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Abstract. Recently, two retractions (projections) which are different from

the metric projection and the sunny nonexpansive retraction in a Banach space
were found. In this paper, using nonlinear analytic methods and new retrac-
tions, we prove a nonlinear ergodic theorem for positively homogeneous and
nonexpansive mappings in a uniformly convex Banach space. The limit points

are characterized by using new retractions.

1. Introduction

Let E be a real Banach space and let C be a nonempty subset of E. Let N
and R be the sets of positive integers and real numbers, respectively. A mapping
T : C → C is called nonexpansive if

(1.1) ∥Tx − Ty∥ ≤ ∥x − y∥, ∀x, y ∈ C.

We denote by F (T ) the set of fixed points of T . In 1938, Yosida [28] proved the
following strong convergence theorem for linear continuous operators in a Banach
space.

Theorem 1.1 (Yosida [28]). Let E be a Banach space and let T be a linear operator
of E into itself. Suppose that there exists a constant C with ∥Tn∥ ≤ C for n ∈ N
and T is weakly completely continuous, i.e., T maps the closed unit ball of E into
a weakly compact subset of E. Then, for each x ∈ E, the Cesàro means

Snx =
1
n

n∑
k=1

T kx

converge strongly as n → ∞ to z ∈ F (T ).

On the other hand, Baillon [2] proved the first nonlinear ergodic theorem for
nonexpansive mappings in a Hilbert space.

Theorem 1.2 (Baillon [2]). Let H be a Hilbert space and let C be a nonempty,
closed and convex subset of H. Let T : C → C be a nonexpansive mapping with
F (T ) ̸= ∅. Then, for any x ∈ C, the Cesàro means

Snx =
1
n

n−1∑
k=0

T kx

converge weakly as n → ∞ to z ∈ F (T ).
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Bruck [5] extended Baillon’s result to Banach spaces as follows:

Theorem 1.3 (Bruck [5]). Let E be a uniformly convex Banach space whose norm
is a Fréchet differentiable and let C be a nonempty, closed and convex subset of E.
Let T : C → C be a nonexpansive mapping with F (T ) ̸= ∅. Then, for any x ∈ C,
the Cesàro means

Snx =
1
n

n−1∑
k=0

T kx

converge weakly as n → ∞ to z ∈ F (T ).

However, the limit points z ∈ F (T ) in Theorems 1.1 and 1.3 are not character-
ized. Recently, two retractions (projections) which are different from the metric
projection and the sunny nonexpansive retraction in a Banach space were found;
see, for instance, Alber [1], and Ibaraki and Takahashi [11]. Such retractions are
called the generalized projection and the sunny generalized nonexpansive retraction.

In this paper, using nonlinear analytic methods and new retractions which were
found recently, we prove a nonlinear ergodic theorem for positively homogeneous
and nonexpansive mappings in a uniformly convex Banach space. The limit points
are characteralized by new retractions.

2. Preliminaries

Let E be a real Banach space and let E∗ be the dual space of E. For a sequence
{xn} of E and a point x ∈ E, the weak convergence of {xn} to x and the strong
convergence of {xn} to x are denoted by xn ⇀ x and xn → x, respectively. Let A
be a nonempty subset of E. We denote by coA the closure of the convex hull of A.
The duality mapping J from E into E∗ is defined by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}, ∀x ∈ E.

Let S(E) be the unit sphere centered at the origin of E. Then the space E is said
to be smooth if the limit

lim
t→0

∥x + ty∥ − ∥x∥
t

exists for all x, y ∈ S(E). The norm of E is said to be Fréchet differentiable if
for each x ∈ S(E), the limit is attained uniformly for y ∈ S(E). A Banach space
E is said to be strictly convex if ∥x+y

2 ∥ < 1 whenever x, y ∈ S(E) and x ̸= y. It
is said to be uniformly convex if for each ε ∈ (0, 2], there exists δ > 0 such that
∥x+y

2 ∥ ≤ 1− δ whenever x, y ∈ S(E) and ∥x− y∥ ≥ ε. Furthermore, we know from
[23] that

(i) if E is smooth, then J is single-valued;
(ii) if E is reflexive, then J is onto;
(iii) if E is strictly convex, then J is one-to-one;
(iv) if E is strictly convex, then J is strictly monotone, i.e.,

⟨x − y, Jx − Jy⟩ > 0, ∀x, y ∈ E, x ̸= y;

(v) if E has a Fréchet differentiable norm, then J is norm-to-norm continuous.
Let E be a smooth Banach space and let J be the duality mapping on E.

Throughout this paper, define the function ϕ : E × E → R by

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩ + ∥y∥2, ∀x, y ∈ E.
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Observe that, in a Hilbert space H, ϕ(x, y) = ∥x − y∥2 for all x, y ∈ H. We also
know that for each x, y, z, w ∈ E,

(2.1) (∥x∥ − ∥y∥)2 ≤ ϕ(x, y) ≤ (∥x∥ + ∥y∥)2;

(2.2) ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨x − z, Jz − Jy⟩;

(2.3) 2⟨x − y, Jz − Jw⟩ = ϕ(x,w) + ϕ(y, z) − ϕ(x, z) − ϕ(y, w).

If E is additionally assumed to be strictly convex, then

(2.4) ϕ(x, y) = 0 if and only if x = y.

The following results were proved by Xu [27] and Kamimura and Takahashi [17].

Lemma 2.1 (Xu [27]). Let E be a uniformly convex Banach space and let r > 0.
Then there exists a strictly increasing, continuous, and convex function g : [0, 2r] →
[0,∞) such that g(0) = 0 and

∥ax + (1 − a)y∥2 ≤ a∥x∥2 + (1 − a)∥y∥2 − a(1 − a)g(∥x − y∥)
for all x, y ∈ Br and a ∈ [0, 1] , where Br = {z ∈ E : ∥z∥ ≤ r}.
Lemma 2.2 (Kamimura and Takahashi [17]). Let E be a uniformly convex Banach
space and let r > 0. Then there exists a strictly increasing, continuous, and convex
function g : [0, 2r] → [0,∞) such that g(0) = 0 and

g(∥x − y∥) ≤ ϕ(x, y)

for all x, y ∈ Br, where Br = {z ∈ E : ∥z∥ ≤ r}.
Let E be a Banach space and let C be a nonempty subset of E. A mapping

T : C → C is quasi-nonexpansive if F (T ) ̸= ∅ and ∥Tx− y∥ ≤ ∥x− y∥ for all x ∈ C
and y ∈ F (T ). We know the following results.

Lemma 2.3 (Bruck [6]). Let E be a uniformly convex Banach space and let C be
a bounded, closed and convex subset of E. let T be a nonexpansive mapping of C
into itself. Define

Snx =
1
n

n−1∑
k=0

T kx, ∀x ∈ C, n ∈ N.

Then,
lim

n→∞
sup
x∈C

∥Snx − TSnx∥ = 0.

Lemma 2.4 (Browder [4]). Let E be a uniformly convex Banach space and let C
be a bounded, closed and convex subset of E. let T be a nonexpansive mapping of
C into itself. If xn ⇀ z and xn − Txn → 0, then z ∈ F (T ).

Lemma 2.5 (Itoh and Takahashi [16]). Let E be a strictly convex Banach space and
let C be a nonempty, closed and convex subset of E. let T be a quasi-nonexpansive
mapping of C into itself. Then F (T ) is closed and convex.

Let E be a smooth Banach space and let C be a nonempty subset of E. A
mapping T : C → C is called generalized nonexpansive [11] if F (T ) ̸= ∅ and

ϕ(Tx, y) ≤ ϕ(x, y), ∀x ∈ C, y ∈ F (T ).

Let E be a Banach space and let C be a closed and convex cone of E. A mapping
T : C → C is called positively homogeneous if T (αx) = αT (x) for all x ∈ C and
α ≥ 0.
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Lemma 2.6 (Takahashi and Yao [26]). Let E be a Banach space and let C be
a closed and convex cone of E. Let T : C → C be a positively homogenuous
nonexpansive mapping. Then, for any x ∈ C and m ∈ F (T ), there exists j ∈ Jm
such that

⟨x − Tx, j⟩ ≤ 0,

where J is the duality mapping of E into E∗.

Using Lemma 2.6, Takahashi and Yao [26] proved the following result.

Lemma 2.7 (Takahashi and Yao [26]). Let E be a smooth Banach space and let
C be a closed and convex cone of E. Let T : C → C be a positively homogeneous
nonexpansive mapping. Then, T is a generalized nonexpansive mapping.

Let D be a nonempty subset of a Banach space E. A mapping R : E → D is
said to be sunny if

R(Rx + t(x − Rx)) = Rx, ∀x ∈ E, t ≥ 0.

A mapping R : E → D is said to be a retraction or a projection if Rx = x for all
x ∈ D. A nonempty subset D of a smooth Banach space E is said to be a generalized
nonexpansive retract (resp. sunny generalized nonexpansive retract) of E if there
exists a generalized nonexpansive retraction (resp. sunny generalized nonexpansive
retraction) R from E onto D; see [10, 12, 11] for more details. The following results
are in Ibaraki and Takahashi [11].

Lemma 2.8 (Ibaraki and Takahashi [11]). Let C be a nonempty closed sunny
generalized nonexpansive retract of a smooth and strictly convex Banach space E.
Then the sunny generalized nonexpansive retraction from E onto C is uniquely
determined.

Lemma 2.9 (Ibaraki and Takahashi [11]). Let C be a nonempty closed subset
of a smooth and strictly convex Banach space E such that there exists a sunny
generalized nonexpansive retraction R from E onto C and let (x, z) ∈ E ×C. Then
the following hold:

(i) z = Rx if and only if ⟨x − z, Jy − Jz⟩ ≤ 0 for all y ∈ C;
(ii) ϕ(Rx, z) + ϕ(x,Rx) ≤ ϕ(x, z).

In 2007, Kohsaka and Takahashi [18] also proved the following results:

Lemma 2.10 (Kohsaka and Takahashi [18]). Let E be a smooth, strictly convex
and reflexive Banach space and let C be a nonempty closed subset of E. Then the
following are equivalent:

(a) C is a sunny generalized nonexpansive retract of E;
(b) C is a generalized nonexpansive retract of E;
(c) JC is closed and convex.

Lemma 2.11 (Kohsaka and Takahashi [18]). Let E be a smooth, strictly convex
and reflexive Banach space and let C be a nonempty closed sunny generalized non-
expansive retract of E. Let R be the sunny generalized nonexpansive retraction from
E onto C and let (x, z) ∈ E × C. Then the following are equivalent:

(i) z = Rx;
(ii) ϕ(x, z) = miny∈C ϕ(x, y).
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Inthakon, Dhompongsa and Takahashi [15] obtained the following result con-
cerning the set of fixed points of a generalized nonexpansive mapping in a Banach
space; see also Ibaraki and Takahashi [13, 14].

Lemma 2.12 (Inthakon, Dhompongsa and Takahashi [15]). Let E be a smooth,
strictly convex and reflexive Banach space and let C be a closed subset of E such
that J(C) is closed and convex. Let T be a generalized nonexpansive mapping from
C into itself. Then, F (T ) is closed and JF (T ) is closed and convex.

The following is a direct consequence of Lemmas 2.10 and 2.12.

Lemma 2.13 (Inthakon, Dhompongsa and Takahashi [15]). Let E be a smooth,
strictly convex and reflexive Banach space and let C be a closed subset of E such
that J(C) is closed and convex. Let T be a generalized nonexpansive mapping from
C into itself. Then, F (T ) is a sunny generalized nonexpansive retract of E.

Let l∞ be the Banach space of bounded sequences with supremum norm. Let
µ be an element of (l∞)∗ (the dual space of l∞). Then, we denote by µ(f) the
value of µ at f = (x1, x2, x3, . . . ) ∈ l∞. Sometimes, we denote by µn(xn) the
value µ(f). A linear functional µ on l∞ is called a mean if µ(e) = ∥µ∥ = 1, where
e = (1, 1, 1, . . . ). A mean µ is called a Banach limit on l∞ if µn(xn+1) = µn(xn).
We know that there exists a Banach limit on l∞. If µ is a Banach limit on l∞, then
for f = (x1, x2, x3, . . . ) ∈ l∞,

lim inf
n→∞

xn ≤ µn(xn) ≤ lim sup
n→∞

xn.

In particular, if f = (x1, x2, x3, . . . ) ∈ l∞ and xn → a ∈ R, then we have µ(f) =
µn(xn) = a. For the proof of existence of a Banach limit and its other elementary
properties, see [23, 24]. Using means and the Riesz theorem, we can obtain the
following result; see [21] and [8, 9].

Lemma 2.14. Let E be a reflexive Banach space, let {xn} be a bounded sequence in
E and let µ be a mean on l∞. Then there exists a unique point z0 ∈ co{xn : n ∈ N}
such that

µn⟨xn, y∗⟩ = ⟨z0, y
∗⟩, ∀y∗ ∈ E∗.

Such a point z0 in Lemma 2.14 is called the mean vector of {xn} for µ. This
point z0 plays a crucial role in this paper. The following result is in Hirano, Kido
and Takahashi [8].

Lemma 2.15. Let E be a uniformly convex Banach space and let C be a non-
empty, closed and convex subset of E. Let T be a nonexpansive mapping of C into
C such that F (T ) ̸= ∅. Let µ be a Banach limit on l∞. Then the mean vector of
{xn} for µ is in F (T ).

The following result is in Lin, Takahashi and Yu [20].

Lemma 2.16 (Lin, Takahashi and Yu [20]). Let E be a smooth, strictly convex
and reflexive Banach space with the duality mapping J and let D be a nonempty,
closed and convex subset of E. Let {xn} be a bounded sequence in D and let µ be
a mean on l∞. If g : D → R is defined by

g(z) = µnϕ(xn, z), ∀z ∈ D,

then the mean vector z0 of {xn} for µ is a unique minimizer in D such that

g(z0) = min{g(z) : z ∈ D}.
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3. Lemmas

In the section, we first prove the following lemma which plays an important role
for proving our main theorem.

Lemma 3.1. Let E be a uniformly convex and smooth Banach space and let T
be a positively homogeneous nonexpansive mapping of E into itself. Then for any
x ∈ C, the sequence {Tnx} is bounded and the set

∩∞
k=1co{T k+nx : n ∈ N} ∩ F (T )

consists of one point z0, where z0 is a unique minimizer of F (T ) such that

lim
n→∞

ϕ(Tnx, z0) = min{ lim
n→∞

ϕ(Tnx, z) : z ∈ F (T )}.

Proof. Since T : E → E is positively homogeneous and nonexpansive, it follows
from Lemma 2.7 that T is generalized nonexpansive. Thus we have that for any
z ∈ F (T ) and x ∈ C,

ϕ(Tn+1x, z) ≤ ϕ(Tnx, z) ≤ · · · ≤ ϕ(x, z), ∀n ∈ N.

Then {Tnx} is bounded. Let µ be a Banach limit on l∞. From Lemma 2.16, the
mean vector z0 ∈ E of {Tnx} for µ is a unique minimizer z0 ∈ E such that

µnϕ(Tnx, z0) = min{µnϕ(Tnx, y) : y ∈ E}.
We also know from Lemma 2.15 that z0 ∈ F (T ). Furthermore, this z0 ∈ F (T )
satisfies that

µnϕ(Tnx, z0) = min{µnϕ(Tnx, y) : y ∈ F (T )}.
Let us show that z0 ∈ ∩∞

k=1co{T k+nx : n ∈ N}. If not, there exists some k ∈ N such
that z0 /∈ co{T k+nx : n ∈ N}. By the separation theorem, there exists y∗

0 ∈ E∗

such that
⟨z0, y

∗
0⟩ < inf

{
⟨z, y∗

0⟩ : z ∈ co{T k+nx : n ∈ N}
}
.

Using the property of the Banach limit µ, we have that

⟨z0, y
∗
0⟩ < inf

{
⟨z, y∗

0⟩ : z ∈ co{T k+nx : n ∈ N}
}

≤ inf{⟨T k+nx, y∗
0⟩ : n ∈ N}

≤ µn⟨T k+nx, y∗
0⟩

= µn⟨Tnx, y∗
0⟩

= ⟨z0, y
∗
0⟩.

This is a contradiction. Thus we have that z0 ∈ ∩∞
k=1co{T k+nx : n ∈ N}. Next we

show that ∩∞
k=1co{T k+nx : n ∈ N} ∩ F (T ) consists of one point z0. Assume that

z1 ∈ ∩∞
k=1co{T k+nx : n ∈ N} ∩ F (T ). Since z1 ∈ F (T ) = B(T ), we have that

ϕ(Tn+1x, z1) ≤ ϕ(Tnx, z1), ∀n ∈ N.

Then limn→∞ ϕ(Tnx, z1) exists. Furthermore, we know from the property of a
Banach limit µ that

µnϕ(Tnx, z1) = lim
n→∞

ϕ(Tnx, z1).

In general, since limn→∞ ϕ(Tnx, z) exists for every z ∈ F (T ), we define a function
g : F (T ) → R as follows:

g(z) = lim
n→∞

ϕ(Tnx, z), ∀z ∈ F (T ).
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Since
ϕ(z0, z1) = ϕ(Tnx, z1) − ϕ(Tnx, z0) − 2⟨Tnx − z0, Jz0 − Jz1⟩

for every n ∈ N, we have

ϕ(z0, z1) + 2 lim
n→∞

⟨Tnx − z0, Jz0 − Jz1⟩

= lim
n→∞

ϕ(Tnx, z1) − lim
n→∞

ϕ(Tnx, z0)

≥ 0.

Let ϵ > 0. Then we have that

2 lim
n→∞

⟨Tnx − z0, Jz0 − Jz1⟩ > −ϕ(z0, z1) − ϵ.

Hence there exists n0 ∈ N such that

2⟨Tnx − z0, Jz0 − Jz1⟩ > −ϕ(z0, z1) − ϵ

for every n ∈ N with n ≥ n0. Since z1 ∈ ∩∞
k=1co{T k+nx : n ∈ N}, we have

2⟨z1 − z0, Jz0 − Jz1⟩ ≥ −ϕ(z0, z1) − ϵ.

We have from (2.3) that

ϕ(z1, z1) + ϕ(z0, z0) − ϕ(z1, z0) − ϕ(z0, z1) ≥ −ϕ(z0, z1) − ϵ

and hence ϕ(z1, z0) ≤ ϵ. Since ϵ > 0 is arbitrary, we have ϕ(z1, z0) = 0. Since E is
strictly convex, we have z0 = z1. Therefore

{z0} = ∩∞
k=1co{T k+nx : n ∈ N} ∩ F (T ).

This completes the proof. ¤

For proving our main theorem (Theorem 4.1), we also need the following two
lemmas.

Lemma 3.2. Let E be a uniformly convex Banach space and let C be a bounded,
closed and convex subset of E. let T be a nonexpansive mapping of C into itself.
For any x ∈ S, define

Snx =
1
n

n−1∑
k=0

T kx, ∀n ∈ N.

If a subsequence {Snix} of {Snx} converges weakly to a point u, then u ∈ F (T ).

Proof. We know from Lemma 2.3 that

lim
n→∞

sup
x∈C

∥Snx − TSnx∥ = 0.

Since a subsequence {Snix} of {Snx} converges weakly to a point u, we have from
Lemma 2.4 that u ∈ F (T ). This completes the proof. ¤

Lemma 3.3. Let E be a uniformly convex and smooth Banach space and let T :
E → E be a positively homogeneous nonexpansive mapping. Then, there exists a
unique sunny generalized nonexpansive retraction R of E onto F (T ). Furthermore,
for any x ∈ E, limn→∞ RTnx exists in F (T ).
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Proof. We have from Lemma 2.5 that F (T ) is closed and convex. Furthermore, we
have from Lemma 2.12 that JF (T ) are closed and convex. Then from Lemmas 2.8,
2.10 and 2.13 , there exists a unique sunny generalized nonexpansive retraction R
of E onto F (T ). From Lemma 2.9, we know that

(3.1) 0 ≤ ⟨v − Rv, JRv − Ju⟩, ∀v ∈ C, u ∈ F (T ).

We have from (3.1) and (2.3) that

0 ≤ 2⟨v − Rv, JRv − Ju⟩
= ϕ(v, u) + ϕ(Rv,Rv) − ϕ(v,Rv) − ϕ(Rv, u)

= ϕ(v, u) − ϕ(v,Rv) − ϕ(Rv, u).

Hence we have that

(3.2) ϕ(Rv, u) ≤ ϕ(v, u) − ϕ(v,Rv), ∀v ∈ C, u ∈ F (T ).

Since ϕ(Tz, u) ≤ ϕ(z, u) for any u ∈ F (T ) and z ∈ C, it follows from Lemma 2.11
that

ϕ(Tnx,RTnx) ≤ ϕ(Tnx,RTn−1x)

≤ ϕ(Tn−1x,RTn−1x).

Hence the sequence ϕ(Tnx, RTnx) is nonincreasing. Putting u = RTnx and v =
Tmx with n ≤ m in (3.2), we have from Lemma 2.2 that

g(∥RTmx − RTnx∥) ≤ ϕ(RTmx,RTnx)

≤ ϕ(Tmx, RTnx) − ϕ(Tmx,RTmx)

≤ ϕ(Tnx,RTnx) − ϕ(Tmx,RTmx),

where g is a strictly increasing, continuous and convex real-valued function with
g(0) = 0. From the properties of g, {RTnx} is a Cauchy sequence. Therefore
{RTnx} converges strongly to a point q ∈ F (T ). This completes the proof. ¤

4. Nonlinear Ergodic Theorem

Using Lemmas 3.1, 3.2 and 3.3, we now prove the following nonlinear ergodic
theorem for positively homogeneous nonexpansive mappings in a Banach space.

Theorem 4.1. Let E be a uniformly convex and smooth Banach space. Let T :
E → E be a positively homogeneous nonexpansive mapping. Then for any x ∈ C,

Snx =
1
n

n−1∑
k=0

T kx

converges weakly to z0 ∈ F (T ). Additionally, if the norm of E is a Fréchet dif-
ferentiable, then z0 = limn→∞ RF (T )T

nx, where RF (T ) is the sunny generalized
nonexpansive retraction of E onto F (T ).

Proof. Let x ∈ E and define D = {z ∈ E : ∥z∥ ≤ ∥x∥}. Then D is nonempty,
bounded, closed and convex. Furthermore, since T is nonexpansive and 0 ∈ F (T ),
D is invariant under T and hence {Tnx} and {Snx} are in D. We know from
Lemma 3.1 that the set

∩∞
k=1co{T k+nx : n ∈ N} ∩ F (T )
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consists of one point z0. To prove that {Snx} converges weakly to z0 in F (T ), it is
sufficient to show that for any subsequence {Snix} of {Snx} such that Snix ⇀ v,
v ∈ F (T ) and

v ∈ ∩∞
k=1co{T k+nx : n ∈ N}.

From Lemma 3.2, we have that v ∈ F (T ). Next, we show that

v ∈ ∩∞
k=1co{T k+nx : n ∈ N}.

Fix k ∈ N. We have that for any ni ∈ N with ni > k,

Snix =
1
ni

(x + Tx+ · · · + T kx)

+
ni − (k + 1)

ni
· 1
ni − (k + 1)

(T k+1x + · · · + Tni−1).

Thus from Snix ⇀ v, we have
1

ni − (k + 1)
(T k+1x + · · · + Tni−1) ⇀ v

and hence v ∈ co{T k+nx : n ∈ N}. Since k ∈ N is arbitrary, we have that

v ∈ ∩∞
k=1co{T k+nx : n ∈ N}.

Therefore {Snx} converges weakly to a point z0 of F (T ).
Additionally, assume that the norm of E is a Fréchet differentiable. We have

from Lemma 3.3 that there exists the sunny generalized nonexpansive retraction
R = RF (T ) of E onto F (T ) and {RTnx} converges strongly to a point q ∈ F (T ).
Rewriting the characterization of the retraction R, we have that

0 ≤
⟨
T kx − RT kx, JRT kx − Ju

⟩
, ∀u ∈ F (T )

and hence ⟨
T kx − RT kx, Ju − Jq

⟩
≤

⟨
T kx − RT kx, JRT kx − Jq

⟩
≤ ∥T kx − RT kx∥ · ∥JRT kx − Jq∥

≤ K∥JRT kx − Jq∥,

where K is an upper bound for ∥T kx−RT kx∥. Summing up these inequalities for
k = 0, 1, . . . , n − 1 and deviding by n, we arrive to⟨

Snx − 1
n

n−1∑
k=0

RT kx, Ju − Jq

⟩
≤ K

n

n−1∑
k=0

∥JRT kx − Jq∥.

Letting n → ∞ and remembering that J is continuous because the norm of E is a
Fréchet differentiable, we get that

⟨z0 − q, Ju − Jq⟩ ≤ 0.

This holds for any u ∈ F (T ). Putting u = z0, we have ⟨z0 − q, Jz0 − Jq⟩ ≤ 0. Since
J is monotone, we have ⟨z0 − q, Jz0 − Jq⟩ = 0. Since E is strictly convex, we have
z0 = q. Thus z0 = limn→∞ RF (T )T

nx. ¤

Compare Theorem 4.1 with Theorem 1.3. Though the assumption of a map-
ping in Theorem 4.1 is stronger than that of Theorem 1.3, the assumption of a
Banach space is weaker. Furthermore, the limit points are characterized by sunny
generalized nonexpansive retractions.
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