
LEFT QUOTIENTS OF A C*-ALGEBRA,
III: OPERATORS ON LEFT QUOTIENTS

LAWRENCE G. BROWN AND NGAI-CHING WONG

Abstract. Let L be a norm closed left ideal of a C*-algebra A. Then the left quotient
A/L is a left A-module. In this paper, we shall implement Tomita’s idea about representing
elements of A as left multiplications: πp(a)(b + L) = ab + L. A complete characterization of
bounded endomorphisms of the A-module A/L is given. The double commutant πp(A)′′ of
πp(A) in B(A/L) is described. Density theorems of von Neumann and Kaplansky type are
obtained. Finally, a comprehensive study of relative multipliers of A is carried out.

1. Introduction

Let A be a C*-algebra with Banach dual A∗ and double dual A∗∗. We also consider A∗∗

as the enveloping W*-algebra of A, as usual. Let L be a norm closed left ideal of A. The
quotient A/L of A by L is a Banach space. Let B(A/L) = B(A/L,A/L) be the Banach
algebra of bounded linear operators from A/L into A/L. In [17, 18], Tomita initiated a
program to study the left regular representation πp of A on the Banach space A/L. More
precisely, he considered the Banach algebra representation of A,

πp : A −→ B(A/L),

defined by
πp(a)(b+ L) = ab+ L, a, b ∈ A.

The objective of this paper is to answer the following three questions raised by Tomita [18].

Q1: How do we describe πp(A)? In other words, which properties of an operator T in
B(A/L) characterize that T = πp(t) for some t in A?

Q2: How do we describe the commutant πp(A)′ and the double commutant πp(A)′′ of
πp(A) in B(A/L)? Note that πp(A)′ = {T ∈ B(A/L) : Tπp(a) = πp(a)T,∀a ∈ A}
is the Banach algebra of bounded A–module maps when we consider A/L as a left
A–module.

Q3: Do we have density theorems of von Neumann and Kaplansky type in this context?
In other words, is it true that πp(A) (resp. its unit ball) is dense in πp(A)′′ (resp. its
unit ball)?
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In [17, 18], Tomita tried to represent elements of A/L as vector sections (he called them
“vector fields”) over a compact subset of the state space S(A) (assuming that the C*-algebra
A has an identity). In [17], he defined the notion of a “vector field” as “a mapping of a
state space into the dual space of the algebra which satisfies a suitable norm condition”.
However, due to insufficient tools, “unlike in abelian case, even in a compact space of pure
states, the corresponding quotient space of non-commutative algebra A may not generally be
represented as the totality of continuous fields on that space”. Thus, his treatment in [18] of
the left regular representation πp based on his vector section representation does not work in
general.

In Part I [20] of this series of papers, the second author offered another approach. It
is well-known that closed left ideals L of a C*-algebra A are in one-to-one correspondence
with closed projections p in A∗∗ such that A/L is isometrically isomorphic to Ap as Banach
spaces and also as left A-modules (see Section 3). For an arbitrary closed projection p in
A∗∗ (and thus for an arbitrary closed left ideal L of A), we use the weak* closed face F (p)
of the quasi-state space Q(A) of A supported by p as the base space. We implement, in
addition to the norm conditions of Tomita, an affine structure of vector sections. Then it was
established that the quotient space A/L (∼= Ap) is isometrically isomorphic to the Banach
space of all continuous admissible vector sections over F (p) (see Theorem 3.4). Based on
these new techniques, we are able to provide in this paper more satisfactory answers to the
above three questions.

We begin with the W*-algebra version in Section 2 in which we shall completely answer
all three questions stated above. For example, if p is a (necessarily closed) projection in a
W*-algebra M then πp(M)′ consists of right multiplications induced by elements of pMp and
πp(M)′′ = πp(M) (Theorem 2.3). In particular, all M -module maps T in B(Mp) are of the
form T (xp) = xptp for some t in M .

However, the C*-algebra case is much more difficult (due to lack of projections) and we
need to develop some new tools. In [20], elements bp of the Banach space Ap are interpreted
as Hilbert space vector sections over F (p). The main idea in this paper is to represent Banach
space operators πp(a) in B(Ap) as Hilbert space operator sections (Definition 3.7), which is
developed in Section 3. In particular, an operator T in B(Ap) is said to be decomposable if
T can be represented by an operator section (Definition 3.10). A simple way to verify the
decomposability of T is to check if the condition ϕ(a∗a) = 0 ensures ϕ((Tap)∗(Tap)) = 0
whenever ϕ is a pure state supported by p and a ∈ A (Theorem 3.13). In this case, T has to
be a πp(t) for some t in LM(A, p) = {x ∈ A∗∗ : xAp ⊆ Ap} (Corollary 3.14). This answers
our first question Q1.

Various relative multipliers of A associated to p play important roles in the theory of left
regular representations. Beside LM(A, p), we shall introduce and study RM(A, p), M(A, p)
and QM(A, p) in Section 4. They behave in a similar way as the sets LM(A), RM(A), M(A)
and QM(A) of classical multipliers of A. For example, they are closures of A in A∗∗ under
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corresponding relative strict topologies (Theorem 4.3). The object studied by Tomita in [18]
is essentially the closure of πp(A) in B(Ap) with respect to the so-called quotient-(double)
strong topology, or Q∗-topology. In fact, the Q∗-topology is induced by the relative strict
topology of A∗∗. Thus, the closure of the Banach algebra πp(A) in B(Ap) in the Q∗-topology
is the image of the C*-algebra M(A, p) = {x ∈ A∗∗ : xAp ⊆ Ap, pAx ∈ pA} under πp
(see Remark 4.5). Tomita expected that the double commutant πp(A)′′ of πp(A) in B(Ap)
coincides with πp(M(A, p)). This is, however, not always true for an arbitrary projection p.
In some important cases, we have πp(A)′′ = πp(LM(A, p)) (Theorem 4.8). A counter example
is Example 4.9. This partially answers our second question Q2.

The classical density theorems of von Neumann and Kaplansky have counterparts in this
context. Also in Section 4, we show that πp(A) (resp. its unit ball) is dense in πp(LM(A, p))
(resp. its unit ball) in the strong operator topology (SOT) as well as the weak operator
topology (WOT) of B(Ap) (Theorem 4.4). This answers our last question Q3.

It is then interesting and useful to find a C*-subalgebra A = Alg(A, p) of A∗∗ such that
LM(A, p) = LM(A), RM(A, p) = RM(A), M(A, p) = M(A) and QM(A, p) = QM(A), and
thus all good tools of multipliers apply (see e.g.[5]). Several examples and results are provided
in Section 5 for the investigation of what A should consist of (especially Theorem 5.3).

Finally, we remark that the atomic part of Ap is studied in Part II [9] of this series of papers.
Some interesting and new results in this direction are obtained in Section 6. For example, we
show that if x is in A∗∗ and πp(x) preserves continuous atomic parts, i.e., zatxAp ⊆ zatAp,
then zatxc(p) ∈ zat LM(A, p), where zat is the maximal atomic projection in A∗∗ and c(p) is
the central support of p in A∗∗ (Theorem 6.2). In particular, when p = 1, we have zatx = zatl

for some left multiplier l of A whenever zatxA ⊆ zatA (Corollary 6.3). This supplements
results of Shultz [16] and Brown [7]. Similar results are obtained for other relative multipliers
as well.

This paper, together with [20, 9], is based on the doctoral dissertation [19] of the second
author under the supervision of the first author. We would like to thank Edward Effors for
his suggestion to study a paper of Tomita [18], based on his success on working with its
predecessor [17].

2. The left regular representation of a W*-algebra

We provide a new elementary proof of the following result of Tomita [18].

Theorem 2.1 ([18]). Let π be a bounded homomorphism from a C*-algebra A into a Banach
algebra B. Then π(A) is topologically isomorphic to A/kerπ. If ‖π‖ ≤ 1, then π(A) is
isometrically isomorphic to A/kerπ.
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Proof. As the kernel of π is a closed two-sided ideal of A, by passing to the quotient, we
can assume π is one–to–one. Assume that k is a positive number such that

‖π(a)‖ ≤ k‖a‖

for all a in A. It suffices to show that ‖π(a)‖ ≥ 1
k‖a‖ for all a in A. In case k = 1, π is an

isometry.

First assume that a is a positive element of A. We claim that ‖π(a)‖ ≥ ‖a‖. Since A is a
C*-algebra and B is a Banach algebra,

‖a‖ = rσ(a) and ‖π(a)‖ ≥ rσ(π(a)),

where rσ denotes the spectral radius. We shall verify for the spectra that σ(a) ⊆ σ(π(a))∪{0}.
For any positive λ in σ(a) and 0 < ε < λ, let f be a continuous real-valued function on the
compact set σ(a) such that f = 1 on [λ− ε/2, λ+ ε/2]∩σ(a), f = 0 outside (λ− ε, λ+ ε) and
0 ≤ f ≤ 1. In a similar manner, we can choose another continuous real-valued function g on
σ(a) such that fg = g 6= 0. Let x = f(a) and y = g(a). We have x, y ∈ A and xy = y 6= 0.
It follows that π(x)π(y) = π(y) 6= 0. Therefore, ‖π(x)‖ ≥ 1. Now, ‖(a − λ)x‖ < ε implies
‖(π(a) − λ)π(x)‖ = ‖π((a − λ)x)‖ < kε. The fact that ε can be arbitrarily small ensures
λ ∈ σ(π(a)), as asserted. Hence,

‖π(a)‖ ≥ rσ(π(a)) ≥ rσ(a) = ‖a‖

for all positive a in A.

In general, if a ∈ A and a 6= 0,

‖π(a)‖ ≥ ‖π(a∗a)‖
‖π(a∗)‖

≥ ‖a∗a‖
‖π(a∗)‖

≥ ‖a‖2

k‖a‖
=

1
k
‖a‖.

�

Let p be a projection in a W*-algebra M . Let c(p) be the central support of p in M . In
other words, c(p) is the minimum central projection in M such that pc(p) = c(p)p = p. Recall
that πp is the left regular representation of M into B(Mp), i.e.,

πp(x)yp = xyp, y ∈M.

Clearly, πp(c(p)) = 1 in B(Mp). Hence, πp(t) = πp(tc(p)) for all t in M , and in fact
ker πp = M(1− c(p)).

Lemma 2.2. Suppose T ∈ B(Mp). T commutes with all right multiplications Rpxp for x in
M if and only if there is a t in M such that T = πp(t). In this case, ‖T‖ = ‖tc(p)‖.

Proof. We shall just verify the necessity. Assume T ∈ B(Mp) such that TRpxp = RpxpT ,
∀x ∈M . For every central projection z in M , we have

T (zxp) = T (xp(pzp)) = T (Rpzp(xp)) = Rpzp(T (xp)) = (Txp)pzp = z(Txp), x ∈M.

In particular, T (zMp) ⊆ zMp. By passing to c(p)M , we can assume c(p) = 1 and πp is an
isometry by Theorem 2.1.



LEFT QUOTIENTS OF A C*-ALGEBRA, III: OPERATORS ON LEFT QUOTIENTS 5

Let
S = {S ∈ B(Mp) : SRpxp = RpxpS,∀x ∈M}

and
Q = {q ∈M : q is a projection and Sπp(q) ∈ πp(M),∀S ∈ S}.

Claim 1. p ∈ Q.

For S in S, let s = S(p) ∈Mp. We have

πp(s)(xp) = sxp = S(p)(pxp) = RpxpS(p) = S(Rpxp(p)) = S(pxp) = Sπp(p)(xp),

for all xp in Mp. Therefore, Sπp(p) = πp(s) ∈ πp(M). Hence, p ∈ Q.

Claim 2. Q is hereditary under the quasi-ordering . of projections.

Suppose q ∈ Q and r . q. In other words, r = v∗v and vv∗ ≤ q for some partial isometry v
in M . Note that r = v∗qv. Since πp(v∗) is in S, the operator Sπp(v∗) belongs to S whenever
S does. As q ∈ Q, for each S in S there is an s′ in M such that

(Sπp(v∗))πp(q) = πp(s′).

Consequently,

S(rxp) = S(v∗qvxp) = Sπp(v∗)πp(q)(vxp) = s′vxp, ∀x ∈M.

Set s′′ = s′v. We have
Sπp(r) = πp(s′′) ∈ πp(M).

Hence r ∈ Q. Therefore, Q is hereditary under . and, in particular, Q contains all projections
q such that q . p by Claim 1.

Claim 3. S is directed under the ordering ≤ of projections.

We are going to show that Q is even a lattice. First, it is clear that if q1, q2, . . . , qn in Q

are mutually orthogonal then q1 + q2 + . . .+ qn ∈ Q. Then, if q1, q2 ∈ Q, we have

(q1 ∨ q2 − q1) ∼ (q2 − q1 ∧ q2) ≤ q2.

Hence (q1 ∨ q2 − q1) ∈ Q by Claim 2, and consequently q1 ∨ q2 = (q1 ∨ q2 − q1) + q1 ∈ Q.

Associate to each q in Q a tq in M such that

Tπp(q) = πp(tq).

Then ‖tq‖ = ‖πp(tq)‖ ≤ ‖T‖ because πp is an isometry. Since the net {tq : q ∈ Q} is
bounded in the W*-algebra M , some subnet (tq

λ
) converges to some t in M with respect

to the σ(M,M∗) topology. For every xp in Mp, let qx be the range projection of xp. Then
qx ∈ Q since qx . p. Consequently, for large enough λ, we have qx ≤ q

λ
and thus

T (xp) = T (q
λ
xp) = Tπp(qλ

)(xp) = tq
λ
xp.

It follows that
txp = lim tq

λ
xp = T (xp), ∀x ∈M.

Hence πp(t) = T . Finally, ‖t‖ = ‖πp(t)‖ = ‖T‖ since πp is an isometry. �
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Theorem 2.3. Let M be a W*-algebra, p a projection in M and πp the left regular repre-
sentation of M on Mp. Then the commutant of πp(M) in B(Mp) is

πp(M)′ = {Rptp : t ∈M},

and the double commutant is

πp(M)′′ = πp(M)
SOT

= πp(M)
WOT

= πp(M).

Proof. Suppose T ∈ πp(M)′. Let Tp = tp ∈Mp. Now

Txp = Tπp(x)p = πp(x)Tp = πp(x)(tp) = xtp, ∀x ∈M.

Since (1− p)p = 0, we must have (1− p)tp = 0, i.e., tp = ptp. Hence T = Rptp. The opposite
inclusion is obvious and thus we have πp(M)′ = {Rptp : t ∈M}. Since the double commutant
of any subset of B(Mp) is closed in both the strong operator topology (SOT) and the weak
operator topology (WOT) of B(Mp), the second assertion follows from Lemma 2.2. �

3. The left regular representation of a C*-algebra

Let
S(A) = {ϕ ∈ A∗ : ϕ ≥ 0, ‖ϕ‖ = 1}

be the state space and
Q(A) = {ϕ ∈ A∗ : ϕ ≥ 0, ‖ϕ‖ ≤ 1}

be the quasi-state space of A equipped with the weak* topology. Q(A) is a weak* compact
convex set. A convex subset F of Q(A) is called a face if both ϕ and ψ belong to F whenever
ϕ,ψ ∈ Q(A) and λϕ+ (1− λ)ψ ∈ F for some 0 < λ < 1.

Recall that a projection p in A∗∗ is closed if and only if the face

F (p) = {ϕ ∈ Q(A) : ϕ(1− p) = 0}

of Q(A) supported by p is weak* closed. The relation

L = A∗∗(1− p) ∩A

establishes a one-to-one correspondence between closed projections in A∗∗ and norm closed
left ideals of A. Also, L∗∗ = A∗∗(1− p). Moreover, we have isometrical isomorphisms

a+ L 7−→ ap and x+ L∗∗ 7−→ xp

under which
A/L ∼= Ap and (A/L)∗∗ ∼= A∗∗/L∗∗ ∼= A∗∗p

as Banach spaces and also as left A-modules, respectively [12, 15, 1, 14].

From now on, p is always the unique closed projection in A∗∗ associated to the norm closed
left ideal L = A∗∗(1 − p) ∩ A. For simplicity of notation, we write Ap for the left quotient
A/L of the C*-algebra A by L. Consequently, its Banach double dual A∗∗p is the quotient
A∗∗/L∗∗. Denote by πp the left regular representation of A on Ap defined by πp(a)bp = abp

(or equivalently, πp(a)(b + L) = ab + L). As usual, πp can be extended to the left regular
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representation of A∗∗ into B(A∗∗p), denoted again by πp, such that πp(x)yp = xyp (or
equivalently, πp(x)(y + L∗∗) = xy + L∗∗).

We note that

ϕ(x) = ϕ(px) = ϕ(xp) = ϕ(pxp), ∀x ∈ A∗∗,∀ϕ ∈ F (p).

Let ϕ ∈ F (p). The GNS construction yields a cyclic representation (πϕ,Hϕ, ωϕ) of A such
that πϕ(A)ωϕ = Hϕ and ϕ(x) = 〈πϕ(x)ωϕ, ωϕ〉ϕ for all x in A∗∗. Here πϕ also denotes the
canonical extension of πϕ to A∗∗, and 〈·, ·〉ϕ is the inner product of the Hilbert space Hϕ (see,
e.g., [11]). Set Hϕ = {0} for ϕ = 0.

Notation. Write xωϕ for πϕ(x)ωϕ in Hϕ, ∀x ∈ A∗∗, ∀ϕ ∈ F (p).

There is a linear embedding of A∗∗p into the product space
∏
ϕ∈F (p)Hϕ defined by associ-

ating to each xp in A∗∗p the vector section (xωϕ)ϕ∈F (p) in
∏
ϕ∈F (p)Hϕ. Note that the fiber

Hilbert spaces Hϕ’s are not totally independent. In fact, we have

Lemma 3.1 ([20, 2.3]). For ϕ,ψ in F (p) such that 0 ≤ ψ ≤ λϕ for some λ > 0, we can
define a bounded linear map

Tψϕ : Hϕ → Hψ

by sending aωϕ to aωψ,∀a ∈ A. Moreover, ‖Tψϕ‖2 ≤ λ and

Tψϕ(xωϕ) = xωψ, ∀x ∈ A∗∗.

Definition 3.2 ([20, 2.4]). A vector section (xϕ)ϕ in
∏
ϕ∈F (p)Hϕ is said to be admissible if

Tψϕxϕ = xψ

whenever ϕ,ψ ∈ F (p) and 0 ≤ ψ ≤ λϕ for some λ > 0.

Clearly, each xp in A∗∗p induces an admissible vector section (xωϕ)ϕ in
∏
ϕ∈F (p)Hϕ. They

are exactly all of them.

Theorem 3.3 ([20, 3.1]). The image of the linear embedding xp 7→ (xωϕ)ϕ of A∗∗p into∏
ϕ∈F (p)Hϕ coincides with the set of all admissible vector sections in

∏
ϕ∈F (p)Hϕ. Moreover,

we have
‖xp‖ = sup

ϕ∈F (p)
‖xωϕ‖Hϕ .

In particular, admissible vector sections are automatically bounded.

It is natural to ask which properties characterize those admissible vector sections arising
from elements of Ap. Recall the notion of a continuous field of Hilbert spaces [13, 10]. Note
that {aωϕ : a ∈ A} is norm dense in Hϕ, ∀ϕ ∈ F (p), and the norm functions ϕ 7−→ ‖aωϕ‖ϕ =
ϕ(a∗a)1/2 are continuous on F (p) for a in A. Consequently, the image of Ap under the
embedding A∗∗p ↪→

∏
ϕ∈F (p)Hϕ defines a continuous structure of the field of Hilbert spaces

(F (p), {Hϕ}ϕ) with base space F (p) and fiber Hilbert spaces Hϕ, ∀ϕ ∈ F (p). In this context,

• A vector section (xϕ)ϕ∈F (p) in
∏
ϕ∈F (p)Hϕ is bounded if supϕ∈F (p) ‖xϕ‖Hϕ <∞.



8 LAWRENCE G. BROWN AND NGAI-CHING WONG

• A bounded vector section (xϕ)ϕ∈F (p) is weakly continuous if ϕ 7−→ 〈xϕ, aωϕ〉ϕ is
continuous on F (p) for all ap in Ap.

• A weakly continuous vector section (xϕ)ϕ∈F (p) is continuous if ϕ 7−→ 〈xϕ, xϕ〉ϕ is also
continuous on F (p).

Let us denote the continuous field of Hilbert spaces thus obtained by (F (p), {Hϕ}ϕ, Ap).
The following result says that there are no more continuous admissible vector sections in
(F (p), {Hϕ}ϕ, Ap) other than those arising from elements of Ap.

Theorem 3.4 ([20, 3.2]). The image of Ap under the linear embedding xp 7→ (xωϕ)ϕ of
A∗∗p into

∏
ϕ∈F (p)Hϕ coincides with the set of all continuous admissible vector sections in

the continuous field of Hilbert spaces (F (p), {Hϕ}ϕ, Ap). Consequently,

Ap = {xp ∈ A∗∗p : ϕ 7→ 〈xωϕ, xωϕ〉ϕ = ϕ(x∗x) and

ϕ 7→ 〈xωϕ, aωϕ〉ϕ = ϕ(a∗x) are continuous on F (p) for all a in A}.

Let Wp be the set of weakly continuous admissible vector sections in (F (p), {Hϕ}ϕ, Ap).
In other words,

Wp = {xp ∈ A∗∗p : ϕ 7→ 〈xωϕ, aωϕ〉ϕ = ϕ(a∗x) is continuous on F (p) for all a in A}.

The following extension of Kadison function representation is useful for our work. The
classical one deals with the case p = 1 (see, e.g., [14]). In the following, Asa (resp. A∗∗sa)
denotes the set of all self-adjoint elements of A (resp. A∗∗).

Proposition 3.5 ([5, 3.5]). pAsap (resp. pA∗∗sap) is isometrically linear and order isomorphic
to the Banach space of all continuous (resp. bounded) real affine functionals of F (p) vanishing
at zero. In particular, for any x in A∗∗, we have

pxp ∈ pAp if and only if ϕ 7→ ϕ(pxp) = ϕ(x) is continuous on F (p).

Corollary 3.6 ([20, 4.1]). Let xp ∈ A∗∗p.

(1) Wp = {xp ∈ A∗∗p : pa∗xp ∈ pAp,∀a ∈ A}.
(2) Ap = {xp ∈ A∗∗p : px∗xp ∈ pAp and pa∗xp ∈ pAp,∀a ∈ A}.
(3) Ap = {xp ∈ A∗∗p : pw∗xp ∈ pAp,∀wp ∈ Wp}.

Motivated by the fact that elements of A∗∗p are exactly the admissible vector sections in∏
ϕ∈F (p)Hϕ, we make the following definition.

Definition 3.7. Let Tϕ be in B(Hϕ) for each ϕ in F (p). The operator section (Tϕ)ϕ∈F (p) is
said to be admissible if

TψϕTϕ = TψTψϕ

whenever ψ,ϕ ∈ F (p) such that 0 ≤ ψ ≤ λϕ for some λ > 0.

Lemma 3.8. Let (Tϕ)ϕ∈F (p) be an operator section in
∏
ϕ∈F (p) B(Hϕ). The following are

all equivalent to each other.
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(1) (Tϕ)ϕ∈F (p) is admissible.
(2) (Tϕ)ϕ∈F (p) sends continuous admissible vector sections to admissible vector sections;

that is, it induces a linear operator T from Ap into A∗∗p.
(3) (Tϕ)ϕ∈F (p) sends admissible vector sections to admissible vector sections; that is, it

induces a linear operator T from A∗∗p into A∗∗p.

Proof. Firstly, we note that the assertions in (2) and (3) follow from Theorems 3.3 and
3.4.

(3) =⇒ (2) is clear.

(2) =⇒ (1): Suppose that (Tϕ(aωϕ))ϕ∈F (p) is admissible for each a in A. Hence there is
an xp in A∗∗p such that xωϕ = Tϕ(aωϕ), ∀ϕ ∈ F (p), by Theorem 3.3. Let ψ,ϕ ∈ F (p) such
that 0 ≤ ψ ≤ λϕ for some λ > 0. Then

TψϕTϕ(aωϕ) = Tψϕ(xωϕ) = xωψ = Tψ(aωψ) = TψTψϕ(aωϕ).

Since πp(A)ωϕ is dense in Hϕ, TψϕTϕ = TψTψϕ. As a result, (Tϕ)ϕ∈F (p) is an admissible
operator section.

(1) =⇒ (3): We suppose that (Tϕ)ϕ∈F (p) is an admissible operator section. We want to
show that yϕ = Tϕ(xωϕ), ϕ ∈ F (p), defines an admissible vector section for each x in A∗∗.
Let ψ,ϕ ∈ F (p) such that 0 ≤ ψ ≤ λϕ for some λ > 0. Observe that

Tψϕ(yϕ) = Tψϕ(Tϕ(xωϕ)) = Tψ(Tψϕ(xωϕ)) = Tψ(xωψ) = yψ.

This proves the admissibility of (yϕ)ϕ∈F (p). �

Lemma 3.9. Every admissible operator section (Tϕ)ϕ∈F (p) induces a unique bounded linear
operator T in B(A∗∗p) such that the vector section representing T (xp) is (Tϕ(xωϕ))ϕ∈F (p).
In this case, we write T = (Tϕ)ϕ∈F (p).

Proof. In view of the proof of Lemma 3.8, we can define T : A∗∗p −→ A∗∗p by

T (xp)ωϕ = Tϕ(xωϕ), ϕ ∈ F (p).

We apply the closed graph theorem to establish the boundedness of T . Assume xnp −→ xp

and T (xnp) −→ yp in norm. If yp 6= T (xp) then there is a ϕ in F (p) such that yωϕ 6=
T (xp)ωϕ = Tϕ(xωϕ). But they are both the limit of Tϕ(xnωϕ) = T (xnp)ωϕ, a contradiction.
So ‖T‖ <∞. �

Definition 3.10. A bounded linear operator T in B(A∗∗p) is said to be decomposable if for
each ϕ in F (p) there is a Tϕ in B(Hϕ) such that (Txp)ωϕ = Tϕ(xωϕ) for all x in A∗∗. In other
words, T = (Tϕ)ϕ∈F (p) (cf. Lemma 3.9). Note that the operator section (Tϕ)ϕ∈F (p) must be
admissible in this case (Lemma 3.8).

It is clear that all operators T in πp(A∗∗) are decomposable. In fact, T = πp(t) for some
t in A∗∗, and thus we can set Tϕ = πϕ(t), ∀ϕ ∈ F (p). We are going to prove that every
decomposable operator in B(A∗∗p) arises in this way.
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Lemma 3.11. If (Tϕ)ϕ∈F (p) is an admissible section of operators in
∏
ϕ∈F (p)B(Hϕ) then Tϕ

belongs to the double commutant πϕ(A)′′ of πϕ(A) in B(Hϕ) for each ϕ in F (p).

Proof. Let ϕ ∈ F (p) and q a projection in πϕ(A)′ ⊆ B(Hϕ). Define a linear functional ψ
on A by

ψ(a) = 〈aωϕ, qωϕ〉ϕ .

It is easy to see that ψ ∈ F (p) and 0 ≤ ψ ≤ ϕ. Observe that for a, b in A,〈
T ∗ψϕ(aωψ), bωϕ

〉
ϕ

= 〈aωψ, Tψϕ(bωϕ)〉ψ = 〈aωψ, bωψ〉ψ
= ψ(b∗a) = 〈b∗aωϕ, qωϕ〉ϕ = 〈aωϕ, bqωϕ〉ϕ = 〈qaωϕ, bωϕ〉ϕ .

We thus have qaωϕ = T ∗ψϕ(aωψ) for all a in A. In particular, qHϕ = T ∗ψϕHψ. By the
admissibility condition, we have TψϕTϕ = TψTψϕ and thus T ∗ϕT

∗
ψϕ = T ∗ψϕT

∗
ψ. It follows that

qHϕ is invariant under T ∗ϕ. Apply the same argument to 1 − q, we can conclude that qHϕ

is a reducing subspace of T ∗ϕ. Hence qT ∗ϕ = T ∗ϕq for every projection q in the von Neumann
algebra πϕ(A)′. It follows that T ∗ϕ ∈ πϕ(A)′′ and thus Tϕ ∈ πϕ(A)′′ for each ϕ in F (p). �

Theorem 3.12. Let A be a C*-algebra, p a closed projection in A∗∗ with central support
c(p) and T ∈ B(A∗∗p). Then T ∈ πp(A∗∗) if and only if T is decomposable. In this case, if
T = (Tϕ)ϕ∈F (p) = πp(t) for some t in A∗∗ then ‖T‖B(A∗∗p) = supϕ∈F (p) ‖Tϕ‖ = ‖tc(p)‖.

Proof. We check the sufficiency only. Suppose that T induces an operator section
(Tϕ)ϕ∈F (p) in

∏
ϕ∈F (p)B(Hϕ). In view of Lemma 2.2, we need only verify that T com-

mutes with right multiplications Rpxp for all x in A∗∗; i.e., for every y in A∗∗, T (Rpxpyp) =
Rpxp(Typ). In other words,

T (ypxp) = (Typ)xp;

or equivalently,
T (ypxp)ωϕ = (T (yp)xp)ωϕ, ∀ϕ ∈ F (p).

By Lemma 3.11, for each ϕ in F (p) we can choose a tϕ in A∗∗ such that

πϕ(tϕ) = Tϕ.

The admissibility of (Tϕ)ϕ∈F (p) says that TψTψϕ = TψϕTϕ. Consequently,

πψ(tψ)Tψϕ = Tψϕπϕ(tϕ)

whenever ϕ,ψ ∈ F (p) such that 0 ≤ ψ ≤ λϕ for some λ > 0. In this case, we have

tψyωψ = πψ(tψ)Tψϕ(yωϕ) = Tψϕπϕ(tϕ)(yωϕ) = Tψϕ(tϕyωϕ) = tϕyωψ

for every y in A∗∗, and thus

(1) πψ(tψ) = πψ(tϕ) in B(Hψ).

Moreover, we note that

(2) pωϕ = ωϕ and T (xp) = (T (xp))p ∈ A∗∗p, ∀ϕ ∈ F (p),∀x ∈ A∗∗.
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For each x in A∗∗ with ‖x‖ ≤ 1 and ϕ in F (p) we define ψ, ρ in F (p) by

ψ(·) = 〈 · pxωϕ, pxωϕ〉ϕ and ρ =
ϕ+ ψ

2
.

Since 0 ≤ ϕ ≤ 2ρ and 0 ≤ ψ ≤ 2ρ, by (1) we have

(3) πϕ(tϕ) = πϕ(tρ) and πψ(tψ) = πψ(tρ).

It follows that

(4) (T (ypxp))ωϕ = Tϕ(ypxωϕ) = πϕ(tϕ)(ypxωϕ) = πϕ(tρ)(ypxωϕ) = (tρypx)ωϕ.

Observe also that for every y in A∗∗, by (2) and (3) we have,

〈(Typ)xωϕ, ypxωϕ〉ϕ = 〈(Typ)ωψ, yωψ〉ψ = 〈Tψ(yωψ), yωψ〉ψ
= 〈πψ(tψ)yωψ, yωψ〉ψ = 〈πψ(tρ)yωψ, yωψ〉ψ = 〈tρypxωϕ, ypxωϕ〉ϕ .

Therefore, ((Typ)− tρyp)xωϕ ∈ (A∗∗pxωϕ)⊥. It follows

(Typ)xωϕ = tρypxωϕ.

Consequently, by (4)

(T (ypxp))ωϕ = tρypxωϕ = ((Typ)xp)ωϕ, ∀ϕ ∈ F (p),

and thus T (ypxp) = (Typ)xp, as asserted.

For the norm equalities, we choose a t in A∗∗ by Lemma 2.2 such that T = πp(t) and

‖T‖B(A∗∗p) = ‖tc(p)‖ = sup
ϕ∈F (p)

‖πϕ(t)‖ = sup
ϕ∈F (p)

‖Tϕ‖.

�

Let

QM(A, p) = {x ∈ A∗∗ : pAxAp ⊆ pAp}

the Banach space of relative quasi-multipliers of A associated to p. By Corollary 3.6, for
any x in A∗∗, we have x ∈ QM(A, p) if and only if πp(x) ∈ B(Ap,Wp); i.e., πp(x) sends
continuous admissible vector sections to weakly continuous admissible vector sections in
(F (p), {Hϕ}ϕ, Ap).

Theorem 3.13. Let A be a C*-algebra and p a closed projection in A∗∗ with central support
c(p). Assume T in B(Ap,Wp) satisfies the condition that

ϕ(a∗a) = 0 =⇒ ϕ((Tap)∗(Tap)) = 0

whenever ϕ is a pure state in F (p) and a ∈ A. Then T can be extended to a decomposable
operator in B(A∗∗p), denoted again by T , such that T = πp(t) for some t in QM(A, p) and
‖T‖B(Ap,Wp) = ‖T‖B(A∗∗p) = ‖tc(p)‖.

Proof. We first recall that

‖aωϕ‖2 = 〈aωϕ, aωϕ〉ϕ = ϕ(a∗a), ∀a ∈ A,∀ϕ ∈ F (p).
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Let X = F (p) ∩ P (A), where P (A) is the pure state space of A. By hypothesis and the
Kadison transitivity theorem, for each ϕ in X we can define a linear map Tϕ on Hϕ = Aωϕ

by

Tϕ(aωϕ) = (T (ap))ωϕ.

Let ϕ ∈ X and aωϕ ∈ Hϕ such that ‖aωϕ‖ = 1. Again by the Kadison transitivity theorem,
there is a b in A such that bωϕ = aωϕ and ‖b‖ = 1. Hence

‖Tϕ(aωϕ)‖ = ‖Tϕ(bωϕ)‖ = ‖(T (bp))ωϕ‖ ≤ ‖T (bp)‖ ≤ ‖T‖‖bp‖ ≤ ‖T‖.

Therefore, ‖Tϕ‖ ≤ ‖T‖ for every ϕ in X. Consequently, we have supϕ∈X ‖Tϕ‖ ≤ ‖T‖.

Now assume ϕ belongs to X, the weak* closure of X, and a, b ∈ A. Since T (ap) ∈ Wp,
the scalar functions ψ 7−→ ‖aωψ‖ψ, ψ 7−→ ‖bωψ‖ψ and ψ 7−→ 〈(T (ap))ωψ, bωψ〉ψ are all
continuous on F (p). It follows that

| 〈(Tap)ωϕ, bωϕ〉ϕ | ≤ ( sup
ψ∈X

‖Tψ‖)‖aωϕ‖ϕ‖bωϕ‖ϕ ≤ ‖T‖‖aωϕ‖ϕ‖bωϕ‖ϕ.

Hence Tϕ in B(Hϕ) exists such that

(5) Tϕ(aωϕ) = (T (ap))ωϕ, ∀a ∈ A,∀ϕ ∈ X.

Moreover, ‖Tϕ‖ ≤ ‖T‖ for every ϕ in X = (F (p) ∩ P (A)).

Note that X∪{0} is the extreme boundary of the compact convex set F (p). Consequently,
continuous affine functionals of F (p) assume extrema at points in X. From Proposition 3.5,
we know that there is an order-preserving linear isometry from pAsap into CR(X), the Banach
space of continuous real-valued functions defined on the compact Hausdorff space X. Hence
each ϕ in F (p) has a (non-unique) Hahn-Banach positive extension mϕ in the space M(X)
(∼= CR(X)∗) of regular finite Borel measures on X. By handling real and imaginary parts
separately, we can write for each ϕ in F (p)

(6) ϕ(a) = ϕ(pap) =
∫
X
ψ(pap)dmϕ(ψ) =

∫
X
ψ(a)dmϕ(ψ), ∀a ∈ A.

For any a, b in A, since T (ap) ∈ Wϕ, we have pb∗(T (ap)) ∈ pAp by Corollary 3.6. Therefore,
the continuous affine function ψ 7−→ ψ(pb∗(Tap)) = 〈(Tap)ωψ, bωψ〉ψ satisfies the barycenter
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formula (6). Consequently, by (5) we have

| 〈T (ap)ωϕ, bωϕ〉ϕ |

=
∣∣∣∣∫
X
〈T (ap)ωψ, bωψ〉ψ dmϕ(ψ)

∣∣∣∣
=
∣∣∣∣∫
X
〈Tψ(aωψ), bωψ〉ψ dmϕ(ψ)

∣∣∣∣
≤
∫
X
‖Tψ‖‖aωψ‖‖bωψ‖ dmϕ(ψ)

≤

(
sup
ψ∈X

‖Tψ‖

)(∫
X
‖aωψ‖2 dmϕ(ψ)

) 1
2
(∫

X
‖bωψ‖2 dmϕ(ψ)

) 1
2

=

(
sup
ψ∈X

‖Tψ‖

)(∫
X
ψ(a∗a) dmϕ(ψ)

) 1
2
(∫

X
ψ(b∗b) dmϕ(ψ)

) 1
2

=

(
sup
ψ∈X

‖Tψ‖

)
ϕ(a∗a)

1
2ϕ(b∗b)

1
2

≤ ‖T‖ ‖aωϕ‖ϕ‖bωϕ‖ϕ.

Hence, a bounded linear operator Tϕ in B(Hϕ) exists such that Tϕ(aωϕ) = (T (ap))ωϕ for
every a in A. Moreover,

‖Tϕ‖ ≤ ‖T‖, ∀ϕ ∈ F (p).

At this point, we have shown that T can be written as an admissible section of operators
T = (Tϕ)ϕ∈F (p) in

∏
ϕ∈F (p)B(Hϕ) (cf. Lemma 3.8). Extend T to a bounded linear operator

on A∗∗p as in Lemma 3.9. Consequently by Theorem 3.12, there is a t in A∗∗ such that
T = πp(t) and ‖T‖B(A∗∗p) = supϕ∈F (p) ‖Tϕ‖B(Hϕ) = ‖tc(p)‖. Since T (Ap) ⊆ Wp, we have
pb∗(Tap) ∈ pAp by Corollary 3.6. Hence pAtAp ⊆ pAp. As a result, t ∈ QM(A, p). Finally,
we note that

‖T‖B(Ap,Wp) ≤ ‖T‖B(A∗∗p) = sup
ϕ∈F (p)

‖Tϕ‖B(Hϕ) ≤ ‖T‖B(Ap,Wp).

�

Let
LM(A, p) = {x ∈ A∗∗ : xAp ⊆ Ap},

the Banach algebra of relative left multipliers of A associated to p.

Corollary 3.14. Let A be a C*-algebra, p a closed projection in A∗∗ with central support
c(p) and T ∈ B(Ap). The following are all equivalent.

(1) T ∈ πp(LM(A, p)).
(2) T is decomposable.
(3) ϕ(a∗a) = 0 implies ϕ((Tap)∗(Tap)) = 0 whenever ϕ is a pure state supported by p

and a in A.

In this case, if t ∈ LM(A, p) such that T = πp(t) then ‖T‖B(Ap) = ‖tc(p)‖.
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4. Commutants and density theorems

Definition 4.1. Let A be a C*-algebra and p a closed projection in A∗∗. Let

LM(A, p) = {x ∈ A∗∗ : xAp ⊆ Ap},

RM(A, p) = {x ∈ A∗∗ : pAx ⊆ pA},

M(A, p) = {x ∈ A∗∗ : xAp ⊆ Ap, pAx ⊆ pA}, and

QM(A, p) = {x ∈ A∗∗ : pAxAp ⊆ pAp}

the sets of relative left multipliers, relative right multipliers, relative multipliers and relative
quasi-multipliers associated to p, respectively. We define the relative left strict topology,
relative right strict topology, relative strict topology and relative quasi-strict topology of A∗∗

associated to p by the seminorms x 7−→ ‖xap‖, x 7−→ ‖pax‖, x 7−→ ‖xap‖ + ‖pbx‖ and
x 7−→ ‖paxbp‖ for a, b in A.

Remarks 4.2. (1) It is easy to see that LM(A) ⊆ LM(A, p), RM(A) ⊆ RM(A, p), . . .,
and all of them are norm closed subspaces of A∗∗.

(2) QM(A, p) is ∗-invariant whereas LM(A, p)∗ = RM(A, p). Moreover, both LM(A, p)
and RM(A, p) are Banach algebras, and M(A, p) = LM(A, p) ∩ RM(A, p) is a C*-
algebra.

(3) The relative strict topologies associated to p are Hausdorff if and only if the central
support c(p) of p equals 1.

Theorem 4.3. Let A be a C*-algebra and p a closed projection in A∗∗. Then LM(A, p) (resp.
RM(A, p), M(A, p) and QM(A, p)) coincides with the closure of A in A∗∗ with respect to the
relative left strict (resp. right strict, strict and quasi-strict) topology associated to p.

Moreover, the unit ball (resp. its self-adjoint part, positive part) of A is dense in the unit
ball (resp. its self-adjoint part, positive part) of LM(A, p), RM(A, p), M(A, p) and QM(A, p)
in the corresponding relative strict topologies associated to p, respectively.

Proof. We prove only the assertion about relative left multipliers since all others follow in
a similar manner. In the following, we denote by Bsa (resp. B+, B1) the set of all self-adjoint
elements (resp. positive elements, elements of norm not greater than 1) in B whenever B is
a subset of A or A∗∗.

Assume x ∈ LM(A, p). We want to show that x belongs to the relative left strict closure of
A. Let a1, a2, . . . , an ∈ A. Consider the convex set V in the direct sum (Ap)n = Ap⊕ . . .⊕Ap
given by

V = {(ba1p, . . . , banp) : b ∈ A}.
(In case x ∈ A∗∗1 , x ∈ A∗∗sa∩A∗∗1 or x ∈ A∗∗+ ∩A∗∗1 , we replace A by A1, Asa∩A1 or A+∩A1 in
the definition of V , respectively.) Since x ∈ LM(A, p), we have x̃ = (xa1p, xa2p, . . . , xanp) ∈
(Ap)n. If x̃ /∈ V ‖·‖ then there is an f in ((Ap)n)∗ such that

(7) Re f̃(x̃) < −1 ≤ Re f̃(b̃), ∀b̃ ∈ V,
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where b̃ = (ba1p, ba2p, . . . , banp). Since (Ap)∗ ∼= A∗∗F (p) (see, e.g., [12]), we can write
f̃ = f1⊕ f2⊕ . . .⊕ fn such that fk = y∗kϕk for some yk in A∗∗ and ϕk in F (p), k = 1, 2, . . . , n.
Hence

f̃(x̃) =
n∑
k=1

fk(xakp) =
n∑
k=1

ϕk(yk∗xak) =
n∑
k=1

〈xakωϕk
, ykωϕk

〉ϕk

and

f̃(b̃) =
n∑
k=1

fk(bakp) =
n∑
k=1

ϕk(yk∗bak) =
n∑
k=1

〈bakωϕk
, ykωϕk

〉ϕk
.

Let {bλ}λ be a net in A such that bλ converges to x σ–weakly. (In case x ∈ A∗∗1 , x ∈ A∗∗sa∩A∗∗1
or x ∈ A∗∗+ ∩ A∗∗1 , the Kaplansky density theorem (see, e.g., [11]) enables us to choose bλ’s
from A1, Asa ∩A1 or A+ ∩A1, respectively.) In particular,

〈bλakωϕk
, ykωϕk

〉ϕk
−→ 〈xakωϕk

, ykωϕk
〉ϕk

for k = 1, 2, . . . n.

Therefore, f̃(b̃λ) −→ f̃(x̃) where b̃λ = (bλa1p, bλa2p, . . . , bλanp) ∈ V . This contradicts (7)
and thus x̃ ∈ V ‖·‖. This shows that for any positive ε and a1, a2, . . . , an in A there is a b in
A such that

‖(x− b)akp‖ < ε for k = 1, 2, . . . , n.

In other words, x belongs to the relative left strict closure of A. (In case x comes from A∗∗1 ,
A∗∗sa ∩ A∗∗1 or A∗∗+ ∩ A∗∗1 , we can choose b from A1, Asa ∩ A1 or A+ ∩ A1, respectively.) Our
assertion follows since the opposite inclusion is obvious. �

Theorem 4.4. The closure of πp(A) in B(Ap) with respect to the strong operator topology
(SOT) as well as the weak operator topology (WOT) coincides with πp(LM(A, p)). Moreover,
the unit ball of πp(A) is SOT as well as WOT dense in the unit ball of πp(LM(A, p)).

Proof. It is well-known that a linear functional on B(E), E a Banach space, is continuous
with respect to SOT if and only if it is continuous with respect to WOT. Since πp(A) is
convex, its closures in B(Ap) with respect to these topologies coincide. We are going to show
that they are identical to πp(LM(A, p)).

Let {aλ}λ be a net in A such that πp(aλ) converges to some bounded linear operator T in
SOT. By Corollary 3.14, to see T ∈ πp(LM(A, p)) we just need to check whether the condition
ϕ(a∗a) = 0 implies ϕ((Tap)∗(Tap)) = 0 whenever ϕ is a pure state in F (p) and a ∈ A. In
this case, apϕ = 0 where pϕ is the support projection of the pure state ϕ. Now

(Tap)pϕ = (limπp(aλ)ap)pϕ = lim aλapϕ = 0.

Hence ϕ((Tap)∗(Tap)) = 0, as asserted. Thus

πp(A)
SOT ⊆ πp(LM(A, p)).

The opposite inclusion and other assertions follow from Theorem 4.3 since the strong operator
topology of B(Ap) restricted to πp(LM(A, p)) coincides with the one induced by the relative
left strict topology of A∗∗ associated to p. �
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Remark 4.5. In [18], Tomita defined the notion of Q∗–topology. In fact, it is the double
strong operator topology (DSOT) of πp(M(A, p)) which is defined by seminorms

πp(x) 7−→ ‖xap‖+ ‖x∗ap‖, ∀a ∈ A.

Since RM(A, p)∗ = LM(A, p) and M(A, p) = LM(A, p) ∩ RM(A, p), Theorems 4.3 and 4.4
imply πp(A)

DSOT
= πp(M(A, p)). Moreover, the unit ball of πp(A) (resp. its self-adjoint part,

positive part) is DSOT dense in the unit ball (resp. its self-adjoin part, positive part) of
πp(M(A, p)). Another way to look at πp(M(A, p)) is to observe that it coincides with the
family of all adjointable admissible operator sections {Tϕ}ϕ in

∏
ϕ∈F (p)B(Hϕ). We say that

{Tϕ}ϕ is adjointable if the operator section {T ∗ϕ}ϕ is admissible (see Corollary 3.14). Tomita
expected that in some situations the double commutant πp(A)′′ of πp(A) in B(Ap) is the
C*-algebra πp(M(A, p)). However, as indicated by the Theorem 4.8 below, we shall see that
the Banach algebra πp(LM(A, p)) is a more appropriate object to look for.

Recall that a projection r in A∗∗ is closed if the face F (r) = {ϕ ∈ Q(A) : ϕ(1− r) = 0} of
Q(A) supported by r is weak* closed, and r is compact if F (r)∩S(A) is weak* closed [2]. An
element h of pA∗∗sap is called q–continuous on p [4] if the spectral projection EF (h) (computed
in pA∗∗p) is closed for every closed subset F of R. Also, h is called strongly q–continuous on
p [5] if, in addition, EF (h) is compact whenever F is closed and 0 /∈ F .

Lemma 4.6 ([5, 3.43]). Let h ∈ pA∗∗sap.

(1) h is strongly q–continuous on p if and only if h = pa = ap for some a in Asa.
(2) In case A is σ–unital, h is q–continuous on p if and only if h = px = xp for some x

in M(A)sa.

In general, h in pA∗∗p is said to be q–continuous or strongly q–continuous if both Reh and
Imh are. Denote by QC(p) (resp. SQC(p)) the set of all q–continuous elements (resp. strongly
q–continuous elements) on p. SQC(p) is always a C*-algebra, and so is QC(p) if A is σ–
unital. We say that p has MQC (“many q–continuous elements”) or MSQC (“many strongly
q–continuous elements”) if QC(p) or SQC(p) is σ–weakly dense in pA∗∗p, respectively [8].

Lemma 4.7 ([8, 3.1 and 3.3]). The following statements are all equivalent.

(1) p has MSQC.
(2) pAp = SQC(p).
(3) pAp is an algebra.
(4) pAp is a Jordan algebra.
(5) F (p) is isomorphic to the quasi-state space of a C*-algebra.
(6) p ∈ M(A, p), i.e., pAp ⊆ pA ∩Ap.
(7) p ∈ QM(A, p), i.e., pApAp ⊆ pAp.

In this case,
pApAp = pAp = pA ∩Ap = SQC(p).
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When the closed projection p has MSQC, it shares many good properties with the projec-
tion 1. Moreover, every central closed projection in A∗∗ has MSQC.

The first part of the following theorem says that all bounded A-module maps in B(Ap)
are right multiplications provided that A is σ-unital.

Theorem 4.8. Let A be a C*-algebra, p a closed projection in A∗∗ and πp the left regular
representation of A on Ap. Denote by πp(A)′ the commutant and by πp(A)′′ the double
commutant of πp(A) in B(Ap). Denote by Y the set {x ∈ RM(A) : xp = pxp}. If A is
σ–unital then

πp(A)′ = {Rpxp : x ∈ Y}.

If A is σ–unital and p has MQC then we also have

πp(A)′′ = πp(LM(A, p)).

Here Rpxp(ap) := apxp = axp,∀a ∈ A,∀x ∈ Y.

Proof. It is clear that all right multiplications of the form Rpxp with x in Y commute
with elements of πp(A). Conversely, assume T ∈ πp(A)′ ⊆ B(Ap). If {uλ}λ is a (bounded)
approximate unit of A, the bounded net {T (uλp)}λ in Ap has a weak* cluster point xp in
A∗∗p. For each a in A, axp is a weak* cluster point of {aT (uλp)}λ = {T (auλp)}λ. But
T (auλp) −→ T (ap) in norm. It follows that T (ap) = axp ∈ Ap. Therefore, Axp = T (Ap) ⊆
Ap. By [5, 3.9], we have xp ∈ RM(A)p if A is σ–unital. Moreover, if a, b ∈ A and ap = bp

then T (ap) = T (bp). This is equivalent to that axp = bxp. Consequently, Lxp = {0} where
L = A∗∗(1 − p) ∩ A, the norm closed left ideal of A related to the closed projection p. It
follows that L∗∗xp = {0}; i.e., A∗∗(1 − p)xp = {0}. This forces (1 − p)xp = 0. Therefore
xp = pxp. Hence T (ap) = axp = apxp = Rpxp(ap).

By Theorem 4.4, πp(LM(A, p)) ⊆ πp(A)′′. Let T ∈ πp(A)′′ ⊆ B(Ap), a ∈ A and ϕ a pure
state in F (p). Assume that ϕ(a∗a) = 0, or equivalently apϕ = 0, where pϕ is the support
projection of ϕ in A∗∗. Since p is assumed to have MQC and A is σ–unital, there is a net
{mλp}λ with mλ in M(A) such that

(8) mλp = pmλ and mλp −→ pϕ σ–weakly

by Lemma 4.6. Hence, amλp −→ apϕ = 0 σ–weakly. In particular, amλp −→ 0 with
respect to σ(Ap, (Ap)∗) since (Ap)∗ ∼= (A/L)∗ ∼= L◦ can be considered as a subspace of A∗,
and the σ–weak topology of A∗∗ coincides with σ(A∗∗, A∗). Here L◦ is the polar of the left
ideal L = A∗∗(1 − p) ∩ A in A∗. As a bounded Banach space operator, T is σ(Ap, (Ap)∗)–
σ(Ap, (Ap)∗) continuous. Therefore, T (amλp) −→ 0 in the σ(Ap, (Ap)∗) topology of Ap and
thus also σ-weakly. On the other hand, the right multiplication Rpmλp belongs to πp(A)′. As
a result, by (8) we have

T (amλp) = T (apmλp) = TRpmλp(ap) = RpmλpT (ap)

= (Tap)pmλp −→ (Tap)pϕ σ–weakly.
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Therefore (Tap)pϕ = 0, and hence ϕ((Tap)∗(Tap)) = 0. Now, Corollary 3.14 implies T ∈
πp(LM(A, p)). �

Although it follows from Theorem 4.4 that we always have πp(LM(A, p)) ⊆ πp(A)′′, the
following example indicates that the inclusion can be strict in case p does not have MQC.

Example 4.9. (This example is based on one given in [8, 3.4]) Let A = C[0, 1]⊗K where K is
the C*-algebra of all compact operators on a separable infinite dimensional Hilbert space H.
Let {e1, e2, . . .} be an orthonormal basis of H and Pn the projection on span {e1, e2, . . . , en}.
A closed projection in A is given by a projection-valued function P : [0, 1] −→ B(H) such that
if h is any weak cluster point of P (y) as y −→ x, then h ≤ P (x) [5, Section 5.G]. P describes
the atomic part of a closed projection p in A∗∗ ∼= C[0, 1]∗∗⊗B(H), and P determines p since
a closed projection is determined by its atomic part. In our case p will equal its atomic part.
We now define P .

For each n = 0, 1, 2, . . . we construct recursively a countable subset Sn of [0, 1] and a unit
vector v(x) for each x in Sn.

Step 0: Take S0 = {1
2} and v(1

2) = e1.
Step 1: Take S1 = {x1, x2, . . .} where the xi’s are distinct, xi 6= 1

2 , and xi −→ 1
2 as

i −→∞. Let v(xi) = 2−
1
2 e1 + 2−

1
2 ei+1 for i = 1, 2, . . ..

...
Step n (n > 1): Write Sn−1 = {x1, x2, . . .}. Choose distinct yij ’s from [0, 1] but outside
∪n−1
k=0Sk such that |yij − xi| ≤ 2−(i+j). Let Sn = {yij : i, j = 1, 2, . . .} and v(yij) =

n−
1
2 v(xi) + (1− n−1)

1
2wij , where wij is a unit vector such that 〈wij , v(xi)〉H = 0 and

Pi+j+nwij = 0.

Let S = ∪∞n=0Sn. Define a projection-valued function P on [0, 1] by setting P (x) to be
the projection on span {v(x)} if x ∈ S, and P (x) = 0 otherwise. It is shown in [8] that P
describes a closed projection p in A∗∗ which is atomic and abelian. Moreover, if h in pA∗∗p

satisfies that h ∈ pAp and h2 ∈ pAp then h = 0. (In [8], this fact is used to show that
SQC(p) = {0}.)

Now consider the C*-algebra B = C[−1, 1] ⊗ K. Define a projection-valued function Q

on [−1, 1] by putting Q(t) := P (| t |),∀t ∈ [−1, 1]. It is clear that Q determines an atomic,
abelian and closed projection q in B∗∗ such that k = 0 whenever k ∈ qB∗∗q satisfying that
k ∈ qBq and k2 ∈ qBq.

Let Ã be the C*-algebra obtained by adjoining an identity to A and p̃ = p + p∞ where
p∞ = 0 ⊕ 1 in Ã∗∗ ∼= A∗∗ ⊕ C. Thus p̃ = p ⊕ 1. In [8], it is shown that p̃ is closed, and
hence compact, in Ã∗∗ and that QC(p̃) = Cp̃. Similarly, a compact projection q̃ in B̃∗∗ can
be obtained such that QC(q̃) = Cq̃ and thus q̃, like p̃, does not have MQC.
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We now consider the left regular representation πq̃ : B̃ −→ B(B̃q̃). Since B̃ is unital,
RM(B̃) = B̃ and thus

πq̃(B̃)′ = {Rx̃ : x̃ = r̃q̃ = q̃r̃q̃ for some r̃ in B̃}

by Theorem 4.8. Suppose x̃ = r̃q̃ = q̃r̃q̃ for some r̃ in B̃. Here r̃ = r + λ = (r + λ) ⊕ λ for
some λ in C and r in B. It follows rq = qrq ∈ qBq. Now (qrq)2 = qrqrq = qr2q ∈ qBq

implies qrq = 0. Therefore,

x̃ = q̃r̃q̃ = λq̃.

Consequently, πq̃(B̃)′ = CRq̃ and thus πq̃(B̃)′′ = B(B̃q̃), since the right multiplication Rq̃

induced by q̃ is the identity in B(B̃q̃).

It is easy to see that B(B̃q̃) 6= πq̃(LM(B̃, q̃)). For example, we define an isometry T in
B(B̃q̃) by

T ((λ+ a)q̃) := (λ+ a)q̃, λ ∈ C, a ∈ B,

where

a(t) := a(−t), t ∈ [−1, 1].

To see that T is not implemented as a left multiplication πq̃(h̃) for any h̃ in LM(B̃, q̃), we
just need to show that T is not decomposable by Corollary 3.14. Let t ∈ (S ∪ (−S)) − {0},
and ϕt the corresponding pure state in F (q̃). Since there is b in B such that ϕt(b∗b) = 0 but
ϕ−t(b∗b) 6= 0, it is clear that T is not decomposable. �

5. The C*-algebra associated to a closed projection

Recall that for a C*-algebra A and a closed projection p in A∗∗, the Banach space Ap
(resp. Wp) consists of all continuous (resp. weakly continuous) admissible vector sections in
A∗∗p (see Theorem 3.4). It follows from Corollary 3.6 that

πp(x)Ap ⊆ Ap ⇔ πp(x∗)Wp ⊆ Wp, ∀x ∈ A∗∗.

We collect these facts in the following.

LM(A, p) = {x ∈ A∗∗ : πp(x)Ap ⊆ Ap},

RM(A, p) = {x ∈ A∗∗ : πp(x)Wp ⊆ Wp},

M(A, p) = {x ∈ A∗∗ : πp(x)Ap ⊆ Ap, πp(x)Wp ⊆ Wp},

and QM(A, p) = {x ∈ A∗∗ : πp(x)Ap ⊆ Wp}.

Since the kernel of πp is A∗∗(1− c(p)), the interesting parts of LM(A, p), RM(A, p), M(A, p)
and QM(A, p) are the ones cut down by c(p). It is interesting and useful to see if there exists
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a C*-subalgebra B of A∗∗c(p) such that

LM(A, p)c(p) = LM(B),(a)

RM(A, p)c(p) = RM(B),(b)

M(A, p)c(p) = M(B),(c)

QM(A, p)c(p) = QM(B).(d)

Consider
A = Alg(A, p) = {x ∈ A∗∗ : πp(x)Wp ⊆ Ap}.

We think of Ac(p) as a natural candidate for B. It is easy to see that A is an ideal of the C*–
algebra M(A, p). Moreover, LM(A, p)A ⊆ A, ARM(A, p) ⊆ A, M(A, p)A + AM(A, p) ⊆ A
and AQM(A, p)A ⊆ A.

Example 5.1. If p is central, or equivalently if the ideal L = A∗∗(1 − p) ∩ A is two-sided,
then Ap ∼= A/L as C*-algebras. Consequently, we have Ac(p) = Ap and (a), (b), (c) and (d)
hold for B = Ac(p).

It follows from definitions and Corollary 3.6 that we have

Lemma 5.2. Let x ∈ A∗∗.

(1) x ∈ Alg(A, p) if and only if pv∗xup ∈ pAp, ∀up, vp ∈ Wp.
(2) x ∈ LM(A, p) if and only if pv∗xap ∈ pAp, ∀ap ∈ Ap,∀vp ∈ Wp.
(3) x ∈ RM(A, p) if and only if pb∗xup ∈ pAp, ∀up ∈ Wp,∀bp ∈ Ap.
(4) x ∈ M(A, p) if and only if pv∗xap, pb∗xup ∈ pAp, ∀ap, bp ∈ Ap,∀up, vp ∈ Wp.
(5) x ∈ QM(A, p) if and only if pb∗xap ∈ pAp, ∀ap, bp ∈ Ap.

Theorem 5.3. The following conditions are all equivalent and each of them implies (a), (b),
(c) and (d) for B = Ac(p).

(1) πp(A)Ap is norm dense in Ap.
(2) πp(A)Wp is norm dense in Ap.
(3) A is non-degenerately represented on Huniv, i.e., πϕ(A)Hϕ = Hϕ,∀ϕ ∈ Q(A), where

Huniv =
⊕

2{Hϕ : ϕ ∈ Q(A)} is the underlying Hilbert space of the universal repre-
sentation of A.

(4) A is σ–weakly dense in A∗∗.
(5) πϕ(A) 6= {0} for all pure states ϕ in F (p).

Proof. (1) =⇒ (2) is trivial.

(2) =⇒ (3): Since A contains A∗∗(1− c(p)), we may assume ϕ is supported by c(p). Now,
since πp(A)Wp is norm dense in Ap, we see that πϕ(A)(WpHϕ) is dense in πϕ(Ap)Hϕ = ApHϕ,
which is dense in A∗∗pHϕ. Let q = v∗pv be a projection for some partial isometry v in A∗∗.
We see that qHϕ = v∗pvHϕ ⊆ A∗∗pHϕ. Hence πϕ(A)Hϕ is also dense in Hϕ, and thus (3)
follows.
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(3) =⇒ (4): This follows from the fact that AA ⊆ A.

(4) =⇒ (5) is obvious.

(5) =⇒ (1): Suppose the norm closure πp(A)Ap 6= Ap. Choose a nonzero ϕ in (Ap)∗

such that ϕ(πp(A)Ap) = {0}. Let {vλ}λ be a positive increasing approximate identity in
the C*-subalgebra A of A∗∗, and note that vλ ↗ q for some projection q in A∗∗. For every
a in A, pa∗vλap ↗ pa∗qap. Note that pa∗vλap ∈ pAp. It follows from the continuity of
pa∗vλap that pa∗qap is lower semi-continuous on F (p). Since AA ⊆ A, we see that πψ(A)Hψ

is an invariant subspace for πψ(A) for every ψ in F (p). For each pure state ψ in F (p),
the hypothesis πψ(A) 6= {0} implies πψ(A)Hψ = Hψ and hence πψ(q) = 1. Therefore, the
non-positive lower semicontinuous affine function

ψ 7−→ ψ(pa∗(q − 1)ap), ψ ∈ F (p),

vanishes on the extreme boundary (F (p)∩P (A))∪{0} of the weak* compact convex set F (p),
where P (A) is the pure state space of A. Thus pa∗(q− 1)ap = 0. We then have qap = ap for
every a in A. Consequently,

ϕ(ap) = ϕ(qap) = limϕ(vλap) = 0, ∀a ∈ A.

This contradiction establishes the implication.

From now on, we assume these equivalent conditions are satisfied and we are going to
verify (a) to (d). We prove only that LM(B) ⊆ LM(A, p)c(p) since the opposite inclusions
are obvious and the other assertions will follow similarly. Note that we can consider LM(B)
as a subset of A∗∗c(p) (cf. [3, 4.3]).

Let x be a nonzero element of LM(B) and ε > 0. For each a in A, it follows from (2) that
there exist a1, a2, . . . , an in A and w1p, w2p, . . . , wnp in Wp ⊆ A∗∗p such that

‖ap−
n∑
k=1

akwkp‖ <
ε

‖x‖
.

Hence

‖xap−
n∑
k=1

xakwkp‖ < ε.

Since x ∈ LM(B) ⊆ A∗∗c(p), xak = x(akc(p)) ∈ x(Ac(p)) = xB ⊆ B. Note that elements
of πp(B) send Wp into Ap. Consequently, πp(xak)wkp ∈ Ap for k = 1, 2, . . . , n. It follows
that xap ∈ Ap = Ap. That is, x ∈ LM(A, p). Since x = xc(p), we have x ∈ LM(A, p)c(p),
too. �

Corollary 5.4. If p has MSQC then (a) to (d) will be satisfied for B = Ac(p). Moreover,
we have Ap+ pA ⊆ A in this case.

Proof. By Theorem 5.3, it suffices to show that πp(A)p = Ap (since p ∈ Wp). One inclusion
is easy:

πp(A)p ⊆ πp(A)Wp ⊆ Ap.
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For the opposite inclusion, as well as the assertion Ap + pA ⊆ A, it will sufficient to show
that Ap ⊆ A. To this end, let up, vp ∈ Wp and a ∈ A. Observe that

pu∗(apvp) = (pa∗up)∗vp

∈ (pAp)∗vp

= pApvp

⊆ pAvp, since pAp ⊆ pA as p has MSQC,

⊆ pAp.

Hence ap ∈ A by Lemma 5.2. �

We remark that the inclusion in Corollary 5.4 does not hold if p fails to have MSQC (see
Example 5.7). Even when p does have MSQC, the inclusion can be strict (see Example 5.8).
The rest of this section is devoted to a few assorted results and examples about what A
contains.

Proposition 5.5. Let B = pA∗∗p ∩ QM(A, p). Then A contains the norm closure of the
linear space spanned by ABA.

Proof. Since A is a C*-algebra, we only need to prove that if a, c ∈ A, b ∈ B then abc ∈ A.
It is equivalent to show that pu∗abcvp ∈ pAp for every up, vp in Wp by Lemma 5.2. In fact,

pu∗abcvp = pu∗apbpcvp, since b ∈ pA∗∗p,

∈ pApbpAp, since up, vp ∈ Wp,

= pAbAp, since b ∈ pA∗∗p,

⊆ pAp, since b ∈ QM(A, p).

�

Corollary 5.6. Let C = SQC(p) ∩M(A, p). Then A contains C as a C*-subalgebra.

Proof. Note that C is a C*-algebra. In particular, C = C3. The assertion now follows
from Proposition 5.5 since C ⊆ pA∗∗p ∩QM(A, p) and C3 ⊆ ACA (see Lemma 4.6). �

To convince the readers that B and C in Proposition 5.5 and Corollary 5.6 can be nonzero,
we present the following example. In particular, the closed span of B is the whole of A and
C is only a proper subalgebra of A in this example.

Example 5.7. In this example, A is a separable scattered C*-algebra and p is a closed
projection in A∗∗ with central support c(p) = 1. But p does not have MSQC. We shall
see that (a) to (d) are all satisfied here. In fact, A = A, LM(A, p) = LM(A), RM(A, p) =
RM(A), M(A, p) = M(A) and QM(A, p) = QM(A). Moreover, B and C are both nonzero.
Furthermore, ABA is norm dense in A but Ap 6⊆ A (cf. Corollary 5.4).
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Let A be the C*-subalgebra of c ⊗M2 consisting of all sequences of 2 × 2 matrices x =
(xn)n≥1 such that

xn =
(
an bn
cn dn

)
−→

(
a 0
0 0

)
.

A∗∗ can be represented as the C*-algebra of all uniformly bounded sequences of 2×2 matrices
plus a copy of C. More precisely, every element of A∗∗ is of the form x = (xn)∞n=1 where

xn =
(
an bn
cn dn

)
, n = 1, 2, . . . , and x∞ = a ∈ C.

The norm of A∗∗ (and A) is given by ‖x‖ := sup1≤n≤∞ ‖xn‖ <∞. Put

pn =
1
2

(
1 1
1 1

)
, n = 1, 2, . . . , and p∞ = 1 ∈ C.

Then p = (pn)∞n=1 is a closed projection in A∗∗ and c(p) = 1. Let x = (xn)∞n=1 ∈ A∗∗, with
notation as above. We have:

(1) x ∈ Ap⇔ xn = 1
2

(
un un
vn vn

)
, un −→ a, and vn −→ 0.

(2) x ∈ Wp ⇔ xn = 1
2

(
un un
vn vn

)
and un −→ a.

(3) x ∈ pA∗∗p⇔ xn = 1
4

(
sn sn
sn sn

)
for some scalars sn.

(4) x ∈ pAp⇔ xn = 1
4

(
sn sn
sn sn

)
for some scalars sn −→ a.

(5) x ∈ SQC(p) ⇔ xn = 1
4

(
sn sn
sn sn

)
for some scalars sn −→ a = 0.

(6) x ∈ LM(A) = LM(A, p) ⇔ an −→ a and cn −→ 0.
(7) x ∈ RM(A) = RM(A, p) ⇔ an −→ a and bn −→ 0.
(8) x ∈ M(A) = M(A, p) ⇔ an −→ a and bn, cn −→ 0.
(9) x ∈ QM(A) = QM(A, p) ⇔ an −→ a.

(10) x ∈ A = A ⇔ an −→ a and bn, cn, dn −→ 0.

Since pAp 6= SQC(p), p does not have MSQC by Lemma 4.7. It is clear that both B =
QM(A, p)∩pA∗∗p and C = SQC(p)∩M(A, p) = SQC(p) are nonzero. In addition, the closed
span ABA = A = A. �

Example 5.8. In this example we shall see that LM(A, p) 6= LM(A), . . . etc., and A is
neither a subset nor a superset of A even when p has MSQC and its central support c(p) = 1.
However, (a) to (d) are all satisfied.

Let A be the C*-subalgebra of c⊗M2 given by

A =

{{(
an bn
cn dn

)}
n≥1

:
(
an bn
cn dn

)
−→

(
a 0
0 d

)}
.

Let p = (pn) ∈ A∗∗ with

pn =
(

1 0
0 0

)
, n = 1, 2, . . . , and p∞ =

(
1 0
0 1

)
.
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Then p is a closed projection in A∗∗. Let x = (xn) ∈ A∗∗ with

xn =
(
an bn
cn dn

)
, n = 1, 2, . . . , and x∞ =

(
a 0
0 d

)
.

We have

(1) x ∈ Ap⇔ xn =
(
an 0
cn 0

)
such that an −→ a and cn −→ 0.

(2) x ∈ Wp ⇔ xn =
(
an 0
cn 0

)
such that an −→ a.

(3) x ∈ pAp⇔ xn =
(
an 0
0 0

)
and an −→ a.

(4) x ∈ LM(A, p) ⇔ an −→ a and cn −→ 0.
(5) x ∈ RM(A, p) ⇔ an −→ a and bn −→ 0.
(6) x ∈ M(A, p) ⇔ an −→ a and bn, cn −→ 0.
(7) x ∈ QM(A, p) ⇔ an −→ a.
(8) x ∈ A ⇔ an −→ a and bn, cn, dn −→ 0.

We first note that c(p) = 1. Since pAp is an algebra, p has MSQC by Lemma 4.7. Thus, (a)
to (d) are satisfied for B = A. On the other hand, obviously we have A 6⊆ A. We want to
point out also that A is not contained in A, either. For example, the element x = (xn) of

A ⊆ A∗∗ given by xn = 0, n = 1, 2, . . ., and x∞ =
(

0 0
0 1

)
does not belong to A. It is clear

that LM(A, p) 6= LM(A) = A, . . . etc., since A is unital. �

Example 5.9. Consider the C*-algebra A = c⊗K and

A∗∗ = {(hn) : hn ∈ B(H), 1 ≤ n ≤ ∞, ‖h‖ = sup ‖hn‖ <∞}.

Let {e1, e2, . . .} be an orthonormal basis of the Hilbert space H. Let

vn =
1√
2
e1 +

1√
2
en+1, n <∞ and v∞ = e1,

and

pn = vn ⊗ vn, n = 1, 2, . . . ,∞.

Then p = (pn) is a closed projection in A∗∗ without MSQC (cf. [8]) and the central support
c(p) of p is 1. We have

(1) Ap = {(xnpn) ∈ A∗∗p : xnvn
‖·‖−→ 1√

2
x∞e1}.

(2) Wp = {(xnpn) ∈ A∗∗p : xnvn
weakly−→ 1√

2
x∞e1}.

(3) pAp = {(pnbnpn) : 〈bnvn, vn〉 −→ 1
2 〈b∞e1, e1〉}.

(4) LM(A) = LM(A, p) = {(tn) ∈ A∗∗ : tn
SOT−→ t∞}.

(5) RM(A) = RM(A, p) = {(tn) ∈ A∗∗ : t∗n
SOT−→ t∗∞}.

(6) M(A) = M(A, p) = {(tn) ∈ A∗∗ : tn
DSOT−→ t∞}.

(7) QM(A) = QM(A, p) = {(tn) ∈ A∗∗ : tn
WOT−→ t∞}.

(8) A = {(tn) ∈ A∗∗ : tn
‖·‖−→ t∞, t∞ ∈ K}.
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By Theorem 5.3 and the fact that A ⊆ A, the equations LM(A, p) = LM(A), . . . etc. are
satisfied in this case. This can also be verified by direct calculation. �

Remark 5.10. In [6], it is shown that for two separable C*-algebras A1 and A2, the multiplier
algebras M(A1) and M(A2) are isomorphic if and only if A1 and A2 are isomorphic. In fact, A1

(resp. A2) is the largest separable closed, two-sided ideal of M(A1) (resp. M(A2)). However,
in the inseparable case, this may not be true. A perhaps less artificial than usual example
to this fact is provided by Example 5.9, since M(A) = M(A), A is separable and A is not
separable.

6. Atomic parts of relative multipliers

In the following, z = zat denotes the maximal atomic projection in A∗∗; in other words, z
is the smallest central projection in A∗∗ supporting all pure states of A.

Lemma 6.1. Let xp and yp be in Wp. If zxp = zyp then xp = yp. Moreover, we have
‖xp‖ = ‖zxp‖. In other words, weakly continuous vector sections are determined by their
atomic parts.

Proof. For each a in A, the continuous affine function ϕ 7→ ϕ(a∗(x−y)) on F (p) vanishes at
all pure states in F (p). Consequently, it is identically zero on F (p). As a result, pA(x−y)p =
{0} and thus, xp = yp. For the norm equality, we note that the bounded affine function
ϕ 7→ ϕ(x∗x) is lower semi-continuous on the weak* compact convex set F (p) [9, Lemma 2.1].
It follows from the Krein-Milman theorem that

‖xp‖2 ≤ sup{ϕ(x∗x) : ϕ is a pure state in F (p)} = ‖zxp‖2 ≤ ‖xp‖2.

�

The following theorem says that if the operator section πp(x) preserves the continuity of
the atomic part of every vector section in A∗∗p then x itself must have an appropriate atomic
part.

Theorem 6.2. Let x be an element of A∗∗.

(1) zxAp ⊆ zAp if and only if zx ∈ z LM(A, p).
(2) zxWp ⊆ zWp if and only if zx ∈ zRM(A, p).
(3) zxAp ⊆ zAp and zxWp ⊆ zWp if and only if zx ∈ zM(A, p).
(4) zxAp ∈ zWp if and only if zx ∈ zQM(A, p).
(5) zxWp ⊆ zAp if and only if zx ∈ zAlg(A, p).

Proof. The sufficiency is obvious and thus we verify the necessity only. Suppose first
that zxAp ⊆ zWp. By Lemma 6.1, we can define a linear map T from Ap into Wp. More
precisely, we set Tap = up if zxap = zup. Moreover, ‖T‖ ≤ ‖x‖ since ‖zyp‖ = ‖yp‖ for
all yp in Wp. Suppose that ϕ is a pure state in F (p) and a is in A such that ϕ(a∗a) = 0.
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Then ϕ((Tap)∗(Tap)) = ϕ(u∗u) = ϕ((zup)∗(zup)) = ϕ((xap)∗(xap)) = ϕ(pa∗x∗xap) ≤
‖x‖2ϕ(a∗a) = 0. By Theorem 3.13, there is a relative quasi-multiplier q in QM(A, p) such
that Tap = qap for all a in A. Therefore zxap = zTap = zqap for all a in A. Consequently,
z(x− q)Ap = {0}, and thus, zxc(p) = zq ∈ zQM(A, p).

Consider next the case zxAp ⊆ zAp. A similar argument yields a bounded linear map T

from Ap into Ap (by restricting the co-domain of T ). We thus have an l in A∗∗c(p) such
that lap = Tap ∈ Ap for all a in A. Consequently, l ∈ LM(A, p), and thus zxc(p) = zl ∈
z LM(A, p).

For the case zxWp ⊆ zWp, we note that zx∗Ap ⊆ zAp. To see this, we observe that
zpy∗x∗ap = (pa∗zxyp)∗ ∈ zpAp for all yp in Wp, and quote [9, Theorem 1.7] which says
zup ∈ zAp if and only if zpAup ⊆ zpAp and zpu∗up ∈ zpAp. Hence there is a relative left
multiplier l in A∗∗ such that zx∗ = zl. By setting r = l∗, we have zx = zr ∈ zRM(A, p).
The case where zxWp ⊆ zAp is similar.

Finally, we suppose that zxAp ⊆ zAp and zxWp ⊆ zWp. By above observation, there
is an l in LM(A, p) and an r in RM(A, p) such that zx = zl = zr. Now, pa1(l − r)a2p

belongs to pAp and vanishes at each pure state in F (p) for all a1, a2 in A. It follows that
pA(l − r)Ap = {0}. Therefore, lc(p) = rc(p), and thus zx ∈ M(A, p). �

The following is the special case when p = 1.

Corollary 6.3. Let x be an element of A∗∗.

(1) If zxA ⊆ zA then zx = zl for some left multiplier l of A in A∗∗.
(2) If zxRM(A) ⊆ zRM(A) then zx = zr for some right multiplier r of A in A∗∗.
(3) If zxA ⊆ zA and zxRM(A) ⊆ zRM(A) then zx = zm for some multiplier m of A in

A∗∗.
(4) If zxA ⊆ zRM(A) then zx = zq for some quasi-multiplier q of A in A∗∗.
(5) If zxRM(A) ⊆ zA then zx = za for some a in A.
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