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ABSTRACT. In this paper, we introduce a broad class of nonlinear mappings
in a Hilbert space which contains the classes of nonexpansive mappings, non-
spreading mappings, hybrid mappings and contractive mappings. Then we
prove fixed point theorems for the class of such mappings. Using these results,
we prove well-known and new fixed point theorems in a Hilbert space. We
finally give an open problem which is related to nonspreading mappings and
hybrid mappings.

1. INTRODUCTION

Let H be a real Hilbert space and let C' be a nonempty subset of H. A mapping
T :C — H is said to be nonezpansive [18], nonspreading [13], and hybrid [19] if

1Tz =Tyl < ||z =yl

2| Te — Ty||* < Tz —y|* + || Ty — ||?
and
3T — Tyl|* < llz — yl* + | Tz — y|* + | Ty — =]
for all z,y € C, respectively; see also [7], [8] and [20]. These mappings are indepen-

dent and they are deduced from a firmly nonexpansive mapping in a Hilbert space;
see [19]. A mapping F : C — H is said to be firmly nonexpansive if

|Fa — Fy|* < (z —y, Fx — Fy)

for all z,y € C; see, for instance, Browder [2], Goebel and Kirk [5], and Kohsaka
and Takahashi [12]. A mapping T : C' — H is said to be contractive, contractively
nonspreading, and contractively hybrid if there exist r € [0,1), ¢t € [0, %) and s €
[0, 1) such that
[Tx =Tyl <7z —yll,
27w — Ty|]2 < H{[| Tz — |2 + 1Ty — 2%}
and
|17z — Tyll* < s{lla — ylI* + | Tz — y)|* + | Ty — «|*}

for all z,y € C, respectively; see [6]. Recently Kawasaki and Takahashi [10] intro-
duced the following nonlinear mapping in a Hilbert space. A mapping 7' from C
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into H is said to be widely generalized hybrid if there exist «, 3,7, d,¢,( € R such
that

al| Tz — Ty|? + Blla=Ty|* + 4Tz — yl|* + 8]l — y|I?
+max{e]|z — Tal|*, (lly — Ty|*} <0

for any x,y € C; see also [11].

In this paper, motivated by these mappings, we introduce a broad class of non-
linear mappings in a Hilbert space which contains the classes of nonexpansive map-
pings, nonspreading mappings, hybrid mappings, contractive mappings, contrac-
tively nonspreading mappings and contractively hybrid mappings. Then we prove
fixed point theorems for the class of such mappings. Using these results, we prove
well-known and new fixed point theorems in a Hilbert space. We finally give an
open problem which is related to nonspreading mappings and hybrid mappings.

2. PRELIMINARIES

Let H be a real Hilbert space with inner product (-, -) and norm ||-||, respectively.
We denote the strong convergence and the weak convergence of {z,} to z € H by
Ty, — ¢ and x, — x, respectively. Let A be a nonempty subset of H. We denote
by ¢0A the closure of the convex hull of A. In a Hilbert space, it is known that

(2.1) laz + (1 = a)yl® = allz|* + (1 - &) [[y[I* — a(l — )]z - y|®
for all z,y € H and « € R; see [18]. Furthermore, in a Hilbert space, we have that
(2.2) 20z —y,z—w) =llz —w|* + |ly — 2|* = [l = 2|* = |ly — w]?

for all z,y,z,w € H. Let C' be a nonempty subset of H and let T" be a mapping
from C into H. We denote by F(T) the set of fixed points of T. A mapping T
from C into H with F(T) # () is called quasi-nonezpansive if || Tx — ul| < ||z — ul|
for any z € C' and u € F(T). A nonexpansive mapping with a fixed point is quasi-
nonexpansive. We also know that a nonspreading mapping and a hybrid mapping
which have fixed points are quasi-nonexpansive; see [8] and [19]. It is well-known
that if T': C — H is quasi-nonexpansive and C' is closed and convex, then F(T)
is closed and convex; see Ito and Takahashi [9]. It is not difficult to prove such a
result in a Hilbert space. In fact, for proving that F(T') is closed, take a sequence
{zn} C F(T) with z,, — z. Since C is weakly closed, we have z € C. Furthermore,
from
Iz = T2|| < |z = znll + ll2n — Tzl < 2|z — 20ll = 0,

we have that z is a fixed point of T and so F(T') is closed. Let us show that F(T)
is convex. For z,y € F(T) and « € [0,1], put z = az + (1 — a)y. Then we have
from (2.1) that

Iz = Tz|* = laz + (1 - a)y — Tz|)?
= allz = Tz|* + (1 = a)lly = Tz[* = a(1 - a)llz - y||?
<allz —zlP + (1 = a)|ly — 2l - a(l - a)|lz -yl
=a(l - a)’lz =yl + (1 — a)a?[lz — y|* — a(l = a) |z — y?
=a(l-a)(l-a+a—1)]z -yl
=0.



FIXED POINT THEOREMS AND APPLICATIONS 3

This implies Tz = z. Thus F(T) is convex. Let D be a nonempty closed convex
subset of H and z € H. We know that there exists a unique nearest point z € D
such that ||z — z|| = infyep ||z —y||. We denote such a correspondence by z = Ppa.
The mapping Pp is called the metric projection of H onto D. It is known that Pp
is nonexpansive and

(x — Ppz, Ppx —u) >0

for all x € H and u € D; see [18] for more details.
Let {*° be the Banach space of bounded sequences with supremum norm. Let

i be an element of (I°°)* (the dual space of [°°). Then, we denote by u(f) the
value of p at f = (x1,22,23,...) € I*°. Sometimes, we denote by p,(z,) the
value p(f). A linear functional p on I*° is called a mean if p(e) = ||u|| = 1, where
e=(1,1,1,...). A mean p is called a Banach limit on 1 if p,(zn11) = pn(zn).
We know that there exists a Banach limit on [*°. If u is a Banach limit on [*°, then
for f = (x1,292,23,...) €1,

liminf x,, < pp(z,) < limsup x,.

n—00 n—00
In particular, if f = (21,x9,23,...) € [* and x, — a € R, then we have u(f) =
tn(Zn) = a. See [17] for the proof of existence of a Banach limit and its other

elementary properties. Using means and the Riesz theorem, we can obtain the
following result; see [14], [15], [16] and [17].

Lemma 2.1. Let H be a Hilbert space, let {x,} be a bounded sequence in H and
let w be a mean on 1°°. Then there exists a unique point zy € co{x, | n € N} such
that

Nn<xn,y> = <Zan>7 Vy €H.

3. FIXED POINT THEOREMS

Let H be a real Hilbert space and let C' be a nonempty subset of H. A mapping
T from C into H is called symmetric generalized hybrid if there exist o, 8,v,0 € R
such that

(3.1) al Tz — Ty + B(llx — Tyl*+ Tz — y|*) + vl -yl
+68(lz = Tal* + ly = TyllI*) <0

for all z,y € C. Such a mapping T is also called («, 3,7, )-symmetric generalized
hybrid. f a =1, =36 =0 and v = —1 in (3.1), then the mapping T is nonexpan-
sive. f a =2, = —1andy =0 =0in (3.1), then the mapping 7T is nonspreading.
Furthermore, if « = 3, § = v = —1 and § = 0 in (3.1), then the mapping T is
hybrid. Recently Kawasaki and Takahashi [10] introduced the following nonlinear
mapping in a Hilbert space and they proved a fixed point theorem and a mean
convergence theorem for the mappings. Let H be a real Hilbert space and let C
be a nonempty subset of H. A mapping T from C into H is said to be widely
generalized hybrid if there exist «, 3,7, 6,&,( € R such that

(3-2) al| Tz — Tyl + Blla=Ty|* + Tz — ylI* + 8]l — y|I?
+max{ellz — Tz||, |ly — Ty|I*} <0
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for any x,y € C. Such a mapping T is called («a,(,7,0,¢,()-widely generalized
hybrid. Replacing the variables x and y in (3.2), we have that

(33)  allTy = Ta|* + Bly=Tz|* + YTy — «|* + 8]y — =

+max{elly — Ty|*,¢lle - Tz|*} < 0.
From (3.2) and (3.3) we have that
(34) 20| Ty — Tx|* + (B +)(ly — T|* + | Ty — «[*) + 26|y — «|*

+max{ellz — Ta||*, (lly — Tyl|*} + max{e|ly — Ty|l*, ¢l — T=[*} < 0.

From ¢l|x — Tz||?, (|ly — Ty||* < max{e|jx — Tz||?, (|ly — Ty||*}, we have that
(3-5) elle = T)|* +¢lly — Ty|* < 2max{ellz — Tx|* ¢lly — TylI*}.
Similarly, we have that
(3.6) elly = Ty|* + Clle — Tx||* < 2max{e|ly — Ty|* ¢llo — T}
Consequently, we have from (3.4), (3.5) and (3.6) that
3.7 20|Ty — T|P+(B+)(ly = Tz)|* + | Ty — «||*) + 26|y — «|®

1
+5E+ (e - Tz|* + |y — Ty|?) < 0.

Such a mapping T is symmetric generalized hybrid. We first prove a fixed point
theorem for symmetric generalized hybrid mappings in a Hilbert space.

Theorem 3.1. Let H be a real Hilbert space, let C' be a nonempty closed convex
subset of H and let T be an («, 8,7, §)-symmetric generalized hybrid mapping from
C' into itself such that the conditions (1) a+28+~v >0, (2) a+8+3J > 0 and
(3) 6 > 0 hold. Then T has a fized point if and only if there exists z € C' such that
{T"z :n =0,1,...} is bounded. In particular, a fized point of T is unique in the
case of a4+ 20+~ > 0 on the condition (1).
Proof. Suppose that T has a fixed point z. Then {T"z :n =0,1,...} = {z} and
hence {T"z :n =0,1,...} is bounded. Conversely, suppose that there exists z € C
such that {T™z : n = 0,1,...} is bounded. Since T is an (a, 3,7, d)-symmetric
generalized hybrid mapping of C' into itself, we have that
allTe =T 22 4+ Bz = T 2| + | Tz — T 2|°) + ylle — T2
+6(||z = Tx|?> + || T2 = T"2]|?) <0
for all n € NU {0} and = € C. Since {T™z} is bounded, we can apply a Banach
limit 4 to both sides of the inequality. Since pu, || Tz —T"z||? = p,||Tx — T 2|2
and pn||z — T"2||? = pn ||z — T"2||?, we have that
(@ + B)pnl| Tz — T 2| +(B + V) pnllz — T"2|?
+0(|lz = Tal|* + pal| T"> = T 2)1?) < 0.
Furthermore, since
pnl|Tz —T"2|)? = [Tz — z||* 4 200 (Tx — x,2 — T"2) + ||z — T"2||%,
we have that
(a4 B+0)|Tx — z||* + 2(a + B an (T — x, 2 — T"2)
T (@ 28+ Nl — T2 + 8an | T — T 212 <0,
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From (1) a+ 26+~ > 0 and (3) § > 0, we have that
(3.8) (a4 B+0)|Tz — z||* + 2(a + B pan (T — x,2 — T"2) < 0.
Since there exists p € H from Lemma 2.1 such that
pn(y, T"2) = (y, p)
for all y € H, we have from (3.8) that
(3.9) (a+B+0)|Tz — z||* + 2(a + B)(Tx — z,z — p) < 0.
Since C is closed and convex, we have that
peco{T"z:neN}CC.

Putting « = p, we obtain from (3.9) that
(3.10) (a+ B +8)|Tp—pl* <0.
We have from (2) a + 28+ 6 > 0 that | Tp — p||?> < 0. This implies that p is a fixed
point in T'.

Next suppose that o+ 264y > 0. Let p; and ps be fixed points of T. Then we
have that

al|Tpr = Tp2||* + B(llpy = Tpa|? + | Tp1 — pa?) + o1 — po|®
+6(lpr = Tpu||* + [lpz — Tp2|*) < 0

and hence (o + 28 +7)|p1 — p2/|* < 0. We have from a + 28+ v > 0 that p; = ps.
Therefore a fixed point of T" is unique. This completes the proof. (I

As a direct consequence of Theorem 3.1, we obtain the following theorem.

Theorem 3.2. Let H be a Hilbert space, let C' be a nonempty bounded closed convex
subset of H and let T be an («, 8,7, §)-symmetric generalized hybrid mapping from
C into itself such that the conditions (1) a+28+~v >0, (2) a+5+06 >0 and (3)
6 >0 hold. Then T has a fized point. In particular, a fized point of T is unique in
the case of o+ 203+ > 0 on the condition (1).

Using Theorem 3.1, we also obtain the following theorem.

Theorem 3.3. Let H be a real Hilbert space, let C' be a nonempty closed convex
subset of H and let T be an («, 3,7, 6 )-symmetric generalized hybrid mapping from
C' into itself such that the conditions (1) a +28+~ >0, (2) 8<0, (3) B+~ <0,
and (4) B+ 6 > 0 hold. Then

(i) T has a unique fized point u in C;
(ii) for every z € C, the sequence {I"z} converges to u.

Proof. Let T be an («, 3,7, 0)-symmetric generalized hybrid mapping of C' into
itself satisfying four conditions (1), (2), (3) and (4) in the theorem. Take z € C.
Replacing = by T"z and y by T" "1z in (3.1), we have that

(3.11) o T" e — T 22?4 (| T e — T 22| + | T e — T 2||?)
+ 'y||T”:c o Tn+1x||2 + 6(\|T”x _ Tn+1x||2 + ||Tn+1x _ Tn+2x||2) <0
for all n € NU {0}. From
HTnl‘ _ Tn+2.’1,‘||2 S HT"%‘ _ Tn+1x||2 4 ”Tn-&-lx _ Tn+2x||2

+ 2T — T ||| T e — T 2|
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and (2) 8 <0, we have that
(3.12) BTz — T 22|? > 8| T"x — T a||? + 3| T e — T 22|
+ 26| T2 — T ||| T e — T2z,
From (3.11) and (3.12) we have that
(0 + BT =T a2 + (84 7) T — T+
26|/ — T | T — T
+ (|7 — T |2 + || T e — T 22)?) < 0.
From (4) 6+ d > 0 we have that
(o + BT a=T" 2a|® + (B + T 2 — T a®
— 25|72 — T ||| T e — T 2|
+6(| T — T | + | T e — T P2?) <0
and hence
(a+ AT a=T" x| + (B + N T"x — T a||?
+6(|T"x — T || — |77 e — T F22))% < 0.
Since § > 0 from (2) and (4), we obtain that
(3.13) (a+ AT e — T 22| + (8 + )T 2 — Tz < 0.

Using (1) a+268+~ >0 and (3) 8+~ < 0, we obtain that a«+ 3 > —(8+ ) > 0.
Then we have from (3.13) that

(314) ||Tn+11,_Tn+2x”2 < _(ﬁT?|‘Tnx—Tn+lx‘|2
(0%
and
—(B8+9)
3.15 0<—=< 1.
(3.15) - a+p

Putting \ = (_gﬁf?)%, we have that for any n € N,
lo = T"a| < |l = Tal| + [Tz — T?z| + - + |T" e = T"x|
<l =Tzl + M|z — Tz + - + A" Yz — Tx||
<|lz—Tx|+ Az — Tzl + -+ A"z - Tz +...
= —Tx|Q1+A+--+ A" 4+.0)
1
1-X
Thus the sequence {T"x} is bounded. On the other hand, from a+28++ > 0 and
8+ v <0, we have o« + 3 > 0. Furthermore from § > 0, we have a + 8+ > 0.

Thus we have from Theorem 3.1 that T has a unique fixed point » in X.
Let us prove (ii). We have from (3.1) that for every z,y € C,

(3.16) all 7" e = Ty|* + BT — Tyl|* + | T2 — y[*)
+IT" e =yl + 617" — T" ]| + [ly — Ty[*) < 0

— |l — Tz
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for all n € NU {0}. From ¢ > 0 that
(3.17) o T" 'z — Ty|P+B(|T"x — Ty|* + |7 & — yl|?)
+ 9Tz —y|? <.

Since {T"x} is bounded, we can apply a Banach limit p to both sides of the in-
equality. Thus we have that

(+ B)pn | T = Ty[|* + (B + Yl Tz — y|I* <0
and hence
—(B+7)
a+f
We define a function g : C' — R as follows:
9() = pal[ Tz —yl|, VyeC.

We know from [17] that g : C — R is a continuous function. For any z € C, we
have from (3.14) that {T™z}5°_, is a Cauchy sequence in C. Since C is complete,
{T™z} converges. Let T™z — u. We also have from (3.18) that

g™ 2) = [T = T2 < vy | T = T2 = rg(T™),

—(B+7)
a+p

(3.18) pin | Tz — Ty||* < || T2 =y

where r =
have that

. Since g is continuous, we obtain that g(u) < rg(u). Thus we

pall T — ul|* = g(u) < rg(u) = run||T"z — ul/*.
From 0 < r < 1, we have p,||T"z — u||?> = 0. Since
|Tu — ul|? = ||Tu — T"z|* + | T"x — u||* + 2(Tu — T"2, T"x — u)
<2|Tu— T 2| + 2|T"x — ul)?
for all n € N, we have
1T — ul® < 20| T2 — Tull? + 20 | T — u?
< 20| T — | + 240 || T" 2 — ul|?
=0.
Then Tu = u. We know already that Tz — u and a fixed point u of T is unique.

This completes the proof. O

Using Theorems 3.1 and 3.3, we prove the following fixed point theorems. Before
proving it, we introduce a more broad class of nonlinear mappings which contains
the class of symmetric generalized hybrid mappings. A mapping 7" from C into H
is called symmetric more generalized hybrid if there exist «, 3,7, 9, € R such that

(319)  allTz=Ty|*> + Bz — Ty|* + [Tz = y|*) + ]z — yII”

+0(lz = Ta|)* + lly = Tyl]*) + ¢z —y — (T = Ty)|> <0
for all z,y € C. Such a mapping T is called («, 83,7, 0, { )-symmetric more generalized
hybrid.

Theorem 3.4. Let H be a real Hilbert space, let C' be a nonempty closed convex sub-
set of H and let T be an («, 5,7, d,)-symmetric more generalized hybrid mapping
from C into itself such that the conditions (1) a+28+~v >0, (2) a+8+0+¢ >0
and (3) 6 +¢ > 0 hold. Then T has a fized point if and only if there exists z € C
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such that {T"z :n =0,1,...} is bounded. In particular, a fixed point of T is unique
in the case of a4+ 203+~ > 0 on the condition (1).

Proof. Since T : C — C'is an (a, 3,7, 6,()-symmetric more generalized hybrid
mapping, there exist «, 3,7, 0, € R satisfying (3.19). We also have that

(3.20) o —y—(Tx = Ty)|? = |z — Tz|* + |ly - Tyl
—lz = Ty|* = lly = Tz[* + |l — y[|* + | Tz — Ty|*
for all z,y € C. Thus we obtain from (3.19) that
(3.21) (a+OITz = Ty|* + (8 = Ollz = TylI* + [Tz — y[|*)
+ (v +Qlle =yl + (6 + Oz — Tz||* + [ly = Ty[|*) < 0.

The conditions (1) o« + 28+ > 0 and (2) a+ 8+ + ¢ > 0 are equivalent to
(a+Q)+2(-¢0)+(y+¢) >0and (a+¢)+ (8 —¢) + (6 +¢) > 0, respectively.
Furthermore, since (3) 6 + ¢ > 0 holds, we have the desired result from Theorem
3.1. O

Theorem 3.5. Let H be a real Hilbert space, let C' be a nonempty closed convex
subset of H and let T be an («, 8,7, 6, ()-symmetric more generalized hybrid map-
ping from C into itself such that the conditions (1) a+28+~v >0, (2) 8 <, (3)
B+~v<0, and (4) 8+ > 0 hold. Then

(i) T has a unique fized point u in C;

(ii) for every z € C, the sequence {I"z} converges to u.

Proof. As in the proof of Theorem 3.4, we have that
(3.22) (a+OITz =Tyl + (8 = Ollz = Tyl|* + [Tz — y[|*)
+ (v +Qllz =yl + (6 + Oz — Tz||* + [ly = Ty[|*) < 0.

The conditions (1) e+ 28+~ > 0 and (2) 8 < ¢ are equivalent to (a4 ¢) + 2(8 —
Q)+ (y+¢) >0and f— ¢ <0, respectively. Furthermore, since (3) 84 < 0 and
(4) B+ 6 > 0 are equivalent to (8 — () + (y+¢) <0and (8—C¢)+ (W +¢) >0
respectively, we have the desired result from Theorem 3.3. O

4. APPLICATIONS

In this section, we prove well-known and new fixed point theorems in a Hilbert
space by using fixed point theorems obtained in Section 3.

Let H be a Hilbert space and let C' be a nonempty subset of H. Then U : C — H
is called a widely strict pseudo-contraction if there exists r € R with r < 1 such
that

Uz = Uyl* < llz = yI* + 7|1 = U)x = (I = U)yl*, Va,yeC.

We call such U a widely r-strict pseudo-contraction. If 0 < r < 1, then U is a
strict pseudo-contraction; see [4]. Furthermore, if 7 = 0, then U is nonexpansive.
Conversely, let T : C — H be a nonexpansive mapping and define U : C' — H by
U= 111LnT+ 1451 for all z € C and n € N. Then U is a widely (—n)-strict pseudo-
contraction. In fact, from the definition of U, it follows that T'= (1 4+ n)U — nl.

Since T is nonexpansive, we have that for any =,y € C,

11 +m)Uz —nz — (1 +n)Uy —ny)|* < ||lz - y?
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and hence
Uz = Uy|* <|lz —y|* = nll(I - U)x - (I - V)yl*.

Using Theorem 3.4, we first prove the following fixed point theorem.

Theorem 4.1. Let H be a real Hilbert space, let C' be a nonempty bounded closed
conver subset of H and let U be a widely strict pseudo-contraction from C' into
itself, i.e., there exists 1 € R with r < 1 such that

(4.1) Uz = Uy|* < lz = y|* +r[|( = U)z = (I = U)y|?, Vz,yeC.
Then U has a fized point in C'.

Proof. We first assume that » < 0. We have from (4.1) that for any z,y € C,
(4.2) Uz — Uy|* — [lz = ylI* = 7| (I = U)z — (I = U)y|* < 0.

Then U is a (1,0, —1,0, —r)-symmetric more generalized hybrid mapping. Further-
more, (1) a+28+vy=1-1>0, (2) a++6+¢(=1—r>0and 3) 6+(=—-r>0
in Theorem 3.4 are satisfied. Thus U has a fixed point from Theorem 3.4. Assume
that 0 <r < 1 and define a mapping 7" as follows:

Ter=M+(1—-\NUz, VzxeC,

where 7 < A < 1. Then T is a mapping from C into itself and F(T) = F(U). From
Tz = Az + (1 — \)Uz, we also have that

1 A
Ux—l_)\T:cfl_)\x.
Thus we obtain from (4.1) and (2.1) that
1 A 1 A
0> T — 23— (——Ty— —y)|?
2T~ 2~ (g5 Ty — 15
1 A 1 A
2 2
M — _ oy — To — _ Ty —
Iz~ gl = rlle —y — {2 T~ 2 = (-2 Ty — 225}
1 A
= ||—— (T2 — Ty) — — )2
It (e = Ty) ~ (e~ 3]
1 1
e o2 R _ 2
lz = ylI” = rllg— (@ —y) = 7= (T= = Ty)ll
_ 1 2 A 2
= e =Tyl 2l
bt ey (T - Ty — oy
T—x 17 Y Y
r
- (1 _)\>2Hl'*y* (T’J’J*Ty)”2
1 1 A—r
- Tz —Ty|? - —yllP+ 2 e~y — (T — Ty)|?
T = Tyl = 1l = ol + e~ = (T = Ty)]
Then T is (ﬁ, 0, —ﬁ, 0, ﬁ)—symmetric more generalized hybrid. From
1 1 1 A—r A—rT
. 0 d ——5 >0
—x 1= P ioxtaoe? a4y Y

(D) a+28+~v>0,2)a+B8+d+¢>0and (3) 6 +¢ > 0 in Theorem 3.4 are
satisfied. Thus T has a fixed point in C from Theorem 3.4 and hence U has a fixed
point. This completes the proof. ([l
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Using Theorem 3.3, we can also prove the following fixed point theorem.

Theorem 4.2. Let H be a real Hilbert space, let C be a nonempty closed convex
subset of H and let T : C — C be a contractive mapping, i.e., there exists a real
number r with 0 < r < 1 such that

(4.3) [Tz —Ty| < rlle—yl

for all x,y € C. Then the following hold:

(i) T has a unique fized point u in C;
(i) for every z € C, the sequence {T"z} converges to u.

Proof. We have from (4.3) that
1Tz = Ty|* = r?|le —y[* < 0

for all z,y € C. This implies that T is (1,0, —r2, 0)-symmetric generalized hybrid.
For a, 3,7,0 in Theorem 3.3, we also have that

a+284+7=1-72>0,=0<0, B+~v=—r2<0and f+6=0>0.
From Theorem 3.3, we have the desired result. ([l
Using Theorem 3.1, we can prove the following fixed point theorems.

Theorem 4.3. Let H be a real Hilbert space, let C' be a nonempty bounded closed
convex subset of H and let T : C' — C be contractively nonspreading, i.e., there
exists a real number s with 0 < s < % such that

1Tz = Ty|* < s{l|Ta - y|* + | Ty — =]}
for all x,y € C. Then T has a unique fixed point u in C.

S
1—

-, we have r —rs = s and hence s = 1+ From0§s<%,

Proof. Setting r = T

we have 0 < r and

r<l<&

1
14+7r s < 2
Thus we have 0 < r < 1. Furthermore, we have
(L + )T = Ty|]* < r{|Te -yl + | Ty — =]}
for all z,y € C. This implies that
(14| Tx = Ty|* —r(lz — Ty|* + |Tz — y[I*) <0

for all z,y € C. That is, T is a (1 + r, —r,0,0)-symmetric generalized hybrid
mapping. For «, 3,7,d in Theorem 3.1, we also have that

a+20+y=1-r>0,a+0+d=1—r>0and d§=02>0.
From Theorem 3.1, we have the desired result. O

Theorem 4.4. Let H be a real Hilbert space, let C be a nonempty bounded closed
convex subset of H and let T : C — C be contractively hybrid, i.e., there exists a
real number s with 0 < s < % and

1T = Ty|* < s{l|T2 — y|* + | Ty — =|* + [|l= — y[|I*}
for all x,y € C. Then T has a unique fixed point u in C.
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2s
1-s’

we have r — rs = 2s and hence s = # From 0 < s < %,

Proof. Setting r =
we have 0 < r and

r<l<&

ro < 1
2vr "3
Thus we have 0 < r < 1. Furthermore, we have
@+ )Tz =Tyl < r{l|Tz -yl + | Ty — z[” + = — y|I*}
for all z,y € C. This implies that
2+ )| Te =Tyl —r(lz — Ty|* + | Tz — y[*) =7z —y|I* <0

forallz,y € C. Thus T is a (2+r, —r, —r, 0)-symmetric generalized hybrid mapping.
For «, 3,7,d in Theorem 3.1, we also have that

a+284+v=2-2r>0,a+pB+5=2>0and 6§ =0>0.

From Theorem 3.1, we have the desired result. ([l

5. AN OPEN PROBLEM

In 1967, Browder [3] proved the famous strong convergence theorem with implicit
iteration for nonexpansive mappings in a Hilbert space.

Theorem 5.1 ([3]). Let H be a Hilbert space, let C' be a bounded closed convex
subset of H and let T be a nonexpansive mapping of C into C. Fized u € C and
define a net {yo} in C by

Yo =+ (1 — )Ty, VYae(0,1).

Then {ya} converges strongly to Pu as oo — +0, where P is the metric projection
of H onto F(T).

We have not known whether such a theorem for nonspreading mappings and
hybrid mappings holds or not. Putting

Twr=au+ (1—a)Tz, Yzxel

in Browder’s theorem, we can show easily that T, is a contractive mapping of C'
into itself and T, has a unique fixed point y, in C' by Banach [1]. However, it is
difficult to use the above methods for nonspreading mappings and hybrid mappings.
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