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Abstract. Let X be a locally compact Hausdorff space and C0(X) the Banach
space of continuous functions on X vanishing at infinity. In this paper, we shall
study unbounded disjointness preserving linear functionals on C0(X). They arise
from prime ideals of C0(X), and we translate it into the cozero set ideal setting.
In particular, every unbounded disjointness preserving linear functional of c0 can
be constructed explicitly through an ultrafilter on N complementary to a cozero set
ideal. This ultrafilter method can be extended to produce many, but in general not
all, such functionals on C0(X) for arbitrary X. We also make some remarks where
C0(X) is replaced by a non-commutative C*-algebra.

1. Introduction.

Let X be a locally compact Hausdorff space and let C0(X) be the Banach algebra

of continuous (real or complex) functions defined on X vanishing at infinity and

equipped with the supremum norm. It is well-known that every maximal ideal of

C0(X) is the kernel of a multiplicative linear functional. Although this is not so for

prime ideals, if ϕ is a linear functional on C0(X) with kernel containing a prime ideal

I then ϕ does preserve some algebraic properties of C0(X). In fact, ϕ is disjointness

preserving ; namely,

fg = 0 =⇒ ϕ(f)ϕ(g) = 0, f, g ∈ C0(X).

Let cozf = {x ∈ X : f(x) 6= 0} be the cozero set of f for each f in C0(X). Then

ϕ sends functions with disjoint cozero sets to disjoint scalars (i.e. one of them is

zero). Indeed, since I is prime, one of f and g belongs to I. As ϕ|I = 0, one of ϕ(f)
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and ϕ(g) must be zero. If I is contained in a (necessarily unique) maximal ideal M ,

then the cardinality of the set of unbounded disjointness preserving linear functionals

vanishing on I modulo scalar multiples is at least dim(M/I). In this paper, we shall

give a closer look at such unbounded linear functionals. To enumerate all possibilities

between I and M , we use the concept of prime cozero set ideals I.

Recently there is an increasing interest in the study of disjointness preserving linear

operators (see e.g. [5, 1, 13, 11, 8, 12, 2, 3]) between various spaces. A linear operator

T from C0(X) into C0(Y ) is said to be disjointness preserving (or separating) if

f ·g = 0 in C0(X) implies Tf ·Tg = 0 in C0(Y ). In this case, the linear functional δy◦T
of C0(X) is disjointness preserving for every point y in Y , where δy ◦ T (f) = Tf(y),

∀f ∈ C0(X). In particular, T is bounded if and only if all such disjointness preserving

linear functionals are bounded. Such a functional is bounded exactly when it is a

scalar multiple of a point mass. In this case, δy ◦ T = h(y)δϕ(y) for some scalar h(y)

and point ϕ(y) in Y . Consequently, a disjointness preserving linear operator T is

bounded if and only if it is a weighted decomposition operator Tf = h · f ◦ ϕ.

A better understanding of unbounded disjointness preserving linear functionals will

benefit those working on disjointness preserving operators, especially on the problem

of auto continuity of such operators. In [11], it is shown that there is always an

unbounded disjointness preserving linear operator from C0(X) onto an infinite di-

mensional subspace of C0(Y ) provided X and Y are infinite sets. In particular, the

existence of disjointness preserving linear functionals of C0(X) is established (see also

[1, 7]).

In other contexts, for example in Gillman and Jerison [9], cozero set ideals have

been used to good effect. In this paper, we show that the study of the appropriate sort

of cozero set ideals provides a systematic way to study disjointness preserving linear

functionals. In case X = N, we show that all such functionals arise from ultrafilters

on N, which are complementary to prime cozero set ideals. This also gives us an

easy way to construct many such functionals on C0(X) for arbitrary X. However, we
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provide examples to show that the ultrafilter method cannot give us all of them in

general.

In the final section, we give preliminary consideration to the case where C0(X) is

replaced by a general C*-algebra.

2. Cozero set ideals and disjointness preserving linear functionals

Throughout the rest of this paper, X denotes a locally compact Hausdorff space

and M denotes the family of all σ-compact open subsets of X. In other words, an

open subset U of X is in M if and only if it is the cozero set of an f in C0(X). For

U in M, we identify C0(U) with {f ∈ C0(X) : coz(f) ⊆ U}.

Definition 2.1. A nonempty subfamily I of M is said to be a cozero set ideal (on

X) if it satisfies the following conditions.

(COZ0) I 6= M.

(COZ1) If U ∈ I, V ∈ M and V ⊆ U , then V ∈ I.

(COZ2) If U ∈ I and V ∈ I, then U ∪ V ∈ I.

A cozero set ideal I is said to be prime if it satisfies

(COZ3) If U, V ∈ M and U ∩ V = ∅, then U ∈ I or V ∈ I.

Lemma 2.2. A cozero set ideal I is prime if and only if it satisfies

(COZ3′) If U, V ∈ M and U ∩ V ∈ I, then U ∈ I or V ∈ I.

Proof. It is plain that (COZ3′) implies (COZ3). Conversely, suppose U, V ∈ M such

that U ∩ V ∈ I. Consider the sets A = U \ V and B = V \ U . These are disjoint,

relatively closed subsets of the normal space U ∪V . So there are disjoint sets W1 and

W2 in M with A ⊆ W1 and B ⊆ W2. One of W1 and W2 must be in I. If, say, W1 is

in I then U ⊆ W1 ∪ (U ∩ V ). This implies U ∈ I. ¤

Lemma 2.3. Let C be a subfamily of M closed under finite intersections and ∅ /∈ C.

Then any cozero set ideal I maximal with respect to not containing any member of C

is prime.
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Proof. Suppose V,W /∈ I. We want to see that V ∩W /∈ I. Indeed, there are U1, U2

in C and A1, A2 in I such that U1 ⊆ V ∪ A1 and U2 ⊆ W ∪ A2 by the maximality of

I. Therefore, U1 ∩ U2 ⊆ (V ∩W ) ∪A1 ∪A2. As a result, V ∩W cannot be in I. ¤

Let I be a cozero set ideal. Set

P (I) = {f ∈ C0(X) : coz(f) ∈ I}.
Then P (I) is a subspace of C0(X), even an ideal by (COZ1). And P (I) 6= C0(X) by

(COZ0). So there exists a non-zero linear functional ϕ on C0(X) such that ϕ|P (I) = 0.

Moreover, I is prime if and only if P (I) is a prime ideal of C0(X) by (COZ3′). In this

case, any linear functional ϕ vanishing on P (I) is disjointness preserving by (COZ3).

On the other hand, for every nonzero linear functional ϕ on C0(X), the kernel ideal

of ϕ,

Iϕ = {U ∈ M : ϕ|C0(U) = 0},
is a cozero set ideal, and ϕ vanishes on P (Iϕ). Iϕ is prime if and only if ϕ is

disjointness preserving. However, if we start with a prime cozero set ideal I and let

ϕ be any (disjointness preserving) linear functional vanishing on P (I) then we might

have Iϕ ) I.

For x in X, set

Ix = {U ∈ M : x /∈ U}
and

Mx = {f ∈ C0(X) : f(x) = 0}.
Clearly, Ix is a maximal cozero set ideal of M and Mx is a maximal ideal of C0(X).

Moreover, P (Ix) = Mx.

Proposition 2.4. Let I be a prime cozero set ideal.

(i) For all but at most one point x in X, some neighborhood of x is in I.

(ii) For x in X, the following are equivalent.

(a) No neighborhood of x is in I.

(b) I ⊆ Ix.

(c) P (I) ⊆ Mx.
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(d) U ∈ M and x /∈ U implies U ∈ I.

Proof. We verify only the implication from (d) to (a) in (ii). Suppose V in I is a

neighborhood of x. Let K be a compact Gδ neighborhood of x such that K ⊆ V . For

arbitrary U in M, U \K is in I by (d). Since U ⊆ (U \K) ∪ V , we conclude that U

is in I, in contradiction with (COZ0). ¤

In case I = Ix, every nonzero linear functional ϕ vanishing on P (I) is a multiple

of the point mass δx. In this case, P (I) = Mx and I = Iϕ. If I is a proper subset of

some Ix, then we have a U in M such that x /∈ U and U /∈ I. By Proposition 2.4(ii),

x ∈ U . For any f in C0(X) with cozf = U , we can choose a disjointness preserving

linear functional ϕ on C0(X) so that ϕ vanishes on P (I) and ϕ(f) 6= 0. Then, ϕ

is unbounded. If x does not exist as above, I contains {U ∈ M : U is compact}
and P (I) contains all continuous functions with compact support. In this case, any

nonzero ϕ vanishing on P (I) is unbounded and disjointness preserving, and we say

that I is associated to ∞.

The following proposition follows from a result of Jarosz [11] (see also [1] and [7]),

but we present here a more direct argument.

Proposition 2.5. For every locally compact Hausdorff space X of infinite cardinality,

C0(X) admits an unbounded disjointness preserving linear functional ϕ.

Proof. First, assume we can choose a point x in X and a set U in M such that

x ∈ U \ U . Then let I′ = {V ∈ M : x /∈ V }. Clearly, I′ is a cozero set ideal and

U /∈ I′. Let I be a cozero set ideal maximal with respect to U /∈ I and I ⊇ I′. By

Lemma 2.3, I is a prime cozero set ideal. Choose f in C0(X) with cozf = U and

choose a nonzero ϕ vanishing on P (I) so that ϕ(f) 6= 0. Then ϕ is an unbounded

disjointness preserving linear functional associated to x.

On the other hand, if there is a U in M such that U is not compact, then let I be

a cozero set ideal containing {V ∈ M : V is compact} and maximal with respect to

U /∈ I. By Lemma 2.3 again, I is prime. Then in a similar manner as above, we will

have an unbounded disjointness preserving linear functional ϕ associated to ∞.
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If the second of these cases does not occur, then every σ-compact subset of X

has compact closure. Hence, some point x is a cluster point of a countably infinite

set {xn : n ∈ N}. Let Vn be disjoint neighborhoods of xn and fn in C0(X) with

cozfn ⊆ Vn and fn(xn) = ‖fn‖ = 1 for all n = 1, 2, . . .. Let f =
∑∞

n=1 1/2nfn in

C0(X). Note that x ∈ U \ U , where U = cozf . Thus the first case happens. ¤

Remarks 2.6. (1) The second case in the proof of Proposition 2.5 is not possible

if X is compact. Even for some non-compact space X, the closure of every

σ-compact subset is compact; e.g. X = [0, β) = {0 ≤ α < β} in the order

topology, where β is the first uncountable ordinal number. Also some non-

isolated points x may be impossible. It may be that U ∈ M and x /∈ U imply

x /∈ U ; e.g. x = β in X = [0, β].

(2) In a letter to the authors, Z. Lipecki indicated that a similar result holds for

F -lattices, i.e., a complete metrizable topological linear lattice. Recall that a

linear functional f of a linear lattice is said to be disjointness preserving if

|x| ∧ |y| = 0 implies f(x)f(y) = 0. Using [4, Theorem 6], one can establish

the existence of an unbounded disjointness preserving linear functional of any

infinite dimensional F -lattice. It thus gives yet another proof of Proposition

2.5.

Recall that an ultrafilter (see e.g. [10, p. 6]) F on the index set N is a family of

subsets of N satisfying the following conditions.

(UF0) ∅ /∈ F.

(UF1) A ∈ F, B ⊆ N and A ⊆ B implies B ∈ F.

(UF2) A,B ∈ F implies A ∩B ∈ F.

(UF3) For each subset A of N, either A ∈ F or its complement A′ ∈ F.

We call F a free ultrafilter if the intersection of all members of F is empty. In this

case, F contains no finite subset of N.
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One can find a proof of the following lemma in [11], or makes up another using

[4, Lemma 2.7]. However, we present here an apparently more direct and easier

argument.

Lemma 2.7. Let F be any free ultrafilter on N. Then the algebraic dimension of the

quotient space

`∞/{y ∈ `∞ : y vanishes on an element of F}

is at least the continuum.

Proof. First we note that the transcendence dimension of the real field R over the

rational field Q is the continuum. Consider the points fλ = (1, λ, λ2, . . . , λn, . . .) in

`∞ where λ runs through a transcendence basis of R over Q and |λ| < 1 for all λ.

For each n-tuple k = (k1, . . . , kn) of distinct non-negative integers, the determinant

Dk(λ1, . . . , λn) = det(λ
kj

i ) is non-zero if λ1, . . . , λn are distinct elements of the basis.

Consequently, the vectors (λk1
i , . . . , λkn

i ) are linearly independent, and hence no non-

trivial linear combination of fλ1 , . . . , fλn has n coordinates equal to 0. Therefore,

no such linear combination vanishes on a member of F since every such must contain

infinitely many elements. ¤

Lemma 2.8. If I is a prime cozero set ideal and I 6= Ix for all x in X, then

C0(X)/P (I) has algebraic dimension at least the continuum.

Proof. Let x in X ∪ {∞} be associated to I as in Proposition 2.4. Since I 6= Ix (and

I 6= I∞ = M by (COZ0)), there is a U in Ix \ I. We can write U = ∪∞n=1Kn where

Kn is compact and Kn is contained in the interior Ko
n+1 of Kn+1. Set K0 = ∅. Then

we can find Un in M such that Un ⊆ Ko
n+1 \ Kn−1 and Kn ⊆ U1 ∪ · · · ∪ Un. Let

V = ∪n even Un and W = ∪n odd Un. Since U = V ∪W , at least one of V and W is

not in I. Let V /∈ I, say. Note that Un ∩ Um = ∅ if |n−m| ≥ 2, and by Proposition

2.4(iid), Un ∈ I,∀n = 1, 2, . . .. So we have V = ∪∞n=1Vn, where Vn’s are disjoint and

non-empty, each Vn is in I, and V is not in I. Define a free ultrafilter F on N by

E ∈ F ⇔ ∪n∈EVn /∈ I.
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Choose an f in C0(X) with cozf = V . For each bounded sequence y = (yn) in `∞,

define gy by gy|Vn = ynf |Vn for n = 1, 2, . . ., and gy|X\V = 0. Then gy ∈ C0(X),

cozgy ⊆ V , and gy ∈ P (I) if and only if {n ∈ N : yn = 0} ∈ F. So

dim(C0(X)/P (I)) ≥ dim(`∞/{y ∈ `∞ : y vanishes on an element of F}),

which is at least the continuum by Lemma 2.7. ¤

If X is second countable then M has cardinality at most the continuum. Thus the

following theorem applies.

Theorem 2.9. If M has cardinality at most the continuum, then any prime cozero

set ideal I is the kernel ideal Iϕ of a disjointness preserving linear functional ϕ of

C0(X).

Proof. We may suppose I 6= Ix for any x in X, for otherwise we can set ϕ to be the

point mass δx. We can index the elements of M \ I as follows.

M \ I = {Uα : 0 ≤ α < β},

where β is an ordinal number and the cardinality of each γ < β is less than the

continuum. Then we can use transfinite recursion to find fα in C0(Uα) such that

the image of the fα’s in C0(X)/P (I) are linearly independent. This can be done

since by Lemma 2.8, C0(Uα)/C0(Uα) ∩ P (I) has dimension at least the continuum.

Consequently, we can find a linear functional ϕ such that ϕ|P (I) = 0 and ϕ(fα) 6= 0

for all α. Clearly, ϕ is disjointness preserving with Iϕ = I. ¤

By the proof of the above theorem, for any prime cozero set ideal I maximal with

respect to not containing a particular U in M, we have a disjointness preserving linear

functional ϕ such that Iϕ = I. In fact, we have the more general

Proposition 2.10. Let C be a subfamily of M closed under finite intersections with

∅ /∈ C. If the cardinality of C is at most the continuum then for any cozero set ideal

I maximal with respect to not containing any member of C, there is a disjointness

preserving linear functional ϕ of C0(X) such that Iϕ = I.
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Proof. By Lemma 2.3, I is prime. Write C = {Uα : 0 ≤ α < β}, where β is an ordinal

number and the cardinality of each γ < β is less than the continuum. By the same

argument in the proof of Theorem 2.9, we will have a disjointness preserving linear

functional ϕ of C0(X) such that ϕ|P (I) = 0 but ϕ(fα) 6= 0 for a linear independent

family of functions fα each with cozero set contained in Uα. Then Iϕ is a prime

cozero set ideal containing I but disjoint from C. By the maximality of I, we have

Iϕ = I. ¤

3. Unbounded disjointness preserving linear functionals on c0

The Banach space c0 can be identified with C0(N). Since every subset of N is a

cozero set, it is easy to see that the prime cozero set ideals are precisely the maximal

ideals of sets. In other words, there is a one-to-one correspondence between prime

cozero set ideals I and ultrafilters F, such that for any U in M,

U ∈ I ⇔ N \ U ∈ F.

The principle ultrafilters correspond to the ideals In, for n in N, and thus to bounded

disjointness preserving linear functionals. If F is a free ultrafilter, the corresponding

ideal I is associated to the point ∞ of N ∪ {∞}. Thus, any nonzero (necessarily

disjointness preserving) linear functional ϕ vanishing on P (I) is unbounded. Also,

since I is maximal, Iϕ = I. So the following is a special case of the results of Section

2.

Proposition 3.1. For each free ultrafilter F on N, let

P ′(F) = {x ∈ c0 : x vanishes on a element of F}.

Then the unbounded disjointness preserving linear functionals on c0 are precisely the

non-zero linear functionals vanishing on P ′(F) for some F. Also F is uniquely deter-

mined by ϕ.

Corollary 3.2. For each sequence x in c0 which is not eventually null, there is an

unbounded disjointness preserving linear functional ϕ on c0 such that ϕ(x) = 1.
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4. Unbounded disjointness preserving linear functionals on C0(X)

Suppose X is a locally compact Hausdorff space. If X is a finite set then all linear

functionals on C0(X) are automatically continuous. In this section, we always assume

X has infinite cardinality. It follows from Proposition 2.4(ii) that if ϕ is an unbounded

disjointness preserving linear functional on C0(X) then there is a non-isolated point

x in X ∪ {∞} such that for all f in C0(X),

(1) f vanishes in a neighborhood of x in X =⇒ ϕ(f) = 0.

We also note that ϕ is unbounded if and only if ϕ(f) 6= 0 for some f in C0(X) with

f(x) = 0.

Proposition 4.1. Let x be an non-isolated point in X. Let f in C0(X) be such that

f(x) = 0 but f does not vanish in any neighborhood of x. Then there is an unbounded

disjointness preserving linear functional ϕ on C0(X) such that ϕ(f) = 1.

Proof. This follows from the proof of Proposition 2.5. ¤

In the rest of this section, we would like to see to what extent we can make use of

the ultrafilter to give a more concrete construction of disjointness preserving linear

functionals.

Definition 4.2. Let X be a locally compact Hausdorff space. A closed subset E of

X is called special if it is a disjoint union E = {en : n ∈ N} ∪E∞, where the en’s are

distinct isolated points of E and E∞ is the set of cluster points of the sequence {en}.
In other words, E is special if and only if there is a countable infinite subset E0 of E

which is discrete in the relative topology such that E = E0. If E0 is also closed, then

E∞ = ∅.

Lemma 4.3. Let E be a special subset of X and let PE be the set of prime cozero

set ideals I such that {U ∈ M : U ∩ E = ∅} ⊆ I and {U ∈ M : U ∩ E∞ = ∅} 6⊆ I.

Then there is a one-to-one correspondence between PE and the set of ultrafilters F

on N given by

(2) U ∈ I ⇔ {n ∈ N : en /∈ U} ∈ F.
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Proof. We first note that if I is in PE and U, V are in M such that U ∩ E = V ∩ E,

then

U ∈ I ⇔ V ∈ I.

In fact if, say, V is in I, then U \ V is a σ-compact set disjoint from E. Hence

there is a W in M such that W ∩ E = ∅ and (U \ V ) ⊆ W . Thus U ⊆ V ∪W and

W ∈ I. Consequently, U ∈ I. Also note that the Tietze extension theorem implies

that every cozero set of an element of C0(E) is the intersection with E of the cozero

set of a element of C0(X). In other words, the family of σ-compact open subsets of

E is ME = {U ∩ E : U ∈ M}.
Now we see that IE = {U ∩ E : U ∈ I} is a prime cozero set ideal on E and

that I = {U ∈ M : U ∩ E ∈ IE}. For example, we prove (COZ1) for IE. Let

U ∩ E ⊆ V ∩ E and V ∩ E ∈ IE (so that V ∈ I). Note that (U ∪ V ) ∩ E = V ∩ E.

Hence U ∪ V ∈ I, whence U ∈ I and U ∩ E ∈ IE.

The set U0 = {en : n ∈ N} is in ME, and it is impossible that U0 ∈ IE. Otherwise,

{U ∈ M : U ∩ E∞ = ∅} would be contained in I. Since IE is prime, this implies

V ∈ IE ⇔ V ∩ U0 ∈ IE, ∀V ∈ ME,

Thus {V ∩U0 : V ∈ IE} is a prime ideal of subsets of U0; or equivalently F, as defined

by (2), is an ultrafilter.

Thus we have a one-to-one map, satisfying (2), from PE into the set of ultrafilters.

But it is easy to see that this map is onto. In other words, if an ultrafilter F is given

and I is defined by (2), then I is in PE. ¤

Example-Remark 4.4. If I is in PE and IE is as above, then I is associated with

a point x in X ∪ {∞} and IE is associated with a point e in E ∪ {∞}. It is not hard

to see that x = e. First note that if x /∈ E ∪ {∞}, then there is a U in M such that

U0 = {en : n ∈ N} ⊆ U and x /∈ U . Hence U is in I by Proposition 2.4, contradicting

the fact proved above that U0 /∈ IE. Now the claim follows easily from Proposition

2.4 again.
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It is clear that the ultrafilter F is principal if and only if x = e = en for some n.

Also, if this does not occur, then I ( Ix. Thus the free ultrafilters correspond exactly

to the prime cozero set ideals in PE which are associated to unbounded disjointness

linear functionals.

Now, the choice of a special set E leads to “examples” of unbounded disjointness

linear functionals. To get such an example, we choose a free ultrafilter on N and a

linear functional ϕ on C0(E)/P (IE) such that ϕ|c0 6= 0. (Here we identify c0 with

{f ∈ C0(X) : f |E∞ = 0}.) Although these choices cannot really be made explicitly,

it seems that these examples are as explicit as one could reasonably hope, and that

they are deservedly called examples. Note also that whenever X has infinitely many

points, there is an infinite sequence of mutually disjoint, non-empty, open subsets.

Hence special sets exist.

If a subset E exists which is homeomorphic to the Stone-Čech compactification

βN of N, then E is special. So consider the case where E = X = βN. Thus C0(X)

can be identified with `∞. The above theory implies that if ϕ is an unbounded

disjointness preserving linear functional on `∞, and if ϕ|c0 6= 0, then Iϕ is determined

by an ultrafilter on N, and also Iϕ is determined by ϕ|c0 . However, ϕ itself is not

determined by ϕ|c0 , since `∞ 6= c0 + P (Iϕ).

Finally, we note that these examples were essentially given in Jarosz [11]. Our

purpose was not just to establish the existence of such examples, but to analyze how

they fit into the totality of disjointness preserving linear functionals on C0(X).

The set of all unbounded disjointness preserving linear functionals generated in

this way is an infinite set. However, we will see with counter examples that not every

disjointness preserving linear functional can be obtained in this way. In particular,

there is an unbounded disjointness preserving linear functional ϕ on C[0, 1] associated

to 0, a Gδ point, such that ϕ does not arise from the ultrafilter method.

Lemma 4.5. The union of two special sets is again special.
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Proof. Suppose E and F are two special sets of a locally compact Hausdorff space X.

Write E = {en : n = 1, 2, . . .} ∪ E∞ and F = {fm : m = 1, 2, . . .} ∪ F∞. If some en is

not in F∞ then en is isolated in E ∪ F . If en is in F∞, let O be a neighborhood of en

in X such that O ∩ E = {en}, and let A = {fm : m = 1, 2, . . .} ∩ O. Then en ∈ A.

Also since no element of A is in E∞, each element of A is isolated in E ∪ F . Thus if

B is the set of isolated points of E ∪ F , then each en is in B. Also each fm is in B.

So B = E ∪F . Moreover, B ∩ (E∞∪F∞) = ∅. It follows that B is countably infinite,

and we can put E ∪ F in the special form by enumerating B. ¤

Lemma 4.6. If E is a special subset of [0, 1] then E does not contain any neighborhood

of 0.

Proof. Let O be an open neighborhood of 0. Since [0, 1] has no isolated points, the

set O \ {en : n ∈ N} is dense in O (Baire Category Theorem). So if O ⊆ E, then

O \ {en : n ∈ N} ⊆ E∞, and hence O ⊆ E∞. But if E∞ contains a neighborhood of

0, then 0 cannot be a cluster point of {en : n ∈ N}, a contradiction. ¤

The next result shows that there is an unbounded disjointness preserving linear

functional on C[0, 1] which cannot be obtained by the ultrafilter method demonstrated

in Example 4.4.

Proposition 4.7. There is an unbounded disjointness preserving linear functional ϕ

on C[0, 1] such that Iϕ contains no set of the form [0, 1]\E for a special set E. Hence

Iϕ is not in PE for any special E.

Proof. We first note that every open subset of [0, 1] is σ-compact. Let B = {[0, 1]\E :

E is special} and I′ = {U ∈ M : U is open and 0 /∈ U}. Then B and I′ are subsets

of M, B is closed under finite intersections (Lemma 4.5), I′ is closed under finite

unions, and no element of I′ includes an element of B (Lemma 4.6). Now use Zorn’s

Lemma to find a set I maximal with respect to: I′ ⊆ I ⊆ M, I satisfies (COZ1) and

(COZ2), and I ∩B = ∅. By Lemmas 2.3 and 4.6, I satisfies (COZ3) and (COZ0).

Clearly, I is associated to 0 and (0, 1] /∈ I. This gives rise to a (necessarily unbounded)

disjointness preserving linear functional ϕ such that I = Iϕ by Proposition 2.10. ¤
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In the next example, we shall see that Example 4.4 gives rise to an unbounded

disjointness preserving linear functional ϕ satisfying: Iϕ is not maximal in Ix, but

there is a U in M \ Iϕ such that Iϕ is maximal with respect to the conditions that

Iϕ satisfies (COZ1) and (COZ2) and U /∈ Iϕ.

To get this we again take X = [0, 1]. Let C be the Cantor set. Choose a sequence

{xn} of distinct points in [0, 1]\C such that C is the set of cluster points of {xn}. Thus

E = {xn : n ∈ N} ∪C is special. Now let I′ be the family of subsets A of N with the

property that there is an ε > 0 such that C∩(0, ε) is disjoint from {xn : n ∈ A}. Then

I′ is closed under finite unions and subsets. Also, N /∈ I′, but every finite subset of N

is in I′. So there is a free ultrafilter F such that F∩I′ = ∅. Using this ultrafilter, and

{xn}, we obtain an unbounded disjointness preserving linear functional ϕ of C[0, 1]

(necessarily associated to 0). Note that U ∈ Iϕ if and only if {n ∈ N : xn /∈ U} is in

F. We will see in the following two lemmas that this ϕ satisfies the properties stated

in the previous paragraph.

Lemma 4.8. The kernel ideal Iϕ of ϕ is not maximal in I0 = {U ∈ M : 0 /∈ U}.

Proof. Let U1 = [0, 1] \ C. Then U1 is not in Iϕ. So if Iϕ is maximal, there exists

V in Iϕ such that (0, 1] = U1 ∪ V . Let A = {n ∈ N : xn /∈ V }. Since A ∈ F,

A /∈ I′. Therefore, the set of cluster points of {xn : n ∈ A} is a subset K of C which

intersects (0, ε), for all ε > 0. But K ⊆ [0, 1] \ V , since [0, 1] \ V is closed. It follows

that K \ {0} ⊆ U1, a contradiction since C ∩ U1 = ∅. ¤

Lemma 4.9. Iϕ is maximal with respect to (COZ1), (COZ2) and U1 /∈ Iϕ.

Proof. This follows from Lemma 4.3. ¤

5. Further considerations

Since C0(X) is a C*-algebra, it may be interesting to consider disjointness pre-

serving maps between C*-algebras. There are two one-sided concepts of disjointness,

which of course have identical theories. For elements a, b of a C*-algebra A, we will

interpret a disjoint from b to mean ab∗ = 0. (This is symmetric in a and b and is
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equivalent to orthogonality of the right support projections of a and b. The right

support projection of an element of A is an open projection in A∗∗.) A linear map

T : A −→ B will be called disjointness preserving if ab∗ = 0 implies (Ta)(Tb)∗ = 0.

We content ourselves here with one theorem and one question about the case where B

is one-dimensional. Neither author has spent a lot of time thinking about disjointness

preserving maps in the non-commutative case as of now.

Theorem 5.1. Any bounded disjointness preserving linear functional ϕ on a complex

C*-algebra A is a multiple of a *-homomorphism. In other words, ϕ factors through

the abelianization of A.

Proof. 1. We reduce to the case ϕ ≥ 0. We identify ϕ with its extension to a weak*

continuous functional on A∗∗ and note that A∗∗ is an von Neumann algebra. Then

by [14, pp. 31-33] there is u in A∗∗ such that if |ϕ| is defined by

|ϕ|(a) = ϕ(ua), ∀a ∈ A∗∗,

then |ϕ| ≥ 0 and

ϕ(a) = |ϕ|(u∗a), ∀a ∈ A∗∗.

Since u can be approximated in the weak* topology by elements of A, |ϕ| is also

disjointness preserving on A. And if |ϕ| is a multiple of a ∗-homomorphism, then

ϕ is also, since then ϕ(a) = |ϕ|(u∗)|ϕ|(a).

2. Changing notation, we assume ϕ ≥ 0 and ‖ϕ‖ = 1. Then ϕ extends uniquely to a

state ϕ̃ on Ã, where Ã is the result of adjoining an identity to A. Let (ei) be an

approximate identity of A, consisting of positive contractions. From the fact that

‖ϕ̃‖ = ‖ϕ‖, we conclude ϕ̃(b) = limi ϕ̃(eib) = limi ϕ(eib), ∀b ∈ Ã. It follows that ϕ̃

also is disjointness preserving. Hence, we may change notation again and assume

A is unital.

3. The restriction of ϕ to any unital commutative C*-algebra B is a disjointness

preserving state of B. Hence ϕ|B is multiplicative. It follows that ϕ(h2) = ϕ(h)2

for all self-adjoint h in A. By polarization and linearization, we see that ϕ is a
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Jordan homomorphism. Then since

ϕ(a∗a + aa∗) = ϕ(a∗)ϕ(a) + ϕ(a)ϕ(a∗),

we see that ϕ(a) = 0 implies ϕ(a∗a) = ϕ(aa∗) = 0. Hence the kernel of ϕ is a

(necessarily maximal) two-sided ideal.

¤

Remark 5.2. The above proof was designed with the hope of being relatively acces-

sible to non-specialists in C*-algebras. A more conceptual proof uses closed left ideals

and their associated closed projections and the“Urysohn Lemma” of C. A. Akemann

[6]. This latter method can also be used for real C*-algebras, but the conclusion has

to be modified in the real case. In the real case ϕ factors through a quotient alge-

bra of A isomorphic to either R, C, or H, where H is the quaternion algebra. This

implies that ϕ factors through A/I, where I is the closed two-sided ideal generated

by {ah − ha : h∗ = h}. This is the quotient universal for the property that every

self-adjoint element is central.

Question 5.3. Does every unbounded disjointness preserving linear functional on a

(complex) C*-algebra A factor through the abelianization of A?

It can be deduced from Theorem 5.1 that there is no non-zero disjointness preserv-

ing linear functional on a C*-algebra of the form A⊗Mn for n ≥ 2. This is a positive

evidence.
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