijective linear map Φ : M2 →M2 between 2×2 complex matrices

defined by

Φ

(
a b
c d

)
=

(
0 1
1 0

)(
a b
c d

)
=

(
c d
a b

)
.

Then Φ is orthogonality preserving with Φ(1)∗Φ(1) = Φ(1)Φ(1)∗ = 1. But Φ(1) is

not central.

In [11], Φ : M → N is assumed to be a weak* continuous orthogonality preserving

map between two W*-algebras sending positive elements to positive elements. The

following two results extend [11, Theorem 2.1].

Corollary 2.4. Let Φ : M → N be a weak* continuous linear map between two

W*-algebras M and N with dense range. Then Φ is orthogonality preserving on

positive elements if and only if Φ(1)∗Φ(1) = Φ(1)Φ(1)∗ is central and there is a weak*

continuous surjective Jordan ∗-homomorphism π : M → N such that

Φ = Φ(1)π.

Proof. Arguing as in the proof of Theorem 2.2, we can work within M,N without

referring to M∗∗, N∗∗ or the bidual map Φ∗∗. Moreover, π(M) = N as Φ has a dense

range. �

Corollary 2.5. Let Φ : M → N be a weak* continuous linear map between W*-

algebras with Φ(1) ≥ 0. Then Φ is orthogonality preserving on positive elements if

and only if there is a weak* continuous Jordan ∗-homomorphism π : M → N and a

central element z in M such that

Φ = π(z·).

Proof. We verify the sufficiency only. Let NΦ be the W*-subalgebra of N generated

by the range of Φ. We argue as in the proof of Theorem 2.2 by considering Φ as a map

from M into NΦ. Since Φ(1) ≥ 0, it follows from (7) that Φ(1) = |Φ(1)| is a central

element of NΦ. We can then obtain a surjective Jordan homomorphism π : M → NΦ

such that Φ = θ(1)π. Thus there is a central element z in M such that π(z) = Φ(1)

([54]). Consequently, Φ(a) = θ(1)π(a) = π(z)π(a) = π(za),∀a ∈ A. �
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We can now sharpen Proposition 2.1 by reducing the positivity assumption on

Ψ∗(x) ≥ 0 for all x ≥ 0 to a single condition Ψ∗(1) ≥ 0.

Theorem 2.6. Let M,N be W*-algebras with preduals M∗, N∗, respectively. Let

Ψ : M∗ → N∗ be a bounded bijective linear map. Then the following are equivalent.

(1) Ψ : M∗ → N∗ is orthogonal decomposition preserving, i.e., Ψ is positive and

orthogonality preserving on positive elements of M∗.

(2) Ψ∗ : N →M is orthogonality preserving on positive elements, and Ψ∗(1) ≥ 0.

(3) Ψ∗ = zπ, where z = Ψ∗(1) is a positive invertible central element in M and

π : N →M is a surjective weak* continuous Jordan ∗-isomorphism.

In the case Ψ = Φ∗ is the dual map of a bounded bijective linear map Φ : A → B

between two C*-algebras, the above statements are also equivalent to

(4) Φ is orthogonality preserving on positive elements, and Φ∗∗(1) ≥ 0.

(5) Φ = zπ, where z = Φ∗∗(1) is a positive invertible central multiplier of B and

π : A→ B is a Jordan ∗-isomorphism.

Proof. The equivalence between (1) and (3) follows from Proposition 2.1, while that

between (2) and (3) follows from Theorem 2.2 and its corollaries. If A,B are C*-

algebras, then A∗, B∗ are preduals of the W*-algebras N = A∗∗,M = B∗∗, respec-

tively. It is plain that (2) implies (4), and (5) implies (3). Finally, it follows from

Theorem 2.2 that (4) implies (5). �

Next, we will develop a corresponding part of Theorem 2.6 for non-positive one-side

linear orthogonality preservers of normal linear functionals. Let M be a W*-algebra

with predual M∗. Write s(ϕ) for the support projection of a normal positive linear

functional ϕ in M∗. It is known that a projection p in M is σ-finite if and only if

it is of the form s(ϕ) for some positive normal linear functional ϕ in M∗ (see, e.g.,

[42, Proposition 1.14.7]). In general, every projection p in M is an orthogonal sum of

σ-finite projections (see, e.g., [42, Proposition 1.14.10]).
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Lemma 2.7. Let M and N be W*-algebras with preduals M∗, N∗, respectively. Let

Ψ : M∗ → N∗ be a bounded bijective linear map. Then the following conditions are

equivalent.

(1) Ψ is right biorthogonality preserving, i.e.,

sr(ϕ)sr(τ) = 0 ⇐⇒ sr(Ψ(ϕ))sr(Ψ(τ)) = 0, ∀ϕ, τ ∈M∗.

(2) Ψ∗(1) is an invertible element and there is a weak* continuous algebra ∗-isomorphism

π : N →M such that

Ψ∗ = Ψ∗(1)π.

In this case, if we write πΨ : N → M for the inverse of π and write z = Ψ∗(1)

then

Ψ∗(πΨ(x)) = zx, ∀x ∈M.

Proof. Let z = Ψ∗(1) and ϕ′ = Φ(ϕ) for each ϕ in M∗.

(2) =⇒ (1). Observe that for any ϕ in M∗ we have

ϕ′(xπΨ(sr(ϕ))) = ϕ(Ψ∗(xπΨ(sr(ϕ)))) = ϕ(zπ(xπΨ(sr(ϕ))))

= ϕ(zπ(x)sr(ϕ)) = ϕ(zπ(x))

= ϕ′(x), ∀x ∈M.

Hence, sr(ϕ
′) ≤ πΨ(sr(ϕ)). Conversely,

ϕ(xπ(sr(ϕ
′))) = ϕ(z(z−1xπ(sr(ϕ

′)))) = ϕ(Ψ∗(πΨ(z−1xπ(sr(ϕ
′)))))

= ϕ′(πΨ(z−1x)sr(ϕ
′)) = ϕ′(πΨ(z−1x))

= ϕ(Ψ∗(πΨ(z−1x))) = ϕ(z(z−1x))

= ϕ(x), ∀x ∈M.

Hence, sr(ϕ) ≤ π(sr(ϕ
′)), and thus sr(ϕ

′) = πΨ(sr(ϕ)). Consequently, Ψ is right

biorthogonality preserving.

(1) =⇒ (2). For any τ in M∗, let τ1 = τ(·(1 − sr(ϕ))). Then sr(τ1)sr(ϕ) = 0.

Hence sr(τ
′
1)sr(ϕ

′) = 0 as well. This gives

0 = τ ′1(xsr(ϕ
′)) = τ1(Ψ∗(xsr(ϕ

′)) = τ(Ψ∗(xsr(ϕ
′))(1− sr(ϕ))), ∀x ∈ N, ∀τ ∈M∗.
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Consequently,

Ψ∗(xsr(ϕ
′)) = Ψ∗(xsr(ϕ

′))sr(ϕ), ∀x ∈ N, ∀ϕ ∈M∗.(8)

Write 1 = sr(ϕ)+
∑

i sr(τi) as an orthogonal sum of σ-finite projections in M . Assume

the orthogonal sum sr(ϕ
′) +

∑
i sr(τ

′
i) = 1− q and q =

∑
j sr(ζ

′
j) for some ζj in M∗.

Since Φ−1 also preserves right orthogonality, sr(ζj)sr(ϕ) = sr(ζj)sr(τi) = 0,∀i, j. It

follows ζj = 0,∀j. In other words, q = 0 and 1 = sr(ϕ
′) +

∑
i sr(τ

′
i) in N . Now, (8)

provides

Ψ∗(xsr(τ
′
i))sr(ϕ) = Ψ∗(xsr(τ

′
i))sr(τi)sr(ϕ) = 0, ∀i,

and thus

Ψ∗(xsr(ϕ
′)) = Ψ∗(xsr(ϕ

′))sr(ϕ) +
∑
i

Ψ∗(xsr(τ
′
i))sr(ϕ)

= Ψ∗(x)sr(ϕ), ∀x ∈ N, ∀ϕ ∈M∗.(9)

In particular, setting x = 1 we have

Ψ∗(sr(ϕ
′)) = Ψ∗(1)sr(ϕ), ∀ϕ ∈M∗.(10)

We use an argument similar to the one given in [11, Theorem 2.6] to obtain the

representation Ψ∗(πΨ(x)) = Ψ∗(1)x. Let x ∈M . We claim there is an element x′ in N

such that Ψ∗(x′) = Ψ∗(1)x. Such an x′ is necessarily unique as Ψ∗ is injective. Let p

be any projection in M , and write p =
∑
sr(ζ) as an orthogonal sum of right support

projections. Since Ψ preserves right orthogonality, p′ =
∑
sr(ζ

′) is a projection in N .

By the weak* continuity of Ψ∗ and (10), we have

Ψ∗(p′) =
∑

Ψ∗(sr(ζ
′)) =

∑
Ψ∗(1)sr(ζ) = Ψ∗(1)p.

Now let x ∈ M with 0 ≤ x ≤ 1. We can write x =
∑

(pn/2
n), for certain spectral

projections pn of x. Let p′n be a projection in N such that Ψ∗(p′n) = Ψ∗(1)pn for each

n. Thus x′ =
∑

(p′n/2
n) ∈ N and

Ψ∗(1)x =
∑

Ψ∗(1)
pn
2n

=
∑ Ψ∗(p′n)

2n
= Ψ∗(x′).

This shows the claim.

Define πΨ : M → N by πΨ(x) = x′ as above. It is easy to see that πΨ is a weak*

continuous Jordan ∗-homomorphism satisfying that
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(a) Ψ∗(πΨ(x)) = Ψ∗(1)x, for all x in M .

(b) πΨ(sr(ζ)) = sr(ζ
′), for all ζ in M∗.

Since the range of πΨ is a W*-subalgebra of N containing all sr(ζ
′), we have πΨ(M) =

N . Therefore, πΨ maps M isomorphically onto N as Jordan ∗-algebras. Since

Ψ∗(1)M = Ψ∗(πΨ(M)) = Ψ∗(N) = M , we see that Ψ∗(1) is invertible.

Moreover, it follows from (9) and the argument deriving (a) above that for all y in

N we have

Ψ∗(πΨ(x)πΨ(y)) = Ψ∗(πΨ(x))y = Ψ∗(1)xy = Ψ∗(πΨ(xy)), ∀x ∈ N.

By the injectivity of Ψ∗ we have πΨ(x)πΨ(y) = πΨ(xy) for all x, y in M . So πΨ is a

weak*-continuous algebra ∗-isomorphism.

Let π : N →M be the inverse of πΨ. Then Ψ∗ = Ψ∗(1)π on N . �

We can also define left orthogonality preserving property for a bijective linear map

ϕ 7→ ϕ′ between preduals of W*-algebras. Even more general, we can define left-

to-right and right-to-left orthogonality preservers. Namely, they are those sending

normal linear functionals with disjoint left (resp. right) support projections to normal

linear functionals with disjoint right (resp. left) support projections. Note that a

linear map Ψ : M∗ → N∗ is left (resp. right, left-to-right, right-to-left) orthogonality

preserving if and only if

s(|ϕ|)s(|τ |) = 0 =⇒ s(|ϕ′|)s(|τ ′|) = 0

(resp. s(|ϕ∗|)s(|τ ∗|) = 0 =⇒ s(|(ϕ′)∗|)s(|(τ ′)∗|) = 0,

s(|ϕ|)s(|τ |) = 0 =⇒ s(|(ϕ′)∗|)s(|(τ ′)∗|) = 0,

s(|ϕ∗|)s(|τ ∗|) = 0 =⇒ s(|(ϕ′)|)s(|(τ ′)|) = 0).

In particular, if the map is positive, i.e., ϕ ≥ 0 =⇒ ϕ′ ≥ 0, then all left, right,

left-to-right and right-to-left orthogonality preserving properties coincide on positive

elements with the orthogonal decomposition preserving property of Bunce and Wright

[11].
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The following theorem supplements a result of Bunce and Wright (Proposition 2.1,

and see Theorem 2.6). It provides another positive answer to a question of Araki [4].

Here we do not assume the orthogonality preserving maps are positive.

Theorem 2.8. Let M and N be W*-algebras with preduals M∗ and N∗, respectively.

Let Ψ : M∗ → N∗ be a bounded bijective linear map. The following are all equivalent.

(1) Ψ is right biorthogonality preserving, i.e.,

sr(ϕ)sr(τ) = 0 ⇐⇒ sr(Ψ(ϕ))sr(Ψ(τ)) = 0, ∀ϕ, τ ∈M∗.

(2) Ψ∗ is right orthogonality preserving, i.e.,

ab∗ = 0 =⇒ Ψ∗(a)(Ψ∗(b))∗ = 0, ∀a, b ∈M.

(3) Ψ∗ = zπ, where z = Ψ∗(1) is an invertible element in M and π : N → M is a

weak* continuous algebra ∗-isomorphism.

In the case Ψ = Φ∗ is the dual map of a bounded bijective linear map Φ : A → B

between two C*-algebras, the above statements are also equivalent to

(4) Φ is right orthogonality preserving.

(5) Φ = zπ, where z = Φ∗∗(1) is an invertible multiplier of B and π : A → B is an

algebra ∗-isomorphism.

Proof. The implications (3) implying (1) and (1) implying (2) follow from Lemma

2.7, while that (2) implying (3) follows from Schweizer [51, Theorem 4.7], see also

[41, Theorem 1.3(c)]. If A,B are C*-algebras, then A∗, B∗ are preduals of the W*-

algebras N = A∗∗,M = B∗∗, respectively. The implication from (2) to (4) is clear.

The implication from (4) to (5) is due to Schweizer [51, Theorem 4.7] again. Finally,

the implication from (5) to (3) is trivial. �

Remark 2.9. Theorem 2.8 has corresponding ‘left’, ‘left-to-right’ and ‘right-to-left’

versions, too. But Ψ∗ is right-to-left (resp. left-to-right) orthogonality preserving

whenever Ψ is left-to-right (resp. right-to-left) biorthogonality preserving, and π is

an algebra ∗-anti-isomorphisms in these cases. Moreover, Ψ∗(·) = π(·)z for left and

left-to-right preservers.
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Let G be a topological group, i.e., G is a group with a Hausdorff topology, such

that the mappings x 7→ x−1 from G into G and (x, y) 7→ xy from G × G into G

are continuous. Let P (G) denote the collection of all continuous positive definite

functions on G, i.e., the collection of all continuous complex valued functions f on G

such that for any complex numbers λ1, . . . , λn and any a1, . . . , an in G, we have
n∑
i=1

n∑
j=1

λiλjf(a−1
i aj) ≥ 0.

Let B(G) denote the linear span of P (G). As shown in [36], B(G) can be iden-

tified with the predual of a von Neumann algebra W ∗(G) ⊂ B(Hω), where ω is a

∗-homomorphism of G into the group of unitary operators in B(Hω), the space of

bounded linear operators from a Hilbert space Hω into Hω. Furthermore, B(G), with

the predual norm of W ∗(G) is a commutative Banach algebra called the Fourier-

Stieltjes algebra of G. (See also [37].)

Theorem 2.8 can be applied to obtain the following characterization of bounded

orthogonality preserving maps between B(G) and B(H) of two topological groups.

Corollary 2.10. Let G and H be topological groups, and Ψ : B(G) → B(H) be a

bounded bijective linear map. Then Ψ is right biorthogonality preserving if and only

if there is a weak* continuous algebra ∗-isomorphism π : W ∗(G) → W ∗(H) and an

invertible element z in W ∗(G) such that

Ψ∗(π(x)) = zx for all x ∈ W ∗(G).

3. Disjointness preserving linear maps of Fourier algebras

Let G be a locally compact group with a fixed left Haar measure m. Let C00(G) be

the subspace of Cb(G) consisting of all functions vanishing outside a compact set. Let

Lp(G), 1 ≤ p < +∞, denote the Banach space of p-integrable functions with respect

to m, and let L∞(G) be the space of essentially bounded measurable functions on

G (see, e.g., [29]). Then G is amenable if there exists a positive linear functional φ

of norm one on Cb(G) satisfying φ(af) = φ(f) for all f in Cb(G) and a in G, where

(af)(t) = f(at), ∀t ∈ G. This is equivalent to the space of bounded left uniformly
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continuous functions LUC(G) has a left translation invariant mean. Here LUC(G)

consists of all those f in Cb(G) such that the map a 7→ af from G into Cb(G) with

the norm topology is continuous. See, e.g., [44, 29]. The class of amenable groups

includes all solvable groups and all compact groups. On the other hand, the free

group on two generators is not amenable, and so is every non-compact connected

semisimple Lie group (see, e.g., [46] for details).

For a in G, let ρ(a) ∈ B(L2(G)), the space of bounded linear operators on L2(G),

defined by ρ(a)h(x) = h(a−1x). Let V N(G) denote the von Neumann algebra in

B(L2(G)) generated by {ρ(a) : a ∈ G}. The Fourier algebra A(G) of G is the closed

linear span of P (G)∩C00(G) in B(G). Then A(G) can be identified with the unique

predual of V N(G) with

〈f, ρ(a)〉 = f(a), a ∈ G, f ∈ A(G);(11)

also f ∈ A(G) if and only if there are ζ, η in L2(G) such that

f(x) = 〈ρ(x)ζ, η〉L2(G), ∀x ∈ G.

The Fourier algebra A(G) is a closed ideal in B(G) ⊆ Cb(G) with spectrum G given

by (11); A(G) has a bounded approximate identity if and only if G is amenable.

Furthermore, A(G) has an identity if and only if G is compact. (See [18] and [39] for

more details.)

The following elementary result in part (a) is stated in [18, 3.2 and 3.36]. One can

adapt a proof for (b) from, for example, [22, Lemma 1], although G is assumed to be

abelian there. The part (c) should be known, too. We provide a proof here, as we do

not find one handy in the literature.

Lemma 3.1. Let G be a locally compact group.

(a) Let U be an open set in G containing a nonempty compact set K. Then there is

an f in A(G) such that f = 1 on K and f = 0 outside U .

(b) Let {V1, . . . , Vn} be an open covering of a compact set K in G. Then there exist

f1, . . . , fn in A(G) such that
∑n

i=1 fi = 1 on K and coz(fi) ⊆ Vi for i = 1, . . . , n.
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(c) Let U be a neighborhood of a point x in G, and ε > 0. Then there is a g in A(G)

and a neighborhood V of x contained in U such that

g = 1 on V, g = 0 outside U, and ‖g‖A(G) ≤ 1 + ε.

Proof. (c) Without loss of generality, we can assume x = e. Let m be the left Haar

measure of G. Let W be a compact symmetric neighborhood of e such that e ∈ W ⊆
W 3 ⊆ U . As 0 < m(W ) < +∞, the regularity of m implies that there is an open set O

such that W ⊆ O ⊆ U with m(W ) ≤ m(O) ≤ (1+ε)2m(W ). By the continuity of the

multiplication and the compactness of W , there is a neighborhood V of e such that

V ⊆ W and W = eW ⊆ VW ⊆ O. In particular, m(W ) ≤ m(VW ) ≤ (1 + ε)2m(W ).

Define g = 1
m(W )

χVW ∗ χ̃W . Then

g(s) =
1

m(W )

∫
G

χVW (y)χW (s−1y)dm(y) =
m(VW ∩ sW )

m(W )
, ∀s ∈ G.

We have g = 1 on V and g = 0 outside U . It follows from [18, Lemma 3.1] that

‖g‖A(G) ≤
1

m(W )
‖χVW‖2‖χW‖2 =

1

m(W )

√
m(VW )

√
m(W ) ≤ 1 + ε.

�

In what follows, G will denote a locally compact group. Let x be a point in the

one-point compactification G ∪ {∞} of G. Denote by

Ix = {f ∈ A(G) : f vanishes in a neighborhood of x},

Mx = {f ∈ A(G) : f(x) = 0}.

Notice that I∞ = A00(G) and M∞ = A(G). Here, A00(G) denotes the algebra of all

functions in A(G) with compact supports.

For a function f in A(G), let coz(f) be the cozero set of f , that is,

coz(f) = {x ∈ G : f(x) 6= 0}.

An open subset V of G is said to be a vanishing set for a linear functional ϕ of A(G)

if

cozf ⊆ V =⇒ ϕ(f) = 0, ∀f ∈ A(G).
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We call a linear functional ϕ of A(G) disjointness preserving if

fg = 0 =⇒ ϕ(f)ϕ(g) = 0, ∀f, g ∈ A(G).

Lemma 3.2. Let ϕ be a nonzero disjointness preserving linear functional of A(G).

The following are all equivalent for any x in G.

(a) ϕ|Ix = 0;

(b) for each open neighborhood U of x, there is an f in A(G) with ϕ(f) 6= 0 and

cozf ⊆ U ;

(c) x ∈ G \
⋃
{V ⊆ G : V is a vanishing set for ϕ}.

Proof. The equivalence of (b) and (c) is obvious.

For the implication (a) =⇒ (b), suppose U is an open neighborhood of x such that

ϕ(f) = 0 whenever f is in A(G) with cozf ⊆ U . Let V be a compact neighborhood

of x such that x ∈ V ⊆ U . Let g be in A(G) such that g = 1 on V and vanishes

outside U (Lemma 3.1(a)). Then for all f in A(G), write f = fg + f(1 − g). Now

cozfg ⊆ U implies ϕ(fg) = 0. Meanwhile, f(1− g)|V = 0 ensures that f(1− g) ∈ Ix
and thus ϕ(f(1− g)) = 0. Hence, we get a contradiction that ϕ = 0.

Finally, we derive (b) =⇒ (a). Assume g in A(G) vanishes in a neighborhood U

of x. We may assume that U is open. Hence there is a f in A(G) with ϕ(f) 6= 0 and

coz(f) ⊆ U . So fg = 0. As ϕ preserves disjointness, we have ϕ(g) = 0. �

Given a disjointness preserving linear functional ϕ of A(G), we call the set supp(ϕ)

of all points x in G such that one of the equivalent conditions in Lemma 3.2 holds

the support of ϕ. We also allow ∞ ∈ supp(ϕ) if ϕ |I∞= 0.

Lemma 3.3. The support supp(ϕ) of a nonzero disjointness preserving linear func-

tional ϕ of A(G) consists of exactly one point. That is, there exists a unique x in

G ∪ {∞} such that ϕ|Ix = 0.

Proof. Suppose that supp(ϕ) ∩G is empty. Then

G =
⋃
{V ⊆ G : V is a vanishing set for ϕ}.
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Let f be in A(G) with compact support. Then, the compact set cozf can be covered

by finitely many vanishing sets of ϕ; namely,

coz(f) ⊆ V1 ∪ · · · ∪ Vn.

By Lemma 3.1(b), there are f1, . . . , fn in A(G) such that
∑n

i=1 fi = 1 on coz(f) and

cozfi ⊆ Vi for i = 1, . . . , n. Therefore,

f =
n∑
i=1

ffi.

Since coz(ffi) ⊆ Vi, we have ϕ(ffi) = 0 for i = 1, . . . , n. Thus ϕ(f) = 0 for all f in

A(G) with compact support. Therefore, ϕ |I∞= 0, and thus ∞ ∈ supp(ϕ).

On the other hand, let us suppose that r and t are distinct members of supp(ϕ).

If r = ∞ then the value of ϕ at every function in A(G) supported in a compact

neighborhood of t is zero. This conflicts with the assumption that t is a support

point of ϕ. So we assume none of r and t is the point at infinity. Let U and V be

disjoint neighborhoods of s and t in G, respectively. Then there are f and g in A(G)

such that cozf ⊆ U , cozg ⊆ V and both ϕ(f) and ϕ(g) are nonzero. However, this

would contradict to the disjointness preserving property of ϕ. �

Lemma 3.4. If ϕ is a nonzero bounded disjointness linear functional of A(G). Then

there is a unique x in G and a nonzero scalar λ such that ϕ = λδx.

Proof. By Lemma 3.3, there is a unique x in G ∪ {∞} such that ϕ|Ix = 0. Note

that the closure Ix of Ix is Mx = {f ∈ A(G) : f(x) = 0} (since {x} is a set of

spectral synthesis [18]). By the continuity of ϕ, its kernel kerϕ ⊇ Mx. This gives

ϕ(f) = 0 ⇐⇒ f(x) = 0 for all f in A(G). Since ϕ is nonzero, x ∈ G. Consequently,

f = λδx for some nonzero scalar λ. �

Let G1, G2 be locally compact groups. Let Ψ : A(G1) → A(G2) be a disjointness

preserving linear map between two Fourier algebras, that is, fg = 0 in A(G1) implies

Ψ(f)Ψ(g) = 0 in A(G2). For each s in G2, let Ψ∗δs be the disjointness preserving

linear functional of A(G2) defined by

Ψ∗δs(f) = Ψ(f)(s), for all f ∈ A(G1).
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Denote by

G◦◦2 = {s ∈ G2 : there is an f in A(G1) with compact support

such that Ψ∗δs(f) = Ψ(f)(s) 6= 0}

= {s ∈ G2 : Ψ∗δs |I∞ 6= 0}.

Lemma 3.5. The set

supp(Ψ∗δs) = G1 ∪ {∞} \
⋃
{V ⊆ G1 ∪ {∞} : V is a vanishing set for Ψ∗δs}

is a singleton σ(s) for all s in G2. Moreover, s ∈ G◦◦2 if and only if σ(s) ∈ G1.

Proof. It follows from Lemma 3.3 that supp(Ψ∗δs) = {σ(s)} is a singleton. Moreover,

the first paragraph of the proof of Lemma 3.3 shows that σ(s) 6= ∞ if s ∈ G◦◦2 . The

converse follows from the definition of G◦◦2 . �

Let σ : G2 → G1 ∪ {∞} be the support map of Ψ as defined in Lemma 3.5. In

other words,

supp Ψ∗δs = {σ(s)}, ∀s ∈ G2.

Lemma 3.6. σ is continuous on G◦◦2 .

Proof. Let a net sα → s converge in G◦◦2 . Let G1 ∪ {∞} be the one-point compact-

ification of G1. Note that the point ∞ at infinity is isolated if and only if G1 is

compact. Now, σ(sα) has a subnet σ(sαr)→ t for some t in G1 ∪ {∞}. Suppose that

σ(s) 6= t. Let U, V be disjoint neighborhoods of t, σ(s) in G1 ∪ {∞}, respectively.

Since s ∈ G◦◦2 , there is an f in A(G1) such that cozf ⊆ V and Ψ∗δs(f) = Ψ(f)(s) 6= 0.

By the continuity of Ψ(f) on G2 (and hence on G◦◦2 ), Ψ(f)(sαr) 6= 0 for large

enough r. On the other hand, we can also assume σ(sαr) ∈ U . Choose g in A(G1)

such that Ψ(g)(sαr) 6= 0 and cozg ⊆ U . It follows from cozf ∩ cozg = ∅ that

Ψ(f)(sαr)Ψ(g)(sαr) = 0, a contradiction. �

The following theorem for disjointness preserving linear bijections between Fourier

algebras is stated for locally compact amenable groups in a paper of Font [20, The-

orem 4] (see also [19]). This is proved by Monfared in [45] without the amenability
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assumptions on the underlying groups, but he assumes the boundedness of the map

instead. We drop both the amenability and boundedness assumptions below. Our

proof is different from that in [20, 45], and inspired by the one given in an earlier

paper of Font and Hernández [22] and also by [31, 32].

Theorem 3.7. Let G1 and G2 be locally compact groups. Let Ψ : A(G1)→ A(G2) be

a linear bijection preserving disjointness. Then there exist a non-vanishing continuous

bounded scalar function λ on G2, and a homeomorphism σ from G2 onto G1 such that

Ψ(f) = λ · f ◦ σ, ∀f ∈ A(G1).

In this case, Ψ is automatically bounded in both the uniform and Fourier algebra

norms.

Proof. We first recall that the support map σ : G2 → G1 ∪{∞} defined as in Lemma

3.5, by

suppΨ∗δx = {σ(x)}, ∀x ∈ G2,

which is continuous on G◦◦2 (Lemma 3.6). It follows from Lemma 3.2 that

Ψ(Iσ(x)) ⊆ Ix, ∀x ∈ G2.

Set

Y1 = {y ∈ G2 : Ψ(Mσ(y)) = My},

Y2 = {y ∈ G2 : Ψ(Mσ(y)) 6= My}.

Then G = Y1 ∪ Y2 as a disjoint union. Observe that

y ∈ Y1 ⇔ ker Ψ∗δy = Mσ(y) is closed

⇔ Ψ∗δy is ‖ · ‖A(G1) bounded

⇔ Ψ∗δy = λ(y)δσ(y) for some nonzero scalar λ(y) (Lemma 3.4), and(12)

y ∈ Y2 ⇔ Ψ∗δy is unbounded.

In this case, the ‖ · ‖∞ and ‖ · ‖A(G1) boundedness for Ψ∗δy are equivalent. Moreover,

y ∈ Y1 =⇒ σ(y) 6=∞ ⇐⇒ σ(y) ∈ G1 ⇐⇒ y ∈ G◦◦2 .

Thus, G2 \G◦◦2 = σ−1(∞) ⊆ Y2.
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Define a nonvanishing scalar function λ on Y1 by y 7→ λ(y) as in (12). In other

words, we have

Ψ(f)(y) = λ(y)f(σ(y)), ∀f ∈ A(G1), ∀y ∈ Y1.(13)

Claim 1. If {yn} is a sequence in G2 such that xn = σ(yn)’s are distinct points in

G1 then

lim sup
n
‖Ψ∗δyn‖ < +∞.

Suppose on contrary that lim supn ‖Ψ∗δyn‖ = +∞. Passing to a subsequence, if

necessary, we can choose fn in A(G1) such that

‖fn‖A(G1) ≤
1

n3
but Ψ(fn)(yn) = 1, ∀n = 1, 2, . . . .

We can also assume that the sequence {xn} contains no cluster point of itself. For

each n, choose a disjoint neighborhood Un of xn. By Lemma 3.1(c), we can find a gn in

A(G1) with ‖g‖A(G1) ≤ 2 such that gn = 1 on a neighborhood Vn of xn contained in Un,

and gn = 0 outside Un. Since (1−gn)fn ∈ Ixn , we have Ψ(gnfn)(yn) = Ψ(fn)(yn) = 1.

Since
∞∑
n=1

‖ngnfn‖A(G1) ≤
∞∑
n=1

2

n2
< +∞,

we can define

f =
∞∑
n=1

ngnfn ∈ A(G1).

Now f − ngnfn = 0 on Vn. Hence, we have Ψ(f)(yn) = nΨ(gnfn)(yn) = n for

n = 1, 2, . . .. In particular, Ψ(f) is unbounded on G2. This contradiction establishes

the claim.

Claim 2. The set σ(Y2) consists of at most finitely many points, and the scalar

function λ is nonvanishing and bounded on Y1 by some constant M > 0.

These assertions follow from Claim 1 and (13).

Claim 3. Y1 is closed and Y2 is open in G2.
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Observe that for any f in A(G1) we have

sup{|Ψ(f)| : y ∈ Y1} = sup{|Ψ(f)| : y ∈ Y1}

= sup{|h(y)||f(σ(y))| : y ∈ Y1}

≤M‖f‖∞ ≤M‖f‖A(G1).

This ensures that Ψ∗δy is ‖ · ‖A(G1) bounded for every y in Y1. By Lemma 3.4, we

have Y1 = Y1 is closed. Thus, Y2 = G2 \ Y1 is open.

Claim 4. Every point in σ(Y2) is non-isolated in G2 ∪ {∞}.

Let y ∈ Y2. If σ(y) is isolated, then Iσ(y) = Mσ(y). If σ(y) 6=∞ then it follows from

Ψ(Mσ(y)) = Ψ(Iσ(y)) ⊆ Iy ⊆My

that y ∈ Y1, a contradiction. If σ(y) =∞, we have

A(G2) = Ψ(A(G1)) = Ψ(M∞) ⊆My,

which forces y =∞, a contradiction again as ∞ /∈ Y2 ⊆ G2.

Claim 5. σ(G2) is dense in G1.

Otherwise, there is a nonzero f in A(G1) vanishing outside σ(G2). In particular,

f ∈ Iσ(y), ∀y ∈ G2 =⇒ Ψ(f) ∈ Iy, ∀y ∈ G2 =⇒ Ψ(f) = 0 =⇒ f = 0,

a contradiction.

It follows from Claims 2, 4 and 5 that

G1 ∪ {∞} = σ(G2) ∪ {∞} = σ(Y1) ∪ σ(Y2) ∪ {∞} = σ(Y1) ∪ {∞}.

It follows from (13) that

Ψ(f) |Y1= 0 =⇒ f |σ(Y1) = 0 =⇒ f = 0, ∀f ∈ A(G1).

Since Y2 is open, Y2 = ∅ by Lemma 3.1(c) and the surjectivity of Ψ. Therefore,

G2 = Y1 = G◦◦2 and σ : G2 → G1 is continuous with a dense range.

It then follows from (13) that Ψ−1 also preserve disjointness. As a result, there is

a continuous map τ : G1 → G2 and a bounded nonvanishing scalar function α on G1

such that

Ψ−1(g)(x) = α(x)g(τ(x)), ∀x ∈ G1.
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Hence,

f(x) = Ψ−1(Ψ(f)) = α(x)Ψ(f)(τ(x))

= α(x)λ(τ(x))f(σ(τ(x))), ∀x ∈ G1, ∀f ∈ A(G1).(14)

This implies

x = σ(τ(x)), ∀x ∈ G1.

Similarly, we have

y = τ(σ(y)), ∀y ∈ G2.

It amounts to say that σ is a homeomorphism from G2 onto G1. Furthermore, it is

plain that λ is continuous on G2 by (13) and Lemma 3.1(c).

Finally, it is clear that the uniform norm of Ψ is the bound of λ. The Fourier algebra

norm continuity of Ψ follows from the closed graph theorem. Indeed, if fn → 0 in

‖ ·‖A(G1) and Ψ(fn)→ g in ‖ ·‖A(G2) then they also converge in the respective uniform

norms. By the uniform continuity of Ψ we have g = 0. �

Remark 3.8. Let M(A(G2)) denote the multiplier algebra of A(G2) consisting of all

u in Cb(G2) such that ug ∈ A(G2) if g ∈ A(G2). Then in Theorem 3.7, λ ∈M(A(G2)).

When G2 is amenable, M(A(G2)) = B(G2) ([16, Theorem 9]). It follows from (14)

that λ is invertible in B(G2). Consequently, the map f 7→ f ◦ σ gives rise to an

algebra isomorphism from A(G1) onto A(G2). Therefore, we can recover the results

of Font in [20] by Theorem 3.7.

In a similar manner, we have

Theorem 3.9. Let G1 and G2 be locally compact groups. Let Ψ : B(G1)→ B(G2) be

a linear bijection between the Fourier-Stieltjes algebras preserving disjointness. Then

there exist an invertible function λ in B(G2), and a homeomorphism σ from G2 onto

G1 such that

Ψ(f) = λ · f ◦ σ, ∀f ∈ B(G1).(15)

In this case, Ψ is automatically bounded in both the uniform and Fourier-Stieltjes

algebra norms. Furthermore, Ψ(A(G1)) = A(G2).
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Proof. The arguments in proving Theorem 3.7 can be used in this case too. Note

that Ψ will send exactly functions with compact supports to functions with support

supports due to (15) and the continuity of σ and σ−1. Since A(G1) and A(G2) are

closures of functions with compact supports, the last assertion follows by the Fourier-

Stieltjes norm continuity of Ψ. �

4. Disjointness and orthogonality together determine topological

group structures

We are now ready to prove our Main Theorem stated in Section 1. More precisely,

we provide below a detail description of a bijective linear disjointness preserving map

between Fourier algebras, which preserves also some kind of orthogonality. The Main

Theorem then becomes a consequence.

Theorem 4.1. Let G1, G2 be locally compact groups and A(G1), A(G2) the associated

Fourier algebras. Let Ψ : A(G1)→ A(G2) be a linear bijection preserving disjointness.

Then Ψ is orthogonality decomposition preserving (resp. left, right, left-to-right, or

right-to-left biorthogonality preserving) if and only if

(a) there is a positive (resp. nonzero complex) number α,

(b) there is a character β of the group G2,

(c) w = e1, the identity element of G1 (resp. there is a w in G1), and

(d) there is a homeomorphic map σ : G2 → G1 which is a group isomorphism or anti-

isomorphism (resp. group isomorphism for left or right biorthogonality preservers,

and group anti-isomorphism for left-to-right or right-to-left biorthogonality pre-

servers),

such that for all s in G2 we have

Ψ(f)(s) = αβ(s)f(wσ(s))

(resp. Ψ(f)(s) = αβ(s)f(σ(s)w) for left or left-to-right biorthogonality preservers).

The sufficient part is trivial. We shall provide a proof for the necessity part mainly

for the case Ψ is an orthogonal decomposition preserver, while the other four cases
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for left, right, left-to-right and right-to-left biorthogonality preservers are similar and

easier. We divide the proof into several lemmas.

We first note that by Theorem 3.7, Ψ is automatically bounded with respect to

both the uniform norms and the Fourier algebra norms. For each s in G2, we denote

by ρs the left translate by s, that is,

ρsh = h(s−1t), ∀h ∈ L2(G).

Note that the set {ρs : s ∈ G2} in VN(G2) is isomorphic to G2 as groups. Moreover,

〈ρs, u〉 = u(s), ∀u ∈ A(G2).

By Theorem 3.7, we have

(16) Ψ∗ρs = λ(s)ρσ(s), ∀s ∈ G2.

Here, λ is a non-vanishing complex function on G2 and σ is a homeomorphism from

G2 onto G1. On the other hand, by Proposition 2.1 or Theorem 2.6 (resp. Theorem 2.8

and Remark 2.9 for other one-sided biorthogonality preservers), we also have Ψ∗ = zπ

for an invertible element z in VN(G1) and a Jordan *-isomorphism π from VN(G2)

onto VN(G1). Let u be the unitary element in VN(G1) such that uz = |z|. Since

π(1) = 1, by (16) we have

z = Ψ∗(1) = Ψ∗(ρe2) = λ(e2)ρσ(e2),

where e2 is the identity element of the group G2. It follows that

|z| = uz = λ(e2)uρσ(e2).

Since |z| ≥ 0, we see that the spectrum of λ(e2)uρσ(e2) consists of positive numbers

only. However, uρσ(e2) is a unitary element in the von Neumann algebra VN(G1).

This forces the spectrum of λ(e2)uρσ(e2) to be a singleton {|α|} with α = λ(e2) 6= 0.

Thus

uρσ(e2) =
α

|α|
ρe1 ,(17)

where e1 is the identity element of the group G1. Consequently, u = α
|α|ρw where

w = σ(e2)−1 in G1. In the case Ψ is an orthogonal decomposition preserver, z is

already positive and thus u = 1, α > 0 and w = e1.
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Replacing Ψ by the map ϕ→ Ψ(ϕ(u·)), we can assume z is positive. Note that if

the new map carries, by Theorem 3.7, the form

Ψ(f)(s) = λ(s)f(σ(s)), ∀f ∈ A(G1), ∀s ∈ G2,

then the original map carries the form

f 7→ α

|α|
λ(s)f(wσ(s)), ∀f ∈ A(G1),∀s ∈ G2.

From now on, we assume the new form and z ≥ 0. It follows from (17) with u = 1

that

α > 0 and σ(e2) = e1.

Consequently,

z = αρe1 ,

and hence,

Ψ∗ = απ,

as ρe1 is the identity of VN(G1). By (16), we have

(18) λ(s)ρσ(s) = απ(ρs), ∀s ∈ G2.

Lemma 4.2. For s, t in G2, at least one of the following holds.

(a) σ(st) = σ(s)σ(t).

(b) σ(st) = σ(t)σ(s).

Proof. Since π is a Jordan ∗-isomorphism, we have

π(ρsρt + ρtρs) = π(ρs)π(ρt) + π(ρt)π(ρs).

By (18), we have

α[λ(st)ρσ(st) + λ(ts)ρσ(ts)] = λ(s)λ(t)[ρσ(s)ρσ(t) + ρσ(t)ρσ(s)],

or

(19) αλ(st)ρσ(st) + αλ(ts)ρσ(ts) = λ(s)λ(t)[ρσ(s)σ(t) + ρσ(t)σ(s)].
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Suppose on the contrary that σ(st) 6= σ(s)σ(t) and σ(st) 6= σ(t)σ(s). If σ(st) =

σ(ts) then st = ts since σ is a homeomorphism. In this case, by the linear indepen-

dence of ρg’s,

αλ(st) = λ(s)λ(t) = 0.

This is impossible since λ is non-vanishing. Hence σ(st) 6= σ(ts). But then σ(st) is

distinct from σ(ts), σ(s)σ(t) and σ(t)σ(s). By (19) and the linear independence, we

have again

αλ(st) = 0,

still a contradiction. �

Recall that α = λ(e2), where e2 is the identity element of the group G2. A character

of G2 is a unital complex homomorphism of G2.

Corollary 4.3. Define β(s) = λ(s)/λ(e2) for all s in G2. Then β is a character of

the group G2, and λ = αβ. Moreover,

(20) π(ρs) = β(s)ρσ(s), ∀s ∈ G2.

Proof. By (19) and Lemma 4.2, we have

αλ(st) = λ(s)λ(t), ∀s, t ∈ G2.

The last assertion follows from (18). �

We now follow an idea in [55] (see also [36]). For each s in G2, let

Hs = {t ∈ G2 : σ(st) = σ(t)σ(s)},

Ks = {t ∈ G2 : σ(st) = σ(s)σ(t)}.

Lemma 4.4. Both Hs and Ks are subgroups of G2 for each s in G2.

Proof. By a theorem of Kaplansky (see [33, Theorem 5]), the Jordan ∗-isomorphism

π can be written as a sum of a ∗-isomorphism π1 and a ∗-anti-isomorphism π2. More

precisely, there are central projections pi in VN(Gi) for i = 1, 2 such that

π1 = π|VN(G2)p2 : VN(G2)p2 → VN(G1)
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is a ∗-isomorphism onto VN(G1)p1, and

π2 = π|VN(G2)(1−p2) : VN(G2)(1− p2)→ VN(G1)

is a ∗-anti-isomorphism onto VN(G1)(1− p1).

Observe that for each s in G2

t ∈ Hs if and only if [ρsρt − ρtρs]p2 = 0,(21)

t ∈ Ks if and only if [ρsρt − ρtρs](1− p2) = 0.(22)

Indeed, suppose t ∈ Hs. Then

σ(st) = σ(t)σ(s).

By (20),

π(ρst) = β(st)ρσ(st) = β(s)β(t)ρσ(t)ρσ(s).

In other words,

π(ρsρt) = π(ρt)π(ρs).

Hence

π((ρsρt − ρtρs)p2) = 0.

Consequently,

(ρsρt − ρtρs)p2 = 0.

Conversely, if t /∈ Hs then t ∈ Ks, and thus with a similar argument we have

π(ρst) = π(ρs)π(ρt).

It follows

(ρsρt − ρtρs)(1− p2) = 0,

or

(ρsρt − ρtρs)p2 = ρsρt − ρtρs.

We are done if the right hand side is not zero. Otherwise, ρsρt − ρtρs = 0 implies

st = ts. Since Jordan ∗-isomorphism preserves commutativity [33, Theorem 5], we

then have

π(ρs)π(ρt) = π(ρt)π(ρs).
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By (20), we have

σ(s)σ(t) = σ(t)σ(s).

In particular, t ∈ Hs, an absurd.

From (21), it is easy to see that Hs is a subgroup of G2. The proof that Ks is a

subgroup of G2 is similar. �

Lemma 4.5. σ : G2 → G1 is either a group isomorphism or anti-isomorphism.

Proof. We note first that for each s in G2, either G2 = Hs or G2 = Ks. By Lemma

4.2, we have G2 = Hs ∪Ks. Suppose there were t1 in Hs \Ks and t2 in Ks \Hs. It

follows that t1t2 belongs to either Hs or Ks. Since t−1
1 ∈ Hs and t−1

2 ∈ Ks, either

t2 = t−1
1 (t1t2) ∈ Hs or t1 = (t1t2)t−1

2 ∈ Ks. This conflict establishes our assertion.

Let now

H = {s ∈ G2 : Hs = G2},

K = {s ∈ G2 : Ks = G2}.

It is easy to see that both H and K are subgroups G2 and G2 = H ∪ K. Argue

similarly as above, we have either G2 = H or G2 = K. This implies that either σ is

a group anti-isomorphism or isomorphism. �

Corollary 4.6. π is either a ∗-isomorphism or a ∗-anti-isomorphism.

Proof. By Lemma 4.5 and (20), we see that the action of π on the linear span of {ρs :

s ∈ G2} is either multiplicative or anti-multiplicative. Since π is weak* continuous

and left translations are weak* total in group von Neumann algebras, we thus obtain

the result. �

Proof of Theorem 4.1. At this point, we have established the proof of Theorem 4.1

for orthogonal decomposition preservers. Note that if σ happens to be a group anti-

isomorphism thenG1 andG2 are isomorphic through the homeomorphism s 7→ σ(s)−1.

For left, right, left-to-right and right-to-left biorthogonality preservers, the proofs

are easier and go merely the same. We simply mention that in these cases π is
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an algebra *-isomorphism for left and right biorthogonality preservers and an alge-

bra *-anti-isomorphism for left-to-right and right-to-left biorthogonality preservers by

Theorem 2.8 (see also Remark 2.9), and thus exactly one case of (a) and (b) in Lemma

4.2 always occur. Furthermore, for left and left-to-right biorthogonality preservers,

we have Ψ∗(·) = π(·)z with z = Ψ∗(1) instead. �

Proof of the Main Theorem. The Fourier algebra case is contained as a part in The-

orem 4.1. For the Fourier-Stieltjes algebra case, we shall verify the sufficiency only.

By Theorem 3.9, we know that Ψ induces a weighted composition operator Φ sending

A(G1) onto A(G2). Since A(Gi) is translation invariant, it is an invariant subspace

of B(Gi) as the predual of W ∗(Gi) = B(Gi)
∗. Hence by [53, Theorem 2.7], there

is a central projection pi in W ∗(Gi) such that A(Gi) = piB(Gi), where piu(x) =

u(pix),∀x ∈ W ∗(Gi), i = 1, 2. Consequently, Φ also preserves orthogonality (in any

of the five senses) as Ψ does. Then the assertion follows from Theorem 4.1. �

In Theorem 2.8, we require that both the map Ψ and its inverse Ψ−1 are one-

side orthogonality preserving. It might be possible that the orthogonality preserving

property of Ψ−1 can follow from that of Ψ. As an evidence, it is the case if the

underlying groups are abelian as shown in the following result.

Corollary 4.7. Let G1 and G2 be two locally compact abelian groups with dual groups

Ĝ1 and Ĝ2, respectively. Let Ψ : A(G1) → A(G2) be a bijective linear map, and let

Ψ̂ : L1(Ĝ1) → L1(Ĝ2) be the associated bijective linear map defined through Fourier

transforms. Suppose that both Ψ and Ψ̂ preserves disjointness, i.e.,

fg = 0 in A(G1) =⇒ Ψ(f)Ψ(g) = 0 in A(G2), and

f̂ ĝ = 0 in L1(Ĝ1) =⇒ Ψ̂(f̂) Ψ̂(ĝ) = 0 in L1(Ĝ2).(23)

Then G1 and G2 are isomorphic as topological groups. More precisely, there is a

nonzero complex number α, a character β of G2, an element w in G2, and a topological

group isomorphism σ : G2 → G1 such that

Ψ(f)(s) = αβ(s)f(wσ(s)), ∀f ∈ A(G1), s ∈ G2.(24)
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Proof. By Theorem 3.7, Ψ is automatically bounded.

Assume first that the dual group Ĝi of Gi is σ-compact for i = 1, 2. Recall that

A(Gi) is isomorphic to the algebra L1(Ĝi) of integrable functions with respect to a

fixed σ-finite (left) Haar measure, equipped with the convolution product, via the

inverse Fourier transform f 7→ f̂ . In this setting, f, g in A(Gi) are orthogonal as

normal functionals of V N(Gi) ∼= L∞(Ĝi) if and only if f̂ ĝ = 0 in L1(Ĝi), i.e.,

f̂ , ĝ have disjoint cozero sets in Ĝi. The condition (23) amounts to say that Ψ is

orthogonality preserving.

On the other hand, noting that Ĝ1 is σ-compact, we can apply [40, Corollary 5.6]

to the bounded disjointness preserving linear map Ψ̂ to get a measurable function h

on Ĝ2 and a B∗2-measurable transformation φ : Ĝ2 → Ĝ1 such that

Ψ̂(f̂) = hf̂ ◦ φ almost everywhere on Ĝ2, ∀f̂ ∈ L1(Ĝ1).(25)

Here, B∗2 is the (measure) completion of the Borel σ-algebra B2 of Ĝ2 with respect

to the Haar measure. By the injectivity of Ψ̂, we see that Ĝ1 \ φ(Ĝ2) is of measure

zero. Moreover, if z(h) is the zero set of h in Ĝ2 then the set φ−1(z(h)) in Ĝ1 is of

measure zero. Suppose Ψ̂(f̂)Ψ̂(ĝ) = 0 for some f̂ , ĝ in L1(Ĝ1). It follows from (25)

that h2(f̂ ◦ φ)(ĝ ◦ φ) = 0, and thus f̂ ĝ = 0, almost everywhere on Ĝ1. Hence, Ψ̂−1

preserves disjointness, or equivalently, Ψ−1 also preserves orthogonality.

In general, if Ĝ1 is not σ-compact, let K be a compact symmetric neighborhood of

the identity and let H =
⋃∞
n=1K

n. Then H is a σ-compact clopen subgroup of Ĝ1.

We can write Ĝ1 as a (possibly uncountable) disjoint union of cosets gλH of H, each

of which is σ-compact and clopen. For every function f̂ in L1(Ĝ1), we have

‖f̂‖L1(Ĝ1) =
∑
n

‖f̂ |gλnH ‖L1(gλnH),(26)

for an at most countably subfamily of these cosets. Consequently,

L1(Ĝ1) ∼= `1 −
⊕
λ

L1(gλH).

Therefore,

V N(G1) ∼= L1(Ĝ1)∗ ∼= `∞ −
⊕
λ

L∞(gλH).
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Note that due to the left translation invariance of Haar measures, every L1(gλH) ∼=
L1(H) and L∞(gλH) ∼= L∞(H). In this setting, we see again that f, g in A(G1) are

orthogonal as normal functionals of V N(G1) if and only if f̂ ĝ = 0 in L1(Ĝ1). We can

decompose L1(Ĝ2) in a similar way. So (23) says that Ψ preserves orthogonality.

We check that Ψ̂−1 also preserves disjointness. Suppose f, g be in A(G1) such that

Ψ̂(f̂)Ψ̂(ĝ) = 0. Observing (26), we can assume that there is a σ-compact Borel subset

X of Ĝ1 such that f̂ , ĝ ∈ L1(X). Here, X is a disjoint union of at most countably

many cosets of H. Since the bounded bijective linear map Ψ̂ preserves disjointness,

the induced map Ψ̂X : L1(X) → L1(Ĝ2) is also bounded, injective, and preserves

disjointness. It follows from an argument similar to the case G1 being σ-compact

above that

Ψ̂X(f̂)Ψ̂X(ĝ) = Ψ̂(f̂)Ψ̂(ĝ) = 0 =⇒ f̂ ĝ = 0.

Hence, Ψ̂−1 also preserves disjointness, and thus Ψ is biorthogonality preserving. Note

that all one-side orthogonality preservers coincide in this case. The assertions follow

from Theorem 4.1. �

When G is a compact abelian group, we can perform convolutions in the Fourier

algebra A(G), as it is contained in L1(G). Applying Fourier and inverse Fourier

transforms we see that the condition (23) in Corollary 4.7 and the condition (27)

below are equivalent.

Corollary 4.8. Let G1, G2 be compact abelian groups. Suppose a bijective linear

map Ψ : A(G1)→ A(G2) preserves both zero pointwise products and zero convolution

products, i.e.,

fg = 0 in A(G1) =⇒ Ψ(f)Ψ(g) = 0 in A(G2), and

f ∗ g = 0 in A(G1) =⇒ Ψ(f) ∗Ψ(g) = 0 in A(G2).(27)

Then G1 and G2 are isomorphic as topological groups, and the conclusions in Corol-

lary 4.7 hold.

To end this section, we would like to mention a recent work of Lin [43]. Assume G1

and G2 are locally compact amenable groups. Using operator space structure of the
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Fourier algebras [50, 17, 24, 30], Lin shows that every completely bounded surjective

disjointness preserving linear map Ψ : A(G1) → A(G2) carries the form Ψ(f)(y) =

λ(y)f(σ(y)). Here, λ is invertible in B(G2), and σ : G2 → G1 is a continuous

piecewise affine proper map. Therefore, σ induces a topological group isomorphism

when Ψ is bijective. Since algebra *-isomorphisms and multiplications are completely

bounded, together with Theorem 2.8 Lin’s results apply in some cases of Theorem 4.1

concerning one-side biorthogonality preservers, provided that the underlying groups

are amenable. However, as pointed out in [30, Proposition 3.8], there are completely

bounded homomorphisms between non-amenable locally compact groups, which do

not give rise to piecewise affine maps between the underlying groups. Thus, Lin’s

results do not help when the amenability assumption is absent.

5. Unbounded disjointness preserving linear functionals

This section is devoted to the study of unbounded disjointness preserving linear

functionals on the Fourier algebra A(G) of a locally compact group G. As we shall

see, there are many of them.

Lemma 5.1 ([10, Lemma 2.7]; see also [31] or [2, Lemma 2.7]). Let F be any free

ultrafilter on N. Then the algebraic dimension of the quotient space

`∞/{y ∈ `∞ : y vanishes on an element of F}

is at least the continuum.

Lemma 5.2. Let G be a locally compact group. If Ix = Mx for any x in G, then G

is a discrete group. Indeed, when G is not discrete, the dimension of the vector space

Mx/Ix is at least the continuum.

Proof. Let K be a compact neighborhood of the identity element e in G. If G is not

discrete then K contains an infinite sequence {xn}n of distinct points. By translating,

we can assume x is a cluster point of {xn}n.

We make an elementary observation.
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Claim. x is the unique point in G satisfying that every neighborhood of x contains

all but finitely many xn’s.

Indeed if z is another such point, then each neighborhood of z contains all but

finitely many xn’s and thus intersects with every neighborhood of x. But G is Haus-

dorff, and hence x = z.

It follows from the Claim that, by passing to a subsequence if necessary, we can

choose an infinite disjoint sequence {Vn} of compact neighborhoods of xn for n ≥ 1.

For each n ≥ 1, let fn ∈ A(G) such that 0 ≤ fn ≤ 1, fn(xn) = 1, cozfn ⊆ Vn and

‖fn‖A(G) ≤ 2 (Lemma 3.1(c)). Let Un = cozfn ⊆ Vn for n = 1, 2, . . .. Construct an

ultrafilter F on N as follows.

A ∈ F if and only if there is a neighborhood U of x

intersecting exactly those Un with n in A.

Then F is free since it contains no finite subsets of N; for else x would not be a

cluster point of {xn}n. For any bounded sequence y = (yn) in `∞, define fy =∑∞
n=1 ynfn/2

n ∈ A(G). Then fy(x) = 0. Note that fy vanishes in any neighborhood

of x, if and only if, the set A = {n ∈ N : yn = 0} belongs to F. Consequently,

dimMx/Ix ≥ dim(`∞/{y ∈ `∞ : y vanishes on an element of F}),

which is at least the continuum by Lemma 5.1. �

Let S be an ideal of a commutative ring R. The radical of S is defined to be

r(S) = {r ∈ R : rn ∈ S for some n = 1, 2, . . .}.

The following elementary lemma can be found in a standard algebra textbook, e.g.,

[8].

Lemma 5.3. S = r(S) if and only if S is the intersection of all prime ideals of R

containing it.

Lemma 5.4. Let G be a locally compact non-discrete group G and x be in G. Then

there is a prime ideal P of A(G) such that

Ix ⊂ P ⊂Mx,
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where all inclusions are strict.

Proof. Note first that Mx is the unique maximal ideal of A(G) containing Ix. Since

r(Ix) = Ix, we have by Lemma 5.3 that

Ix =
⋂
{P : P is a prime ideal of A(G) containing Ix}.

By Lemma 5.2, Ix 6= Mx. It follows that there is some prime ideal P of A(G) lying

strictly in between Ix and Mx. �

Lemma 5.5. Let G be a locally compact group. Let ϕ be a linear functional of A(G).

Then ϕ is disjointness preserving if kerϕ contains a prime ideal P of A(G).

Proof. Let fg = 0 in A(G). Since P is prime, at least one of f, g belongs to P . Thus

ϕ(f) = 0 or ϕ(g) = 0. �

Theorem 5.6. Let G be a locally compact infinite group and f in A(G) with infinite

support. Then there is an unbounded disjointness preserving linear functional ϕ of

A(G) such that ϕ(f) 6= 0. Indeed, we have at least c linearly independent choices of

such ϕ, where c is the cardinality of the continuum.

Proof. Let xn in G be distinct such that f(xn) 6= 0 for n = 1, 2, . . ..

Suppose first that G is not discrete and {xn}n has a cluster point in G. By Lemma

5.4, there is a prime ideal P of A(G) such that the following strict inclusions hold

Ix ⊂ P ⊂Mx.

We can also assume f /∈ P . Let ϕ be any linear functional vanishing on P but not on

Mx and f . Since {x} is a set of spectral synthesis, we have Ix = Mx. Consequently, ϕ

is unbounded as its kernel is not closed. By Lemma 5.5, ϕ is disjointness preserving.

To enumerate all such ϕ, let {Pα}α be a chain of prime ideals containing Ix but

not f and ordered by theoretical set inclusion. Let ℵ be the cardinality of this chain.

When ℵ is less than the continuum, one of the quotient space Mx/Pα must have

dimension at least the continuum by Lemma 5.2. Conversely, ℵ must be at least

the continuum when all Mx/Pα have dimension less than the continuum. In both

situations, we will have at least c linear independent choices of such ϕ.
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For the case xn →∞ (this always happens when G is discrete), using the argument

in the proof of Lemma 5.2 we see that the dimension of A(G)/A00(G) is at least

the continuum. Then a similar reasoning as above will give us again at least the

continuum many linearly independent choices of unbounded disjointness preserving

linear functionals ϕ of A(G) with ϕ(f) 6= 0. �

6. Disjointness preserving linear functionals on LUC(S)

A semitopological semigroup is a semigroup (S, ·), or simply S, with a Hausdorff

topology such that for each a in S the mappings s 7→ s · a and s 7→ a · s from

S into S are continuous. Let Cb(S) denote the C*-algebra of bounded complex-

valued functions f : S → C with norm ‖f‖∞ = sup{|f(x)| : x ∈ S}. Let LUC(S)

denote the C*-algebra of all f in Cb(S) such that the mapping s 7→ `sf from S into

(Cb(S), ‖ · ‖∞) is continuous, where (`sf)(t) = f(st), t ∈ S. When S is a topological

group, LUC(S) is precisely the space of bounded left uniformly continuous functions

on S (see, e.g., [44, 29]). Then LUC(S) is a C*-subalgebra of Cb(S) invariant under

left and right translations containing constants. S is called extremely left amenable

if there is a multiplicative linear functional m in LUC(S)∗, m ≥ 0, ‖m‖ = 1, and

〈m, `sf〉 = 〈m, f〉 for all s in S and f in LUC(S). When S is discrete, S is extremely

left amenable if and only if whenever a, b ∈ S there exists c in S such that ac = bc = c,

i.e., any two elements in S has a common right zero divisor (see [26], and also [38]

for a different proof). In particular, if S is right cancellative, then S must be trivial.

Also if G is a locally compact group, then G is extremely left amenable exactly when

G is trivial (see [27]). On the other hand, there are important amenable topological

groups G such as U(`2), the group of unitary operators on the Hilbert space `2 with

the strong operator topology, or more generally, Levy groups (see [28, 37], or the

beautiful monograph of V. Pestov [48] for more details).

As shown by T. Mitchell [44], a semitopological semigroup S is extremely left

amenable if and only if S has the following fixed point property: whenever S acts

on a compact Hausdorff space X such that the mapping S × X → X, (s, x) 7→ sx,

s ∈ S, x ∈ X, is jointly continuous, then X contains a common fixed point for S.



ORTHOGONALITY AND DISJOINTNESS PRESERVING LINEAR MAPS 39

The following is a new characterization of extremely left amenable semitopological

semigroups in terms of disjoint preserving functionals.

Proposition 6.1. Let S be a semitopological semigroup. Then S is extremely left

amenable if and only if there is a nonzero disjointness preserving linear functional ϕ

on LUC(S) such that kerϕ is left translation invariant.

Proof. One direction is clear. Assume kerϕ is left translation invariant, let x ∈ X,

the spectrum of LUC(S) such that ϕ|Ix = 0 (as in Lemma 3.3). Then Isx ⊆ kerϕ,

where sx ∈ X defined by 〈sx, f〉 = 〈x, `sf〉 for all s in S and f in LUC(S) by the left

translation invariance of ϕ. Since x is unique, sx = x for all s in S. In particular, S

is extremely left amenable. �

Corollary 6.2. Let G be a locally compact group. If LUC(G) has a nonzero disjoint-

ness preserving linear functional ϕ such that kerϕ is left translation invariant, then

G is trivial.

Proof. This follows from Proposition 6.1 and [27]. �

Let G be a topological group, and AP (G) be the C*-subalgebra of Cb(S) consisting

of all almost periodic functions on G, i.e., those f in Cb(G) such that LO(f) = {`af :

a ∈ G} is relatively compact in the norm topology of Cb(G). As a well known fact,

f ∈ AP (G) if and only if RO(f) = {raf : a ∈ G} is relatively compact in the norm

topology of Cb(G), where (raf)(t) = f(at), t ∈ G.

Proposition 6.3. Let G be a topological group. If AP (G) has a disjointness preserv-

ing linear functional ϕ : AP (G)→ C such that kerϕ is left translation invariant then

AP (G) = C.

Proof. Let Λ denote the spectrum of the C*-algebra AP (G), and m0 ∈ Λ such that

kerϕ ⊆ kerm0. Then Λ is a compact topological group with multiplication defined

by

〈m · n, f〉 = 〈m,n · f〉 , ∀m,n ∈ Λ, f ∈ AP (G),
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where

n · f(g) = 〈n, `gf〉 , ∀g ∈ G.

Consequently,

ĝ ·m0 = m0, ∀g ∈ G,

where ĝ in Λ is defined by

〈ĝ, f〉 = f(g), ∀f ∈ AP (G).

But {ĝ : g ∈ G} is dense in Λ. Hence m ·m0 = m0 for all m in Λ. Since Λ is a group,

Λ must be trivial. �
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