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Abstract. A not necessarily continuous, linear or multiplicative function θ from

an algebra A into itself is called a local automorphism if θ agrees with an automor-

phism of A at each point in A. In this paper, we study the question when a local

automorphism of a C*-algebra, or a W*-algebra, is an automorphism.

1. Introduction

Let A be an algebra and θ be a function from A into A. We call θ an automorphism

if θ is bijective, linear, and multiplicative. We call θ a local automorphism if θ agrees at

each point a in A with an automorphism θa of A, i.e., θ(a) = θa(a). Note that θa may

depend on a. This notion obviously relates to the properties of preserving invertibility,

commutativity, idempotents, square zero elements, and more important, spectra (see,

e.g., [13, 7, 27, 31, 9, 10, 11, 29]). The potential applications in mathematical physics is

also clear (see, e.g., [25]). In this paper, we will investigate when a local automorphism

of an operator algebra is an automorphism.

A local automorphism sends 0 to 0, and 1 to 1 in case A is unital, but else it can be

arbitrary. For example, let H be a complex Hilbert space and B(H) the algebra of all

bounded linear operators on H. Define an equivalence relation on B(H) by saying that

A and B are equivalent if there is a unitary operator U on H such that A = UBU∗.

Assign to each member in an equivalence class [A] the same unitary U[A], and then

define θ : B(H) → B(H) by

θ(A) = U[A]AU∗
[A], for all A in B(H).

It is easy to see that θ is a bijective local automorphism of B(H) preserving norm.

Unless all U[A] are equal, however, θ does not observe any algebraic structure of B(H).
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To get a meaningful theory it seems to be necessary to assume linearity, surjectivity

and/or continuity of a local automorphism. Note that injectivity is free whenever

linearity presents. On the other hand, local automorphisms are spectrum preserving.

It then follows from a result of Aupetit that a surjective linear local automorphism of

a semisimple Banach algebra is automatically bounded (see, e.g., [2]). But such linear

(and thus continuous and injective) automorphisms can be not surjective (see Example

3.3 below, and see also [24, Example 2.8]).

The notion of local automorphisms is introduced by Larson and Sourour [23]. They

showed that every invertible linear local automorphism of a matrix algebra is either

an automorphism or an anti-automorphism, and that of B(H) is an automorphism

whenever H is an infinite dimensional Hilbert space (see also Brešar and Šemrl [8].)

In this paper, we will see that a surjective linear local automorphism θ of a von

Neumann algebra N is a Jordan isomorphism. In case N is properly infinite, θ is an

automorphism. On the other hand, linear local automorphisms of abelian C*-algebras

are always algebra homomorphisms. They are not necessarily surjective, however. A

sufficient condition ensuring surjectivity is that the pure state space is first countable,

and a counter example is provided when this does not hold.

We do not know too much about linear local automorphisms of non-abelian C*-

algebras, except for those with real rank zero. In comparison, there is a similar con-

cept called local derivations. In [21], Kadison showed that every bounded linear local

derivation of a von Neumann algebra is a derivation, and in [30], Shul’man extended

this to the case of C*-algebras. See also similar results of Brešar [6] and Johnson [20].

We are grateful to Matej Brešar, Martin Mathieu and Peter Šemrl for many helpful

comments. Special thanks are due to Lajos Molnár for reading through a preliminary

version of this paper and providing useful advice.

2. Local automorphisms of W*-algebras

We first state some properties of a local automorphism without proof.

Lemma 2.1. Let θ be a local automorphism of an algebra A.

(1) θ preserves k-potents for k = 2, 3, . . .; more precisely, ak = a if and only if

θ(a)k = θ(a).
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(2) θ preserves k-power zero elements; more precisely, ak = 0 if and only if θ(a)k =

0.

(3) θ preserves central elements.

(4) θ preserves left (resp. right, two-sided) zero divisors.

(5) θ preserves zeros of polynomials, and thus algebraic elements.

(6) If A is unital, then θ preserves left (resp. right, two-sided) invertibility.

(7) If A is unital, then θ preserves left (resp. right, two-sided) spectra.

(8) If θ is linear, then we can extend θ uniquely to a local automorphism of the

unitalization of A by setting θ(1) = 1.

In [23], Larson and Sourour show that every linear local automorphism of the matrix

algebra Mn(C) is either of the form A 7→ TAT−1 or of the form A 7→ TAtT−1 for some

nonsingular matrix T . Indeed, a matrix A and its transpose At have the same Jordan

form, and thus A and At are similar to each other. Therefore, the map A 7→ At is a

surjective linear local automorphism, but not an automorphism for n > 1.

Recall that a Jordan homomorphism of an algebra is a linear map preserving the

Jordan product a ◦ b = ab + ba. The following result was proved by Brešar and Šemrl

[11]. See also [6, 7]. We sketch the proof here for completeness.

Theorem 2.2 (Brešar and Šemrl). Every bounded linear local automorphism θ of a

W*-algebra N is a Jordan homomorphism.

Proof. By Lemma 2.1, θ sends idempotent elements to idempotent elements. It fol-

lows that θ sends orthogonal idempotents to orthogonal idempotents. By the spectral

theory, every self-adjoint element a in N can be approximated in norm by linear sums

of orthogonal projections. More precisely,

a = lim
n

∑
k

λnkPnk,

for some families of finitely many orthogonal projections Pnk. By the boundedness of

θ, we have

θ(a) = lim
n

∑
k

λnkθ(Pnk).
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The above observation implies that

θ(a)2 = lim
n

∑
k

λ2
nkθ(Pnk) = θ(a2).

Now for all self-adjoint a, b in N , the equality θ((a+b)2) = (θ(a+b))2 gives θ(ab+ba) =

θ(a)θ(b)+θ(b)θ(a). We see that θ is a Jordan homomorphism by observing the equality

(θ(a + ib))2 = (θ(a) + iθ(b))2 = θ((a + ib)2). �

We provide a refinement of Theorem 2.2 below.

Theorem 2.3. Suppose the range of a linear local automorphism θ of a W*-algebra N

is a W*-algebra. Then θ is automatically bounded, and thus a Jordan homomorphism.

If, in addition, N is properly infinite, then θ is an algebra homomorphism.

Proof. The first assertion was proved in [15]. Indeed, surjective spectrum preserving

linear maps between semisimple Banach algebras are automatically bounded (see, e.g.,

[2]). By Theorem 2.2, we see that θ is a Jordan homomorphism.

From now on, suppose N is properly infinite. That is, every nonzero central projec-

tion in N is infinite. By a result of Brešar [5] (see also [1]), there are σ-weakly closed

ideals I, J of N and ideals I ′, J ′ of θ(N ) such that N = I ⊕ J , θ(N ) = I ′ ⊕ J ′, and θ

induces an algebra isomorphism from I onto I ′ and an anti-isomorphism from J onto

J ′. In particular, θ(ab) = θ(b)θ(a) for all a, b in J .

Suppose J is not zero, for else we are done. Let 1I , 1J be the orthogonal central

projections in N such that I = 1IN and J = 1JN . Since 1J is not finite, there is a

partial isometry p in J such that p∗p = 1J but pp∗ < 1J . Observe

(p∗ + 1I)(p + 1I) = p∗p + 1I = 1,

(p + 1I)(p∗ + 1I) = pp∗ + 1I < 1.

Hence, p + 1I is not right invertible. It follows from Lemma 2.1 that θ(p + 1I) is not

right invertible, either. On the other hand,

1 = θ(1) = θ((p∗ + 1I)(p + 1I))

= θ(p∗p) + θ(1I) = θ(p)θ(p∗) + θ(1I)

= (θ(p) + θ(1I))(θ(p∗) + θ(1I)).
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This says θ(p + 1I) is right invertible, a contradiction. �

A linear local automorphism θ of a von Neumann algebraN sends central projections

to central idempotents, indeed projections, as θ also preserves spectra. Let I = N p be

a σ-weakly closed two-sided ideal of N with p a central projection in N . By Theorem

2.2, θ preserves Jordan products, and thus

θ(ap) = (θ(a)θ(p) + θ(p)θ(a))/2 = θ(a)θ(p), ∀a ∈ N .

Hence, θ(I) = θ(N )θ(p) is also a σ-weakly closed two-sided ideal of N if θ is surjective.

By a result of Sakai [28, Corollary 4.1.23], every algebra isomorphism between two

W*-algebras are of the form a 7→ π(uau−1) where π is a σ-weakly bi-continuous ∗-

isomorphism and u is an invertible element in the domain. A similar result also holds

for algebra anti-isomorphisms. Thus, θ preserves types of ideals, too. In view of

Theorem 2.3 and results of Larson and Sourour [23], and Brešar and Šemrl [8], there

is just only one case not completely clear to us at this moment, and we make it as a

Problem 2.4. Can a surjective linear local automorphism of a von Neumann algebra

of type II1 be an anti-automorphism?

3. Local automorphisms of C*-algebras

Some of above arguments also apply to linear local automorphisms of C*-algebras

of real rank zero. However, another result of Brešar [4] about the structure of Jordan

homomorphisms between C*-algebras might be used instead of that in [5] (see also [12]).

Note that every self-adjoint element in such an algebra can also be approximated in

norm by linear sums of orthogonal idempotents. Recall also that a C*-algebra is purely

infinite if every hereditary C*-subalgebra is infinite.

Theorem 3.1. Let θ be a linear local automorphism of a C*-algebra A of real rank

zero. Suppose the range of θ is a C*-algebra. Then θ is a Jordan homomorphism. If,

in addition, A is purely infinite, then θ is an automorphism.

Due to the lack of projections, we do not know whether the above theorem holds or

not if the C*-algebra is not of real rank zero. However, the abelian case is completely
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done. The following result is due to Molnár and Zalar [26]. We sketch a proof here for

completeness.

Theorem 3.2 ([26]). Every complex linear local automorphism θ of an abelian C*-

algebra A = C0(X) is an isometric algebra homomorphism. In case X is first count-

able, θ is an automorphism.

Proof. Note that every isometric algebra homomorphism (resp. automorphism) of C0(X)

arises from a composition f 7→ f ◦ φ with a quotient map (resp. homeomorphism) φ

from X onto X (see, e.g., [16]).

Let X∞ = X ∪ {∞} be the one-point compactification of X. Setting θ(1) = 1, we

can also consider that θ is a linear local automorphism of C(X∞). For an f in C(X∞),

the spectrum of f coincides with its range σ(f) = f(X∞). In particular, the norm of f

equals its spectral radius, and f is invertible exactly when f is non-vanishing on X∞.

By Lemma 2.1, θ preserves both norm and invertibility (i.e. being non-vanishing). By

the Gleason-Kahane-Zelazko Theorem [17, 22] (see also [18]), θ is multiplicative, and

thus an isometric algebra homomorphism of C(X∞). More precisely, θ(f) = f ◦ φ,

where the map φ : X∞ → X∞ is continuous, open and onto. Clearly, φ sends exactly

∞ to ∞. Hence, we can also think of φ as a quotient map from X onto X, and θ as

an isometric algebra homomorphism of C0(X).

Assume now that X is first countable. We show that φ is one-to-one. Suppose

φ(x) = φ(y) = z. Let f be a continuous function in C0(X) peak at z; namely,

0 ≤ f ≤ 1 and f assumes value 1 exactly at the point z. Since θ(f) = f ◦ φf for some

homeomorphism φf of X, the function θ(f) = f ◦ φ peaks at exactly one point. This

forces x = y. Therefore, φ is a homeomorphism and θ is an automorphism. �

In the following example, we see that a linear local automorphism of C(X) needs

not be surjective if X contains a non-Gδ point.

Example 3.3. Let ω and β be the first infinite and the first uncountable ordinal

number, respectively. Let [0, β] be the compact Hausdorff space consisting of all ordinal

numbers x not greater than β and equipped with the topology generated by order

intervals. Note that every continuous function f in C[0, β] is eventually constant.
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More precisely, there is a non-limit ordinal xf such that ω < xf < β and f(x) = f(β)

for all x ≥ xf .

Define φ : [0, β] → [0, β] by setting

φ(0) = β, φ(n) = n− 1 for all n = 1, 2, . . ., and φ(x) = x for all x ≥ ω.

Let θ : C[0, β] → C[0, β] be the non-surjective composition operator defined by θ(f) =

f ◦ φ. We shall see that θ is an isometric linear local automorphism. Indeed, θ is

clearly isometric and linear. For each f in C[0, β], let φf be the homeomorphism of

[0, β] defined by

φf (0) = xf , φf (n) = n− 1 for all n = 1, 2, . . ., φf (x) = x for all ω ≤ x < xf ,

φf (x) = x + 1 for all xf ≤ x < xf + ω, and φf (x) = x for all x ≥ xf + ω.

It is plain that θ(f) = f ◦ φ = f ◦ φf for all f in C[0, β].

Note that to utilize the Gleason-Kahane-Zelazko Theorem [17, 22] in the proof of

Theorem 3.2, the underlying field is assumed to be the complex. We are expecting a

new proof for the real case. Here is a partial solution.

Proposition 3.4. Suppose the underlying field is the real, R. Let X be a locally

compact subset of R. Then every linear local automorphism θ of C0(X) is an auto-

morphism.

Proof. It follows from the local property that θ is a linear isometry. By an extension of

the Ho lsztynski Theorem [19], there is a locally compact subset Y of X and a surjective

continuous open map φ from Y onto X such that

(3.1) θ(f)|Y = f ◦ φ.

It follows from a similar argument as in the proof of Theorem 3.2 that φ is one-to-one,

and thus a homeomorphism.

We shall construct a strictly positive function f in C0(X) with the property that

each level set f−1(λ) = {x ∈ X : f(x) = λ} is finite for all λ > 0. Note that X is

the union of all level sets of f . Suppose we have such an f for this moment. By the

local property, θ(f) = f ◦ φf is also a function of such kind. For each λ > 0, suppose
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f−1(λ) consists of distinct points x1, x2, . . . , xn in X. Since φ is bijective, there are

distinct points y1, y2, . . . , yn in Y with φ(yi) = xi for i = 1, 2, . . . , n. It follows from

(3.1) that f(φf (yi)) = f(φ(yi)) = λ for i = 1, 2, . . . , n. By counting elements, we see

that the points y1, y2, . . . , yn enumerates all of the λ-level set of f ◦ φf . In particular,

all the level sets of f ◦ φf are contained in Y . Consequently, X = Y , and thus θ is an

automorphism of C0(X).

Now, we construct such an f in C0(X). For each x in X, by the local compactness,

there are a < b such that X ∩ [a, b] is a compact neighborhood of x in X. Let α be

the infimum of all such a and β be the supremum of all such b in R. Here, we allow

α = −∞ and β = +∞. Using this idea, we can write X as a countable disjoint union

X = ∪nXn, where each Xn = X ∩ [αn, βn] for some αn < βn has the property that

X ∩ [a, b] is compact in X for all αn < a < b < βn.

Choose an fn in C0(X) vanishing outside (αn, βn). The behavior of fn on Xn depends

on whether X contains the endpoints αn, βn. If Xn does not contain either of αn, βn,

we assume fn agrees on Xn with a continuous function which joins the points (αn, 0),

(αn+βn

2
, 1/n) and (βn, 0) in the plane firstly by a strictly increasing curve and then by

a strictly decreasing one. In case Xn contains αn but not βn, we assume fn agrees on

Xn with a strictly decreasing curve passing through the points (αn, 1/n) and (βn, 0).

A similar construction is applied to the situation that Xn contains βn but not αn. If

Xn contains both αn, βn, our fn arises from a strictly decreasing curve passing through

the points (αn, 1/n) and (βn, 1/2n). Let f =
∑

n fn. The sum converges uniformly on

X to a strictly positive function in C0(X). For each λ > 1/n > 0, we see that the level

set f−1(λ) consists of at most 2n points in X. This is the required function we need

in the first half of the proof. �

To end this paper, we would like to raise another problem.

Problem 3.5. Is every surjective linear local automorphism of a C*-algebra, or more

generally, a semisimple Banach algebra, a Jordan isomorphism?

Remark that Crist [14] has an example of a bijective linear local automorphism of a

three dimensional abelian radial subalgebra of the algebra M3 of 3× 3 matrices, which

is not a Jordan homomorphism.
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[4] M. Brešar, “Jordan mappings of semiprime rings”, J. Algebra, 127 (1989), no. 1, 218–228.
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[7] M. Brešar and P. Šemrl, “Mappings which preserve idempotents, local automorphisms, and local

derivations”, Can. J. Math., 45 (1993), no. 3, 483–496.
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