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Abstract

Let A and B be C*-algebras and let T be a linear isometry from A into B.
We show that there is a largest projection p in B** such that T'(-)p : A — B**
is a Jordan triple homomorphism and

T(ab*c+ cb*a)p = T(a)T(b)*T(c)p+ T(c)T'(b)*T(a)p

for all a, b, ¢ in A. When A is abelian, we have ||T'(a)p|| = ||a|| for all a
in A. It follows that a (possibly non-surjective) linear isometry between any
C*-algebras reduces locally to a Jordan triple isomorphism, by a projection.

1 Introduction

In his seminal paper [10], Kadison showed that a surjective linear isometry T" between
unital C*-algebras A and B is of the form T'(-) = un(-) where u is a unitary element
in B and 7 is a Jordan *-isomorphism. This result remains true in the non-unital
case although the unitary element u generally comes from B @ C [13]. In both cases,
T preserves the Jordan triple product:

T(ab*c+ cb*a) = T(a)T(b)*T(c) + T(c)T(b)*T(a)

for all a,b,c € A. In infinite-dimensional holomorphy, C*-algebras, and the larger
class of JB*-triples, arise as tangent spaces to bounded symmetric domains and it has
been shown in [11] that the geometry of these domains is completely determined by
the Jordan triple structures of these spaces. Indeed, a bijective linear map T between
two JB*-triples is an isometry if, and only if, it preserves the Jordan triple product:

T{a’ b, C} = {T(a)v T(b)a T(C)}
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as shown in [11, Proposition 5.5] (see also [3, 4, 6, 16]). By polarization, T" preserves
the Jordan triple product if, and only if,

T{a,a,a} ={T'(a), T(a), T(a)}.
The Jordan triple product in a C*-algebra is given by
1
{a,b,c} = E(ab*c + cb*a)

and in particular, the above characterization of surjective linear isometries between
JB*-triples extends Kadison’s result as well as giving it a geometric perspective. It
also highlights the importance of the Jordan triple product in the study of isometries
of C*-algebras.

It is natural to ask to what extent the above triple-preserving property of a linear
isometry persists if it is not surjective. We address this question in this paper. Let
T : A — B be a linear isometry, possibly non-surjective. We study T locally.
Without surjectivity, the C*-algebra and affine geometric techniques of [10, 4] can
not be used directly to obtain conclusive results. Nevertheless, we show there is a
largest projection p € B**, called the structure projection of T', such that T'(A)p is a
Jordan subtriple of B** and the map

T()p:A—T(A)p

is a triple homomorphism with T{a,a,a}p = {T'(a),T(a), T(a)}p for all a € A. The
structure projection p is closed but the map 7'(-)p need not be injective. When A is
abelian, we study the structure projection p in some detail, motivated by the question
of the local behaviour of 7', and show that the map 7'(-)p is isometric which also
extends Holsztynski’s result in [8] for non-surjective isometries between continuous
function spaces (see also [9]). It follows that, for any A and B, the isometry T is
reduced locally to a triple isomorphism by a projection in the sense that, for any
a € A, there is a closed projection p, € B** such that the map T'(-)p, is a triple
isomorphism from the Jordan subtriple Z, of A, generated by a, into B** and

T{Q:’ Y, Z}pa = {T(l’), T(y)7 T(Z)}pa

for all z,y,z € Z,. Although T'(A)p could be zero if A is nonabelian, we give condi-
tions for T'(A)p to be non-zero in this case.

This work was carried out during the second author’s visit at Goldsmiths Col-
lege, University of London. He would like to thank colleagues there for their warm
hospitality. We wish to thank Professor L.G. Brown for a useful discussion and for
drawing our attention to the norm identity in Remark 4.4. We also thank the referee
for many helpful suggestions.
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2 Isometries of C*-algebras and their ranges

Throughout the paper, an isometry between Banach spaces is not assumed to be
surjective. We first recall that a JB*-triple Z is a complex Banach space equipped with
a Jordan triple product {-,-,-} : Z3 — Z which is symmetric and linear in the outer
variables, and conjugate linear in the middle variable such that for a,b,c,z,y € Z,
we have

(1) {a,b,{c,z,y}} = {{a, b, ¢}, 2,4} = {e, {b,a, 2}, 4} + {e, 2, {a, b, y}};

(ii) the map z € Z + {a,a,z} € Z is hermitian with nonnegative spectrum;

(i) [l{a, a, a}l| = [lal®.

A closed subspace of a JB*-triple is called a subtriple if it is closed with respect to
the triple product. A linear map T : Z — W between JB*-triples is called a triple
homomorphism if it preserves the triple product in which case, the range 7'(Z7) is
a subtriple of W and the kernel J of T is a triple ideal of Z, that is, {Z,Z,J} +
{Z,J,Z} C J. We refer to [2, 17, 18, 20] for expositions as well as recent surveys of
JB*-triples and symmetric Banach manifolds. In the sequel, we write a® = {a,a, a}.
We note that a norm-closed subspace Z of a C*-algebra is a JB*-triple if a € Z
implies aa*a € Z, in which case Z is called a JC*-triple and the triple product is
given by triple polarization

2{a,b,c} = ab’c+ cb*a

- % > apla+ab+ pe)(a+ ab+ Be)*(a+ ab+ Be).

at=p2=1
In C*-algebras, the closed triple ideals are the closed algebra two-sided ideals |7,
p.350].

We begin with a simple example of a linear isometry T': A — B between abelian
C*-algebras which is not a triple homomorphism.

Example 2.1. Let C(Q2) and C(QQU{3}) be the C*-algebras of continuous functions
on the closed unit disc Q2 C C and Q U {3} respectively, where 5 € C\Q. Define
T:C(Q) — C(QU{B}) by
f(x) if x €Q
Tf)(x) = .
0@ =4 {3+ oy tas

Then T is a linear isometry and T(C(Q2)) = {h € C(QU{B}) : 2h(5) = h(1) + h(0)}
which is not a subtriple of C(©2 U {#}). So T is not a triple isomorphism onto its
range. Nevertheless, we have T(f®) = T(f)® if f(1) = f(0) = 0.
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Let T : A — B be a linear isometry between C*-algebras. Although the range
T(A) need not be a subtriple of B, we show in Proposition 2.2 below that T'(A), cut
down by a projection, is always a subtriple of B**. This result will be used to study T’
locally later. In Example 2.1, such a projection is given by the characteristic function

of Q in C(QU {B}).

We need some notation first. We denote by T™* the second dual map of T and
for convenience, we often write T'a for T(a). The identity of a unital C*-algebra
will be denoted by 1. Given a C*-algebra A, we denote its closed unit ball by Ay,
and by A} the closed unit ball of the dual A*. Let Q(A) = {p € A} : ¢ > 0}
be the quasi-state space which is weak* compact and convex. Every weak* closed
face of Q(A) containing zero is of the form F(p) = {¢ € Q(A) : ¢(1 — p) = 0} for
some closed projection p € A**, called the support projection of the face (cf. [5, 15]
or [14, 3.11.10]). The polar decomposition of a functional ¢» € A* is denoted by
W(-) = v*Y|(+) = ||(v*-) where v* is a partial isometry in A™.

For each ¢ in Q(A), we let (7, H,,w,) be the Gelfand-Naimark-Segal representa-
tion of A induced by ¢. As usual, we also denote by 7, the extended representation
of A** on the Hilbert space H,, (see, for example, [14, p. 60]). For simplicity, we write
zw, for m,(r)w, in H, whenever z € A*™*. Thus we have zw, = 0 if, and only if,
p(x*x) = 0. Further, we have ¢(z*z) = 0 for all ¢ € F(p) if, and only if, ap = 0
(cf. [14, §3.10] and [1, Corollary 3.5]). We note that if ¢ is a pure state with support
projection p, then F(p) = [0, 1]¢.

Proposition 2.2. Let A and B be C*-algebras and let T : A — B be a linear
isometry. Then there is a largest projection p in B** such that

(1) T(-)p: A— B** is a triple homomorphism;
(i1) T{a,b,c}p={Ta, Tb,Tc}p for all a,b,c in A.

Further, p is a closed projection and (T'a)*(Th)p = p(Ta)*(Tb) for all a, b in A.

Proof. Let
Fo= ﬂ {p € Q(B): (Ta(g))wso = (Ta)(S)w@}
- ﬂ {peQ(B):¢ ((Ta(3) — (Ta)®)*(Ta® — (Ta)(3))) =0}.

Then F} is a weak™ closed face of Q(B) containing zero. For a in A;, we define a
weak™ continuous affine map @, : Q(B) — Q(B) by

Cu(p)(1) = ¢ ((Ta)"(Ta) - (Ta)"(Ta)) .
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Forn=1,2,..., the sets

Frp1 ={p € F,: ®u(p) € Fy,Va € A} = () F,N®, ' (F),)

acAq

form a decreasing sequence of weak™ closed faces of Q(B). The intersection F' =
N~ F,, is a weak* closed face of Q(B) containing zero. Let p be the closed projection
in B** supporting F"

F=F(p)={peQ(B):¢(-p) =0}

For each a in A; and ¢ in F', we have

Pu(p)(-) = ¢ ((Ta)"(Ta) - (Ta)*(Ta)) € F,

and consequently,

(p(Ta) (Ta)w,, (Ta)"(Ta)w,) = Pa(p)(p) = Palp)(1) = [(Ta)"(Ta)w,|*.

Hence
p(Ta) (Ta)w, = (Ta) (Ta)w,, Vi € F = F(p)

and therefore
p(Ta) (Ta)p = (Ta)"(Ta)p.

It follows that
p(Ta)*(Ta) = (Ta)*(Ta)p, Va € A.

By polarization, we have
p(Ta)"(Tb) = (Tay (Tb)p 2.1)

for all a,b € A. To verify (i), we note that
(Ta®)w, = (Ta)Pw,, VecF.

This gives
(Ta®p = (Ta)®p.

By triple polarization and (3.1), we get
T{a,b,ctp = {Ta,Tb,Tctp = {(Ta)p, (Tb)p, (T'c)p}.
Finally, if ¢ is a projection in B** satisfying conditions (i) and (ii), then
Flq) ={¢€Q(B):p(1—q)=0} CF, n=12...

since ®,(F(q)) C F(q) for a € A; and it is evident that F(q) C Fj. Therefore
F(q) C F(p) and ¢ < p. The last assertion has been shown in (2.1). O
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Remark 2.3. (a) Although the above result only requires 7" to be contractive, all
subsequent applications of the result, including the next two remarks, requires T’
to be isometric.

(b) In the above proof, if T" is surjective or T'(A) is a subtriple of B, then F} = Q(B)
and p = 1.

(c¢) For an arbitrary projection p € B**, conditions (i) and (ii) above are independent
of each other in general and they need not imply (2.1). Consider, for instance,
the identity map 7' : A — A, for which (ii) is satisfied by any projection, but
only the central projections in A** satisfy (i) and (2.1). Nevertheless, if 7%*(1) is
unitary, then (i) implies (2.1) and hence (ii), for any projection p € B**. Indeed,
if 7**(1) = 1, then T commutes with involution and, by weak*-continuity of
the triple product and (i), we have T{1,1,a}p = {1p,1p,T(a)p} which gives
T(a)p = pT(a)p = pT'(a) for a = a* and hence for all a € A. For unitary 7%*(1),
the map 77*(1)*7™* is unital and the preceding statement gives pT'(a)*T'(b) =
p(T™* ()T (a)) (T () T (b)) = (T 1) T(a)) (T Q) T(b))p = T(a) T (b)p. If
B is abelian, then of course (i) and (ii) are equivalent.

Definition 2.4. We denote by pr the projection for the isometry 7" in Proposition

2.2 and call it the structure projection of T.

We give the following examples of structure projections pr. Let M, be the C*-

algebra of n X n matrices.

Example 2.5. Let T : My — M3 be defined by

0 b a b 0
T (c d) =|c d 0
0 0 a
Then T is a unital linear isometry and T'(Ms) is not a subtriple of Mj. The structure
projection pr is given by

We note that Morita [12] has shown that a linear isometry 7' : M,, — M, is of the
form T'(z) = uzv or T(x) = ux'v for some unitary u,v € M, where z* denotes the
transpose of x.

Example 2.6. Let A = C[0,1], B = C([0,1] U {2}) and define T': A — B by

f(x) for x € [0, 1]

(Th)w) = { fol fy)dy for z = 2.
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Then T is a unital linear isometry, T(A) = {h € B : h(2) = fol h(y)dy} has co-
dimension 1 in B and it is not a subtriple of B. We have pr = x[o,1], the characteristic
function of [0, 1], which is in B.

Example 2.7. Let T': C — M, be defined by

T(a) = (2 3) |

Then T is an isometry and 7'(C) is not a subtriple of M,. Also T'(1) is not unitary
and T'(C) contains no nontrivial positive element. Its structure projection pr is given

by
/10
br = 00
which does not commute with 7'(a) for a # 0. Also T'(a®®) # T'(a)® for all non-zero
acC.

Example 2.8. Let K(H) be the C*-algebra of compact operators on a Hilbert space
H with an orthonormal basis {e, s, ...}, and B(H) the algebra of bounded operators
on H. Define a linear isometry T': ¢¢ — K(H) by

T X9
T(m) = ?€1®€1+x163®62+?e5®eg+x2e7®e4+-~
1 & >
-9 Z TnCin-3 @ €2p-1 + Z Tplan—1 @ €2p
n=1 n=1

where x = (z,,) € ¢ and (e; ® ex)(-) = (-, ex)e;. We have

"= (0 a0,

1 oo o
T(I(?’)) = B Z $§’)64n—3 X eop_1 + Z $£L3)€4n—1 & €op,

n=1 n=1

and
>
T(x)(3) = 3 nz:; $7(13)€4n—3 & eop_1 + Z $$L3)€4n—1 X eap,

n=1

by orthogonality. Hence, for any projection ¢ in K(H)*™ = B(H),

if, and only if,

(Z $513)64n73 ® ean-1)q = 0.

n=1
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This happens for all x in ¢y exactly when ges,—1 = 0 for n = 1,2,.... Therefore
the structure projection pr is the orthogonal projection onto span{es, ey, ...} and we
have
1T (@)prll = |zl and  pr(Tz) =0

for all z in cg.

Remark 2.9. Let T : A — B be a linear isometry between C*-algebras. Let B
be a C*-subalgebra of B, with common approximate identity, and regard B** as a
subalgebra of B**. Then the structure projection pr of the isometry T': A — B

is the same as pr. Evidently, we have pr < pr. Suppose pr # pr. Choose a state
Y € B* such that ¢(pr) < ¥(pr). Then the state

Y(pr - pr)
b(pr)

is in the closed face F'(pr) of Q(E) supported by pr. This means, by the proof of

o() =

Proposition 2.2, that
() ((Ta® — (Ta))* (Ta® — (Ta)®) =0 (a,be A, n=0,1,2,...)

where ®Y(p) = p and ®} is the nth iterate of ®;. The restriction p|p is a state of
B and clearly the above identity remains true when ¢|g replaces ¢, that is, ¢|g €
F(pr) € Q(B) which gives the contradiction

. . Y(prprpr) _ Y(pr)
b=elen) = =0 ey T U

SO Pr :]/9\]:

We note that, for a linear isometry T': A — B between C*-algebras, the triple
homomorphism T'(-)pr = 0 if, and only if, 7**(1)pr = 0. This follows from the weak*
continuity of the triple product and the identity

T(a)pr = T (a)pr = T{1,1,a}pr = {TQ)pr, T"*(V)pr, T(a)pr}.

We study various necessary and sufficient conditions for 7'(-)pr # 0 in the next two
sections. The above identity also shows that 7**(1)pr is a partial isometry in B**.

3 Isometries from abelian C*-algebras

In this section, we study the structure projection of a linear isometry on an abelian
C*-algebra. This is motivated by the intention to study a linear isometry locally,
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that is, to study its restriction on a subtriple generated by an element. We show in
Theorem 3.10 below that when A is abelian, the structure projection pr of an isometry
T from A into any C*-algebra B is large enough to make the triple homomorphism
T(-)pr an isometry. Consequently, a linear isometry 7" on any C*-algebra reduces
locally to a triple isomorphism via a projection, as shown in Corollary 3.12. We also
give an alternative construction of pr in Proposition 3.14 when the codomain B is a
dual C*-algebra. We prove some lemmas first.

Definition 3.1. Let T : A — B be a linear map between C*-algebras. For each ¢
in A* with ||¢]| =1, let

A, ={a € A:p(a) = [laf = 1}.
Similarly, for each ¢ in B* with ||| = 1, let
By ={be B:¢(b) = bl =1}.
If A, # 0, we define
Qp ={v € B": [[¢| = 1 and T(Ay) € By}

Lemma 3.2. Let T : A — B be a linear isometry between C*-algebras. For ¢ in
A* with ||p]| =1 and A, # 0, the set Q, is a non-empty weak™ closed face of By.

Proof. We first note that @, is an intersection of non-empty weak™* closed faces of
B
Q,= () {v e B;:¢(Ta) =1},
acAp

We show these faces have finite intersection property. To this end, let ay, ao, ...,
a, be in A, and let a = >  a;. Since p(a) = n, we have ||Ta|]| = |la]| = n.
Therefore, there is a norm one functional ¢ in B* such that (T'a) = n. It follows
that 7", ¢¥(Ta;) = n and so ¢(Ta;) =1 for i = 1,2,...,n. Consequently, we have

¢ € N7, (Ta)) {1}, s

Lemma 3.3. Let T': A — B be a linear isometry between C*-algebras, and let
o € A* with ||¢|| =1 and A, # 0. Then for any a € A, and ¢ € Q, T B} with polar
decomposition 1 = v*[1|, we have

(i) [(Ta)wy || = 1;

(ZZ) (Ta)w|¢|:vw‘¢‘ and (TCL)*UWMIWW m HI¢|'



10 C-H. Chu and N-C. Wong

Proof. Given a € A, and ¥ € @), we have T'a € B,, and therefore,

1 = ¢(Ta) = [¢|(v"(Ta))
= (v (Ta)wpy|, ) = (Ta)wpy), vopy)) = (W), (Ta) vwpy)) -

Since ||[vwyy||| = 1T and ||(T'a)w)y||| < [|Tal| = 1, we have ||(T'a)w)y||| = 1 and (T'a)w)y| =
vwy|. Similarly, we have (T'a)*vwjy| = wjy|- O

In the remaining lemmas of this section, we assume that A is an abelian C*-algebra
and is identified with the algebra Cy(X) of continuous functions on a locally compact
Hausdorff space X, vanishing at infinity. Fix a linear isometry 7" : Cy(X) — B,
where B is any C*-algebra. We write

Ap = A5, = {f € Co(X) : f(x) = |If]| =1}

Q= Qs, ={tb € B": ||| = 1 and T(4;) € By}
where 0, is the point mass at 2. Note that A, # () for all x in X.
We let Q = J,cy @ and define |Q,| = {|¢| : ¥ € @z}, |Q| = U,ex |Qxl-

Lemma 3.4. Given z # 2’ in X, we have |Q.| N |Qu| = 0.

Proof. We first show that Q, N Q. = (). Suppose, otherwise, that there exists ¢ €
Q2 N Q. Then TA, C By and TAy C By. Let f € A, and f' € A, with
ff' = 0. Since T is an isometry and ||f + f'|| = 1, we have ||Tf + T f'|| = 1. But
V(T f) =T f") =1implies | Tf +Tf'|| > 1+ 1= 2 which is a contradiction.

Now suppose there exists ¥ € |Q.| N |Q.| with ¢ = |p| = |¢/| and ¢ € Q.,
¢ € Qu. Let ¢ = v*|p] and ¢’ = v"*|¢/| be the polar decompositions. By Lemma
3.3, given f in Cy(X), we have

fed, = (Tf)wy = vwy;
fe Ay = (Tf>W¢ = U%dw.

We can choose an f in A, N A, which then gives vw,, = v'wy. Consequently, for every
a in A we have

1%

pla) = P(va) = (awy, vwy),, = (awy, V'wy),, = ¥(0"a) = ¢'(a).
Hence ¢ = ¢’ € ), N Q. which is impossible. ]

Definition 3.5. Define 0 : || — X by

o([) =2 for ¢ € Qa.
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Let P(B) be the set of all pure states of B. The following lemma shows that
Q1IN P(B) £10.

Lemma 3.6. o(|Q| N P(B)) = X.

Proof. Consider the isometry 7" from A = Cy(X) onto T'(A). The adjoint map 7™
sends the set 0T'(A); of extreme points in the closed unit ball of T'(A)* onto the
extreme points of the closed unit ball of Cy(X)*. In particular, for each x in X, there
is a1 in OT(A)} with T*¢ = §,. Let QZ be an extreme point in B} extending 1. Let
¥ = v*|))| be the polar decomposition of ¥. Then (T f) = T*¢(f) = f(z) for all f
in Cy(X) which implies that ¢ € Q, and |¢| € |Q.| N P(B). Hence o(|¢)]) =z. O

Let ¢ = V{p, : ¢ € |Q| N P(B)} be the atomic projection in B** supporting all
pure states in |@)| where p,, is the minimal projection in B** supporting the pure state
. Note that ¢ depends on T'.

Lemma 3.7. For all f in Cy(X), we have |[(Tf)q|| = ||Tf]

Proof. Let ||f|| = |f(x)] > 0 for some x in X. Then % € A, and % € B, for
some ¢ € @, with [¢| € |Q] N P(B) by Lemma 3.6. It follows from Lemma 3.3

that [[(T'f)wyll = [[fIl = I1TAI. So ITfIl = (T Hall = 1T Fppsill = 1T )yl =
I f1] 0

Lemma 3.8. Let ¢ = |p| for some p in Q with polar decomposition p = v*p. Let
f € Co(X). If flo(¢) =0, then (Tf)w, = (Tf) v, = 0.

Proof. Without loss of generality, we may assume that ||f|| = 1. By Urysohn’s
Lemma, it suffices to show that if f vanishes in a neighborhood of o(¢) in X, then
(Tf)wy, = (T f)*vw, = 0. For this, we choose g in A,(,) such that fg = 0. Then

gl =1 = g(o(e))

and
[f+gll=1=(f+9)(o(p)).

By Lemma 3.3, we have

(Tg)w, = vw, =T(f + g)w,

and
(Tg) vw, = w, = (T(f + g)) vw,.
Consequently (T f)w, = (T'f)*vw, = 0. O
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Lemma 3.9. Let ¢ € Q have polar decomposition » = v* where ¢ = |1|. Then for
all fin Co(X), we have (T f)w, = f(o(p))vw, and (Tf)vw, = f(o(p))w,.

Proof. Recall that o(¢) =z if ¢ € Q.. Pick h € Cy(X) such that h(o(p)) =1 = ||h]],
that is, h € A,(,). Since

(f = fla(e))h)(o(p)) =0,
Lemma 3.8 gives
T(f = flo(@)hw, = (T(f = F(o(2))h)) v, = 0.
Therefore
(Tf>wso = f(o'(<:0)>(Th>Wgo = f(o(go))vwg,

since (Th)w, = vw, by Lemma 3.3. Similarly, we have, by Lemma 3.3 again,

(Tf)vwe = f(a(@))(Th) vw, = f(o(p))we.

We are now ready to prove that T'(-)pr is an isometry if A is abelian.

Theorem 3.10. Let T : A — B be a linear isometry between C*-algebras and let A
be abelian. Let pr € B** be the structure projection of T'. Then we have

[(Ta)pr|l = lla] (a € A).

Proof. Let ¢ € B** be the atomic projection, determined by 7', in Lemma 3.7. We
show that 7'(-)q is a triple homomorphism from A = Cy(X) onto T(A)g. Let ¢ €
|Q| N P(B) with ¢ = [¢] for some ¥ € Q. Let ¢ = v*¢ be the polar decomposition.
By Lemma 3.9, we have

(TfD)w, = fO(a(p))ow, = fla(9)) f(o(9))f(o(0)vw, = (Tf)Pw,.

Hence, by the definition of ¢, we have

(TfP)g=(Tf)Pq

for every f in Cy(X), and hence the map T'(-)q is a triple homomorphism. On the
other hand, using Lemma 3.9 again, we get

(Tg)"(T'f)we = g(a () f(o(p))wy

which gives ¢(T'g)* (T f)w, = (T'9)*(T f)w, since qw, = w,. Therefore ¢(T'g)* (T f)q =
(T'g)*(Tf)q and ¢ commutes with (T'g)*(Tf) for all f,g in Cy(X). It follows that
q satisfies condition (ii) in Proposition 2.2 and so ¢ < pr by maximality of pr. By
Lemma 3.7, T'(-)q is an isometry which implies that 7'(-)pr is such also. O
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Remark 3.11. When B is abelian, Theorem 3.10 gives a result of Holsztynski [8, 9]
as a special case.

Given any element a in a C*-algebra or, more generally, a JB*-triple A, the (closed)
subtriple Z, of A generated by a is linearly isometric (and hence triple isomorphic)
to an abelian C*-algebra [11, Corollary 1.15]. Applying the above theorem to the
restriction of a linear isometry to Z,, we obtain the following local result on linear
isometries between C*-algebras.

Corollary 3.12. Let T : A — B be a linear isometry, where A is a JB*-triple and
B is a C*-algebra. Then for every a € A, there is a largest projection p, € B**, which
is closed, such that T()p, : Zo — B** is an isometry and a triple homomorphism
satisfying

T{z,y,z}pa = {Tx, Ty, Tz}p,

forall x,y,z € Z,.

Remark 3.13. (a) Clearly, pr < p,, but it can happen that pr # p, = 1. In
Example 2.1, we have pr # 1 and if a € C(Q) satisfies a(0) = a(1) = 0, then
every b € Z, also satisfies b(0) = b(1) = 0 since {f € C(Q) : f(0) = f(1) =0}
is a (closed) subtriple of C(€2) containing a. Therefore T' restricts to a triple
isomorphism on Z,, in other words, p, = 1.

(b) The condition T{a,a,a} = {Ta,Ta,Ta} alone need not imply that p, = 1.
This amounts to saying that the condition 7'(a®) = T(a)® need not imply
T(a®*D) = (Ta)?*D for all n. Consider the unital isometry T in Example 2.6
and the function

in C[0,1]. A simple calculation gives

= [ o =
T(f®)(2 /f m—/(%—%wa:L

Therefore, we have T(f®3) = (T £)®), but T(f®) £ (T f)® since

20059168 ,
)= [ 10 =200 1= ()

and
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In the proof of Theorem 3.10, the two maps T'(-)q and T'(-)pr are actually equal
if B is a dual C*-algebra. We show this in the next proposition as well as giving an
exact formula relating ¢ and pr.

A C*-algebra B is called a dual C*-algebra if I*+ = I for all closed one-sided
ideals I of B, where for any closed left (resp. right) ideal I (resp. J) of B, we
define It = {b € B : Ib = {0}} (resp. J* = {b € B :bJ = {0}}). It is known
that a C*-algebra B is dual if and only if every maximal abelian subalgebra of B
is generated by minimal projections, or equivalently, B is a co-sum of algebras of
compact operators on Hilbert spaces (cf. [19, p.157]). Therefore, a unital dual C*-
algebra is finite-dimensional. Given a dual C*-algebra B, the minimal projections in
B are also minimal in B**, and every singular state of B** vanishes on B.

Given b in B**, we denote by r(b) the right support projection of b which is the
smallest projection in B** satisfying br(b) = b. If T is a linear isometry from a
C*-algebra A into B, then for the partial isometry 7%*(1)pr, we have r(T**(1)pr) =

prT™ (1) T (1)pr.

Proposition 3.14. Let pr be the structure projection of T : A — B in Theorem
3.10 and q the projection in its proof. Let B be a dual C*-algebra. Then we have

(i) T()pr = T(-)¢;
(i1) q is the right support projection of T**(1)pr;
(i1i)) pr = q+1—r(TA) where r(TA) =\/{r(T(a)) : a € A}.

Proof. (i) We note that ¢ < pr from the proof of Theorem 3.10. Let z = pr — g.
We show that T'(-)z = 0. Suppose otherwise. Then T'(-)z : A — T(A)z is a non-
zero triple homomorphism as T'(a®)z = T(a®)prz = (Ta)®prz = (Ta)®z, and =z
commutes with 7'(a)*T(a) because pr and ¢ do. Hence the quotient A/ ker T'()z is iso-
metrically triple isomorphic to T'(A)z. If we identify A with Co(X), then A/ ker T'(+)z
identifies with Cy(Y), where Y is a nonempty closed subset of X and the quotient
map is just the restriction map. Pick y € Y. Applying Lemma 3.2 to the isom-
etry Co(Y) — T(A)z C B*™, we find an extreme point ¢ in (B**)} such that
Y((T'f)z) = 1 whenever f € Cy(X) satisfies f(y) = ||f]| = 1. Let ¢» = v*|¢)| be the
polar decomposition with v € B**. Then || is a pure state of B* and [¢|(z) =1
by Schwarz inequality. Hence

1¥|(q) = [¥](g2) = 0.
We note that [o|((Tf)*Tf) = Lsince 1 = [¢|(*(Tf)2) = [o|(v*T) < [0I((T)T) <

1. Tt follows that |¢| is a pure normal state of B** as it does not vanish on B and a pure



Isometries between C*-algebras 15

state is normal or singular. Therefore 1) is normal on B** since B* = B***z, for some
central projection zy in B*** (cf. [19, p. 126]) and we have 1 zy = v*||zg = v*|¢)| = 9.
Therefore || € |Q,| N P(B) because Y((T'f)(1 —2)) = |¢|(v*(Tf)(1 — z)) = 0 yields
Y(Tf) =v((Tf)z) =1for f € A,. It follows that |¢)|(¢) = 1, by the definition of g,
which gives a contradiction.

(ii) By weak™ continuity and Lemma 3.9, we have
T*)"T™(1Nw, = w,, Vo e |Q).
Therefore
)T (1)g =q
and
prT™ ()T (N)pr = (T (L)pr)" (T (V)pr) = (T (1)q)* (T (1)q) = ¢.
(iii) Since T'(A)z = 0, we have
pr—q=z2<1—r(TA).
On the other hand, since T'(-)(1 — r(T'A)) = 0, we have
1—-r(TA) <pr and ¢q(1—-r(TA)) =0
which gives
pr=q+1—r(TA).
O
The use of dual C*-algebras in Proposition 3.14 hints at the atomic property of

B* and a general formulation of the result, without any assumption on B, should
relate the atomic part of pr to ¢, as the following example shows.

Example 3.15. Let A = Cy(0,1] and T': A — C[—1, 1] be the natural embedding,
namely, T'f agrees with f on (0,1] and is zero elsewhere. Then we have pr = 1,
r(TA) = VieaT(f) = X1 € C[=1,1]™ and g = zasx(0, is in the atomic part of
C[—1,1]**, where z, is the maximal atomic projection in C[—1, 1]**. We see, in this
case, T ()prza, = T(*)q and prza = ¢+ (1 — (T A)) 2.

4 Isometries into abelian C*-algebras

Every C*-algebra can be embedded into an abelian C*-algebra by a linear isometry.
It is therefore natural to consider isometries into abelian C*-algebras. We begin with
a description of the structure projection.
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Proposition 4.1. Let T : A — B be a linear isometry between C*-algebras and let
B be abelian. Then pr = \,c4 Pa where p, is the projection in Corollary 3.12.

Proof. Let p = A,c4 Pa- We only need to prove pr > p. For every a € A, we have
T{a,a,a}p =T{a,a,a}p,p = {Ta,Ta,Tatp,p = {Ta,Ta,Ta}p.

Since B is abelian, T'(:)p : A — B** is a triple homomorphism. Hence pr > p by
the maximality of pr in Proposition 2.2. O

By a character p of a C*-algebra A, we mean an algebra homomorphism p : A —
C\{0}. It is clear that the algebra M, does not have a character. Also, a C*-algebra
is abelian if, and only if, its pure states are all characters.

Lemma 4.2. Let N be a von Neumann algebra. Then N has a weak™ continuous
character if, and only if, N contains an abelian summand.

Proof. The sufficiency is obvious. Suppose N has a weak* continuous character p.
Then N must contain a type I summand N; for otherwise, the ‘Halving Lemma’
implies that N is of the form DM, (cf. [19, Proposition V.1.22]) and the restriction of
p to 1® M, is a character which is impossible. Since Ny is of the form ), N, ® B(H,,)
where Ny is abelian and B(H,,) is a type I, -factor, N; must contain an abelian
summand because the contrary would imply p|y, = 0 and p = 0. [l

The above lemma implies that a C*-algebra A has a character if, and only if, A**
contains an abelian summand. We show below that this condition is equivalent to
the non-triviality of the map T'(-)pr if T' is a linear isometry from A into an abelian
C*-algebra B.

Proposition 4.3. Let T : A — B be a linear isometry between C*-algebras where
B is abelian. Let pp € B** be the structure projection of T'. Then

(i) T(-)pr is an isometry if, and only if, A is abelian.
(1) T()pr # 0 if, and only if, A admits a character.

Proof. (i) The necessity is obvious since T'(A)pr is an abelian JB*-triple. The suffi-
ciency follows from Theorem 3.10.

For (ii), we first assume that 7'(-)pr # 0. Then there exists a character p of B**
which does not vanish on T'(A)py, and hence the composite po (T(:)pr) : A — C
is a non-zero triple homomorphism. Since the closed triple ideals of C*-algebras are
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algebra ideals, it follows that A/ker po (T()pr) is a one-dimensional C*-algebra and
the natural quotient map p: A — A/ker po (T()pr) is a character of A.

Conversely, let 77 be a character of A and let B = Cy(Y") for some locally compact
Hausdorff space Y. Then 7 is a pure state of A. Since the extreme points in the closed
unit ball of T'(A)* can be extended to the extreme points in the closed unit ball of
Co(Y)*, we have n = T*(Ady|r(a)) for some y in Y and |A| = 1 where T* : T'(A)* —
A* is an isometry. The support projection ps, € Co(Y)** of J, is a minimal projection
and we have AT'(a®)p;, = AT'(a®)(y)ps, = n(a®)ps, = n(a)®ps, = AT (a)®)p;, for
all a in A. Therefore ps, < pr by maximality of pp, and thus T'(-)pr # 0. ]

Remark 4.4. Let A, B and T be as in Proposition 4.3. If A has a character, then
we actually have

IT(a)pr|| = sup{|n(a)| : n is a character of A},
which gives an alternative proof of the sufficiency in (i). The identity follows from

T (a)pr|] = sup{|p(T(a)pr)|: p is a character of B**}

= sup{|(

a)| : p is a character of B*™}
< sup{|n(a)| : n is a character of A},

where p is the quotient map A — A/ker po (T()pr) and the last term is at most

pPr
|T(a)pr|| from the proof of (ii).

The result of Proposition 4.3 does not hold if B is nonabelian. In Example 2.5,
we have T'(-)pr # 0 for some linear isometry 7' : My — Mj. We conclude with the
following example.

Example 4.5. There is a linear isometry 7" : My — B(H), where B(H) is the
algebra of bounded operators on an infinite dimensional separable Hilbert space H,
such that T'(:)pr = 0.

To see this, let Y be the closed unit ball of M and j be the canonical linear
embedding of M, into C(Y). Take a faithful nondegenerate representation m of C(Y)
on a separable Hilbert space H. Then T' = 7 o j is a linear isometry from My into
B(H). By Remark 2.9 and Proposition 4.3, we have T'(-)py = T'(-)p; = 0.
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