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Abstract. Let X be a locally compact Hausdorff space, and T be a disjointness preserv-

ing bounded linear operator on C0(X). We give a sufficient and necessary condition of T

being power compact. Moreover, a description of eigenvalues and eigenfunctions of T is

given.

1. Introduction

Let X be a locally compact Hausdorff space, and C0(X) be the Banach space of continu-

ous (real or complex) functions on X vanishing at infinity. A linear operator T from C0(X)

into C0(Y ) is disjointness preserving if Tf · Tg = 0 in C0(Y ) whenever f · g = 0 in C0(X).

In [1], Abramovich developed the basic theory of such operators between general vector lat-

tices. Lately such operators were studied in the space of real or complex-valued continuous

functions. It is shown that a disjointness preserving linear operator T : C0(X) → C0(Y ) is

exactly a weighted composition operator Tf = h · f ◦ϕ for some map ϕ from Y into X and

scalar-valued function h on Y (see also [4, 5]).

Let k be a positive integer, a real or complex linear operator T on C0(X) is called k-

compact if T k is compact and is said to be power compact if it is k-compact for some k.

In this paper, we shall give a sufficient and necessary condition of bounded disjointness

preserving linear operators on continuous functions being power compact. Moreover, we

develop a spectral theory of power compact disjointness preserving bounded linear opera-

tors.
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2. Power compact disjointness preserving operators

Let X be a locally compact Hausdorff space of infinite cardinality. Note that a power com-

pact operator might not be bounded. In [4], it is shown that there is always an unbounded

disjointness preserving linear operator from C0(X) onto an infinite-dimensional subspace

of C0(Y ) provided X and Y are infinite sets. There is also a comprehensive description of

unbounded disjointness preserving linear functionals in [3]. In the following, we present an

easy construction of such a functional, and also an example of an unbounded power com-

pact disjointness preserving linear operator. Unlike the bounded ones, unbounded power

compact disjointness preserving linear operators might not have a nice structure.

Lemma 2.1. Let X be a locally compact Hausdorff space of infinite cardinality, then there

is always an unbounded disjointness preserving linear functional of C0(X).

Proof. For each point x in X ∪ {∞}, let Ix (resp. Mx) be the ideal of C0(X) consisting of

all functions vanishing in a neighborhood of x (resp. vanishing at x). It is not difficult to

see that there exists some x in X ∪ {∞} with Ix $ Mx (see [3, Proposition 2.6]). Since

Ix is the intersection of all prime ideals of C0(X) containing it, there is a prime ideal P of

C0(X) such that Ix $ P $ Mx. Choose any linear lifting Φ to C0(X) of a linear functional

of C0(X)/P such that Φ(k) = 1 for some k in Mx. In this way, we obtain an unbounded

disjointness preserving linear functional Φ of C0(X). Indeed, if f and g in C0(X) have a

zero product, since P is prime, one of f and g belongs to P . As Φ|P = 0, one of Φ(f) and

Φ(g) must be zero. �

Example 2.2. Let X = [0, 1]∪{2} ⊂ R and Φ : C[0, 1] → C be an unbounded disjointness

preserving linear functional such that Φ(1[0,1]) = 1, where 1[0,1] is the constant one function

on [0, 1] (see Lemma 2.1). Let T : C(X) → C(X) be defined by

Tf |[0,1] = f(0)1[0,1] and Tf(2) = Φ(f |[0,1]).

Then T is an unbounded 2-compact disjointness preserving linear operator. Indeed,

T 2(f)|[0,1] = f(0)1[0,1] and T 2(f)(2) = Φ(f(0)1[0,1]) = f(0).

Thus T 2 is of rank one. �

In the following, all power compact linear operators are assumed to be bounded.
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Theorem 2.3 ([7, Theorem 2.8]). Let T : C0(X) → C0(Y ) be a disjointness preserving

bounded linear operator. Then T is compact if and only if there is a sequence {xn}n of

distinct points in X and a norm null mutually disjoint sequence {hn}n in C0(Y ) such that

Tf =
∑

n

f(xn)hn, for all f ∈ C0(X).(2.1)

In general, for a disjointness preserving bounded linear operator T on C0(X), let δx be

the point mass at x in X ∪ {∞} and thus δx ◦ T (f) = Tf(x) for all f in C0(X). Set

X∞ = {x ∈ X ∪ {∞} : δx ◦ T = 0} and X ′ = X \X∞.

There exists a continuous function ϕ from X ′ to X, and a non-vanishing continuous function

h on X ′ such that

Tf |X∞ = 0 and Tf |X′ = h · f ◦ ϕ.(2.2)

See, e.g., [5, 7].

We extend ϕ and h in (2.2) to the not necessarily continuous functions ϕ̃ and h̃ on the

whole of X ∪ {∞} by setting ϕ̃ ≡ ∞ and h̃ ≡ 0 outside X ′. In this way, we can write

Tf = h̃ · f ◦ ϕ̃.(2.3)

Theorem 2.4. Let T be a disjointness preserving linear operator on C0(X) carrying the

form (2.3) and k be a positive integer. Then T is k-compact if and only if

(1) the image of the kth power ϕ̃k of ϕ̃ is a countable set ϕ̃k(X ∪ {∞}) = {∞, x1, x2, . . .}

such that Xn = ϕ̃−k(xn) is open in X for each n = 1, 2, . . .; and

(2) the function h̃ · h̃ ◦ ϕ̃ · · · h̃ ◦ ϕ̃k−1 is continuous on X ∪ {∞}.

Proof. Observe that

T kf = (h̃ · h̃ ◦ ϕ̃ · · · h̃ ◦ ϕ̃k−1) · f ◦ ϕ̃k.

The necessity follows from Theorem 2.3. We verify the sufficiency. Denote h̃·h̃◦ϕ̃ · · · h̃◦ϕ̃k−1

by Ψ for convenience. For each n = 1, 2, . . ., let Ψn = ΨχXn , where χXn is the characteristic

function of Xn. Then Ψn is continuous on X ∪ {∞} and T kf =
∑

n f(xn)Ψn pointwisely

on X. We claim that the sum T k =
∑

n δxn ⊗Ψn converges uniformly. Let ε > 0, observe

that the set {x ∈ X ′ : |Ψ(x)| ≥ ε} is a compact subset of X ′ =
⋃

n Xn. Hence, there is a
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positive integer N such that |Ψ(x)| < ε whenever x /∈
⋃N

n=1 Xn. In other words, ‖Ψn‖ < ε

for all n > N . Thus the sum converges uniformly, and so T k is compact. �

Let T =
∑

n δxn ⊗ hn, that is, Tf =
∑

n f(xn)hn, be a compact disjointness preserving

linear operator on C0(X). Note that for each n, we have hm(xn) 6= 0 for at most one

m. A finite set {xm1 , xm2 , . . . , xmn} is said to be a primitive cycle for T and denote by

[xm1 ;xm2 ; . . . ;xmn ] if

hmn(xmn−1) · · ·hm3(xm2)hm2(xm1)hm1(xmn) 6= 0.

Theorem 2.5 ([7, Theorem 4.7]). Let T be a compact disjointness preserving complex

linear operator on C0(X) with the form Tf =
∑

n f(xn)hn. A nonzero complex number λ

is an eigenvalue of T if and only if there is a primitive cycle [xm1 ;xm2 ; . . . ;xmn ] for T such

that

λn = hmn(xmn−1) · · ·hm3(xm2)hm2(xm1)hm1(xmn).

A nonzero eigenfunction f of T associated with λ can be constructed as

f = [I +
∑
k≥1

T k−1(T − λ)
λk

] f ′,

where

f ′ =
hmn(xmn−1) · · ·hm3(xm2)hm2(xm1)

λn−1
hm1 +

hmn(xmn−1) · · ·hm3(xm2)
λn−2

hm2 + · · ·+ hmn .

All such eigenfunctions f generate the eigenspace of T for λ.

Recall that all nonzero spectral values of a power compact operator on a Banach space

are eigenvalues (see, e.g., [6, p. 241]).

Theorem 2.6. Let T be a k-compact disjointness preserving complex linear operator on

C0(X). Write T kf =
∑

n f(xn)hn as in (2.1). Then for each nonzero eigenvalue λ of T ,

there is a primitive cycle [xm1 ;xm2 ; . . . ;xmn ] for T k such that

λkn = hmn(xmn−1) · · ·hm3(xm2)hm2(xm1)hm1(xmn).(2.4)

Conversely, suppose a nonzero complex number λ satisfies (2.4) for some primitive cycle

[xm1 ;xm2 ; . . . ;xmn ]. Then there exists at least one kth root ω of the unity such that ωλ is

an eigenvalue of T .
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Proof. If λ 6= 0 is an eigenvalue of T with a nonzero eigenfunction f , then Tf = λf and

T kf = λkf . Note that T k is a compact disjointness preserving linear operator on C0(X).

By Theorem 2.5, there is a primitive cycle [xm1 ;xm2 ; . . . ;xmn ] for T k satisfying (2.4).

Conversely, for each nonzero λ in C with λkn satisfying (2.4), we shall prove that ωjλ

is in σ(T ) for some j = 1, 2, . . . , k, where ω = e2πi/k. Suppose this were not true, then

T − ωjλI is invertible for all j = 1, 2, . . . , k. However, this would provide a contradiction

that

T k − λkI =
k∏

j=1

(T − ωjλI)

is invertible, when λk is an eigenvalue of T k by Theorem 2.5. �

As indicated in the proof of Theorem 2.6, every eigenfunction of T associated with a

nonzero eigenvalue λ is an eigenfunction of T k associated with λk. Although the converse

is not too complicated either, we shall see in the following second example that some

careful analysis might be needed. The third one explains that nothing can be done for

those eigenfunctions associated with the zero eigenvalue.

Example 2.7. (a) Let X = (0, 2) ∪ (3, 5) ⊂ R and T : C0(X) → C0(X) be a compact

disjointness preserving linear operator defined by

Tf = f(1)χ(0,2) + f(4)χ(3,5).

We have T 2f = f(1)χ(0,2) + f(4)χ(3,5) = Tf . Thus, σ(T ) = σ(T 2) = {0, 1}. Note that

−1 does not belong to σ(T ).

(b) Let X = [−2,−1] ∪ [1, 2] ⊂ R and T : C(X) → C(X) be defined by

Tf(x) = f(1)h1(x) + f(−x)h2(x) for all x ∈ X,

where h1 and h2 are the characteristic functions of the intervals [−2,−1] and [1, 2],

respectively. Then, T 2f = f(1)h1 + f(−1)h2 is a compact endomorphism of C(X).

By a direct computation, we see that σ(T ) = {−1, 0, 1} and σ(T 2) = {0, 1}. The

eigenspace of T for the eigenvalue 1 is spanned by h1 + h2 and the one for −1 is

spanned by h1−h2, while the eigenspace of T 2 for 1 is two-dimensional and spanned by

h1 and h2. In particular, neither h1 nor h2 is an eigenfunction of the 2-compact lattice

endomorphism T .
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(c) Let X = (−1, 0) ∪ (0, 1) ⊂ R and T : C0(X) → C0(X) be defined by

Tf(x) =

 f(−x) sin 1
x , 0 < x < 1;

0, −1 < x < 0.

Then T has zero square and, in particular, is 2-compact. Hence σ(T ) = σ(T 2) = {0}.

However, every f in C0(X) non-vanishing on (−1, 0) is an eigenfunction of T 2 but not

of T . We also note that in this case ϕ̃2(X∪{∞}) = {∞} and h̃ · h̃◦ ϕ̃ = 0, while neither

the range of ϕ̃ is countable nor h̃ is continuous on X ∪ {∞}. �

For θ0, θ1 ∈ [0, 2π), we call the subset

∆(θ0, θ1) = {reiθ : r ≥ 0, θ0 ≤ θ < θ0 + θ1}

of C a sector with angle θ1. In [2, 8], disjointness preserving endomorphisms of Banach

lattices with spectra contained in a sector were discussed. In the following, we see that the

spectral theory of a k-compact disjointness preserving bounded linear operator on C0(X)

with spectrum contained in a sector of angle not greater than π/k is quite simple.

Theorem 2.8. Let T : C0(X) → C0(X) be a compact disjointness preserving linear oper-

ator with spectrum contained in a sector with angle not greater than π. Suppose T carries

the form Tf =
∑

n f(xn)hn for all f ∈ C0(X). Then the spectrum of T is

σ(T ) = {0, h1(x1), h2(x2), . . .}.

Moreover, associated with each nonzero hn(xn) in σ(T ) an eigenfunction of T is of the form

fn = [I +
∑
k≥1

T k−1(T − hn(xn))

hn(xn)k
] hn.

The finite dimensional eigenspace of T associated with a nonzero eigenvalue λ is spanned

by all such fn with λ = hn(xn).

Proof. Suppose [xj1 ; . . . ;xjl
] is a primitive cycle for T . By Theorem 2.5, each lth root of

the nonzero product hjl
(xjl−1

) · · ·hj3(xj2)hj2(xj1)hj1(xjl
) is an eigenvalue of T . Since σ(T )

is contained in a sector with angle not greater than π, we have l = 1. Then the proof is

finished by Theorem 2.5. �
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Corollary 2.9. Let T be a k-compact disjointness preserving bounded linear operator on

C0(X) with spectrum contained in a sector ∆(θ0, θ1) with angle θ1 not greater than π/k.

A nonzero λ in ∆(θ0, θ1) is an eigenvalue of T if and only if λk is an eigenvalue of T k.

Moreover, the eigenspace of T for λ coincides with that of T k for λk.

Corollary 2.10. Let T be a k-compact disjointness preserving bounded linear operator on

C0(X) with positive spectrum. Suppose T kf =
∑

n f(xn)hn. Then all functions hn ≥ 0, and

σ(T ) = {0, h1(x1)1/k, h2(x2)1/k, . . .}. An eigenfunction fn of T for each positive eigenvalue

hn(xn)1/k is given by

fn = [I +
∑
l≥1

T (l−1)k(T k − hn(xn)1/k)

hn(xn)l/k
] hn.

All such fn span the finite-dimensional eigenspace of T for a given positive eigenvalue λ

with λk = hn(xn).
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