CONSTRUCTING SPACE-FILLING CURVES OF COMPACT
CONNECTED MANIFOLDS

YING-FEN LIN AND NGAI-CHING WONG

ABSTRACT. Let M be a compact connected (topological) manifold of finite or infinite
dimension n. Let 0 < r < 1 be arbitrary but fixed. We construct in this paper a space-
filling curve f from [0,1] onto M, under which M is the image of a compact set A of
Hausdorff dimension r. Moreover, the restriction of f to A is one-to-one over the image
of a dense subset provided that 0 < r < ﬁg%. The proof is based on the special case
where M is the Hilbert cube [0, 1]“.

1. INTRODUCTION

Following the first example given by Peano in 1890, we know that every n-dimensional
cube [0, 1]™ has a space-filling curve (see, e.g. [11]). In other words, [0,1]" is a continuous
image of the unit interval [0,1]. This fact is eventually generalized to give

Theorem 1 (Mazurkiewicz and Hahn, (see e.g. [11, p. 106])). Let X be a metrizable space.
Then X is a continuous image of [0, 1] if and only if X is compact, connected, and locally
connected.

As a consequence of Theorem 1, in addition to finite dimensional cubes [0,1]",n =
1,2,..., the Hilbert cube H = [0, 1]*, i.e. the product space of countably infinitely many
copies of [0,1], also has a space-filling curve. It is known that every separable infinite
dimensional compact convex set in a Fréchet space is affinely homeomorphic to H (see, e.g.
[1, p. 100] or [8, p. 40]). Consequently, there are also space-filling curves of such spaces.

A metric space M is called a Hilbert cube manifold if for each = in M, there is a base of
neighborhoods of z in which every member is homeomorphic to an open subset of H (see,
e.g. [1, p. 298]). When M is compact, it is equivalent to saying that there exist compact
subsets Uy, ... , U, of M such that M is covered by the interiors of Uy, ... , U and each of
them is homeomorphic to H. In this paper, compact (topological) manifolds M are either
modeled on [0, 1]" if dim M = n < oo, or modeled on H = [0,1]* if dim M = oc.

The existence of a space-filling curve of any compact connected manifold is ensured by
Theorem 1. In this paper, we shall construct a computable space-filling curve f of the
Hilbert cube H. Similar results has been obtained for finite dimensional cubes [0,1]" in
[5] for n =1,2,.... In [3], M. Bestvina and J. J. Walsh showed that for positive integers
n > m > 2, there is a surjective continuous function g from R" onto R™ that is one-to-one
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over the image of a dense subset. Moreover, if R™ = g(K) for any o-compact subset K of
R™ then dim K = n. In our construction, for any pre-assigned r between 0 and 1, we can
construct explicitly a space-filling curve f from [0,1] onto [0,1]", n = 1,2,... ,w, maps a
compact set A of dimension r onto [0, 1]*. Moreover, the restriction of f to A is one-to-one
over the image of a dense subset provided 0 < r < ﬁ%. Similar conclusions are carried
to compact connected manifolds, which supplement the results in [2, 3, 4].

There is a variety of applications of space-filling curves. To name a few, we mention
[6] for embedding Urysohn space into C[0,1], [12] for classifying geometric finiteness of
Kleinian groups, and [9] for converting integral equations in n variables into one involving
one variable. See also [13] for more interesting information.

2. MAIN RESULTS

Recall that the Hilbert cube H can be embedded into the separable Hilbert space lo as
the set {(z,) : 0 <z, < %} in norm topology (see, e.g. [1, p. 100]). For computational
ease, we identify H as the norm compact convex set {(zp) : 0 < z, < 2,%1} in s, and

o]
1
frequently write H = H [0, F] in Iy if no confusion arises.
n=1

Lemma 2. We can construct a space-filling curve f of the Hilbert cube H, under which H
is the image of a compact subset A of [0,1] of Hausdorff dimension zero. Moreover, the
restriction of f to A is one-to-one over the image of a dense subset.

Proof. We take a sequence of integers {qy} such that g5 > 2¥ +2 for k = 1,2,... and
= 0. Let A;, Ag, A3 ... be compact subsets of the interval [0,1] defined by

lim
k—oo logy gy,
>t
A = — k4, =1,2,3,...,25, k=1,23,... 2
foralll =1,2,3,.... Observe that

oC oC t
A=Na={ —F—: 4, =1,2,3,...,2%, k=1,23,..}
l:q ];ql...q2k

is compact. Since A, is a disjoint union of 2 x 22 x 23 x - -- x 22" = 2@'+127" intervals each
of length —L— the Hausdorff p-dimensional measure of A; for any p > 0 is

q1gy’
- 1
HY(A)=2@+D27 =y 1123 ...
» (A1) (ql__.qu)
Thus,
9.92...92
H}(A) = lim H}(4;) = lim ————-.
pA) =l Hy(4) = lim "o )
Let e(k) = ﬁ. Then k& = log, q,ec(k), or 2F = q,i(k). Since e(k) — 0% and gx — oo as
k — 0o, we have
2k e(k) B
=t —g®P 0 i p>o.

ay, ay,
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Consequently, the Hausdorff dimension of A is
dim A = inf{p > 0: H;(A) =0} = 0.
Our desired space-filling curve f : [0,1] — H is given by sending ¢ in [0, 1] to the point
o0

1
(z1(t), z2(t), z3(t),...) in H = H [0, 271—_1] C ly. More precisely, we write ¢ in its g-

n=1
o0
erpansion t = Z where ¢, belongs to {0,1,2,... ,q5 — 1}, and write
q1---4k
k=1

in base 2 expansion.

Denote by (a)2 the base 2 representation of a. We assign g9 = tg = zpr = 0 for k =
0,1,2,... ,n—1, wheren=1,2,..., and

y if 1<t <28 (4 — 1) =y,
if 2l4+1<t <q -2,

= if t1t=0=tgorq —t1 =1=g¢q— oy,
if t1=0#1tyorq —t =1%#qo—to;
(y1,92) if 1<ty <22 (t2—1)2 = y1ye,
(1,1) if 241<ty<q—2,
(w12, 222) = (z11,0) i to=0=tiorqu—to=1=gqq — 11,
(1—z11,1) if o=0#tiorg—ta=1#q —t;
In general,
($1n5$2n;--- ;xnn)
((yl,yg,... 2 Yn) if 1<¢,<2% and
(tn — )2 =v1y2- " Yn,
1,1,...,1) if 2" 4 1<t, <gn—2
=< (Z1n-1,Z2n-15--+ s Tn—1n-1,0) if t,=0=14%,_1 0r

Gn—th=1=¢qn-1—tyh1,
(I-zip1,1—220-1,... , 1 =T _15-1,1) if tn=0#1t,10r

Gn —tph =1 7é Qn—1—tn_1-

\

A routine verification will show that even for those ¢ having two distinct g-expansions,
the values of z1(t), za(t), z3(t), ... are unique. We check that f is (uniformly) continuous
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on [0,1]. For € > 0, fix a positive integer n such that

> 1

9 €
> )<y
k=n+1
For z in H, write z = (21, %2,... ,Zn,-..) in lo. Observe that
oC n €
2 2 2
lzll5 = Zxk < Zxk T3
k=1 k=1
.. . 1
Let m be a positive integer such that 5y < 5. Let § = T Suppose t, t' € [0,1]

such that |t — ¢/| < . We write ¢, ¢’ in their g-expansions with infinitely many nonzero
digits t; and ¢,. In this way, ¢ =t} for k =1,2,... ,m. Let z = f(t) and 2’ = f(). The

first m digits of z3 and «}, agree, and thus |xk—x§c|§2im, for k=1,2,.... Then
n
2 yi2  E M€ € €
||$_$||2<k2_1|$k_$k| +§S2_m+§< §+§— €.

It is plain that the image of A under this curve is the entire of H.

Finally, let Hy be the subset of H consisting of points z such that f~!(z) contains more
than one points in A. Let Ay = f~!(Hp) N A. It is not difficult to see that a point
x = (z1,T2,...) € Hy if and only if at least one coordinate x; has a finite binary expansion.
Correspondingly, the g-expansion of any point ¢ in Ay, when f(¢) = z, will have a special

o0

t
form t = Z — % in which the ith digits of the binary expansion of t; —1 are eventually

q192 - - -4k
k=1
constant as k — co. Obviously, A\ Ay is dense in A, H\Hj is dense in H, and f is one-to-one
from A\ Ay onto H\H. O

In the following, we denote by [a] the greatest integer part of a real number a.

Lemma 3. For each real number G > 1, there exists a sequence of positive integers {q;},
chosen from {[G], [G] + 1}, such that

=

lim (qig2---qx)* =G.
k—o0

Proof. Set g = [G]. We shall choose subsequent g to satisfy the inequalities
[G] GF' < quga- - < ([G] + 1)GF 1.

Suppose qi,¢2,... ,q;_1 are chosen accordingly. In case qigo---qr_1 > G*~!, we set
gr = [G]; otherwise, we set ¢ = [G]+ 1. It is easy to see that gy does not violate
the above inequalities. Finally, we observe that

1
(@)% < (q1g2--- qx)* S([G]—i_l)%
G G G
forallk =1,2,.... Hence, lim (q1q2---qk)% =G. 0
k—oo

Lemma 4. For 0 < r < 1, we can construct a space-filling curve f of the Hilbert cube
H, under which H is the image of a compact subset A of [0,1] of Hausdorff dimension r.
Moreover, the restriction of f to A is one-to-one over the image of a dense subset.
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Proof. Let G = 21/ > 2. Utilizing Lemma 3, we get a sequence {p;} of positive integers
chosen from {[G], [G] + 1} such that

) 1
lim (pip2---pr)* = G.
k—o0
Set
q1 =p1p2 > 22 = 21 +2,
g2 =p3paps > 2° > 2242,
g3 =pep7pspe > 2> 23 + 2,
In general, for n =1,2,3,..., we set

dn = Pop(n—1)+1"""Pyp(n) = 2mtl > 2" 4 2,
where ¢(0) = 0, and
n(n + 3)
5
With the sequence {g,} in hand, we can proceed as in the proof of Lemma 2 and obtain a
compact subset A of [0,1] whose Hausdorff p-dimensional measure is

o(n)=24+3+4+---+(n+1)= n=12,....

9.92...92 92=1(2141)
Hy(A) = lim —="""%_ — fim
1200 (quga---qa)P  1=00 (P1P2 - - - Py(at))P
284172843
— lim (— 2 (@),

1=00  (p1p2 - - - Poypary )P/ (2

It is plain that Hp(A) = oo whenever G? < 2, and H,(A) = 0 whenever GP > 2. Hence,
dim A = r. The rest of the proof goes exactly as in that of Lemma 2. O

The finite dimensional version of Lemmas 2 and 4 has been obtained earlier. It is,
however, still open to us that if the upper bound ﬁ% can be removed from the following
statement.

Lemma 5 ([5, Theorem 2]; see also [7]). Let n > 2 be any positive integer and 0 < r < 1.
There exists a continuous curve f from [0, 1] onto [0,1]™ under which [0,1]" is the image of
a compact set A of Hausdor[f dimension r. Moreover, the restriction of f to A is one-to-one

over the image of a dense subset provided 0 < r < 102?23:_2).

Here comes the main result of this paper.

Theorem 6. Let 0 < r < 1 and M be a compact connected manifold of dimension n,
where n = 1,2,... ,w. We can construct a space-filling curve f of M under which the
entire manifold M is the image of a compact subset A of [0,1] of Hausdorff dimension r.
Moreover, the restriction of f to A is one-to-one over the image of a dense subset provided

ogrgﬁ% (=1 ifdimM = w).

Proof. Suppose M is a compact, connected manifold of dimension n (1 < n < w). Then
there exists a family of compact subsets {Uy,Us, ... ,Up} of M in which each U; is home-
omorphic to [0,1]", and M C |J*, int U;. Without loss of generality, we can assume by
connectedness of M that, (U1 U---UUg) NUgyq # O for k = 1,2,... ;m — 1. There are
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homeomorphisms hy, ho, ... , by from Uy, Us,... Uy, onto [0,1]", and space-filling curves
91,92, -+ »gm from [0, 51<1, [527, 5og]s - - - [32=2,1] omto [0, 1]™, respectively.

Suppose py is a point in U; NUs. Let
hl_l(alaa% .- ) =D = hQ_I(IBIaIBQa cee )a

where (a1, ag,...) and (,31,,32, ...) are in [0, 1]". Note that the surjective maps

2 3
2m —1"2m—1

f1: [0 ]—)Ul and f2:h2_10g2:[ ]—)UQ

are continuous Let (a’l,a’2,...) = h(fi(z25)) = gi(z—) in [0,1]*. Extend fi to

[0, e ] by setting

1 1

S e +’\2(2m—1))

for 0 < A < 1. In particular,

= ki a1 4 (1 = N)od, dag + (1 — N)ab,...)

Fisgm=g) = M en0e...) =

Similarly, let (81, 85,...) = hg(fg(m%)) = g2(2m 1) in [0, 1]". Extend f3 to [2 1)’ Tm— 1]
by setting
2 1

felgm =1~ >‘2(2m —1)
for 0 < A < 1. In particular,

) =hyt (A8 + (1= N)BLAB + (L= N)Bh,...)

f2(ﬁ) = hQ_I(IBIaIBQa"') = D1

Therefore, fi and fo agree at the point of the intersection of their domains. As a result,
f1 U f2 is continuous from [0, 5-2+] onto U U Us.

In a similar manner, we can construct a continuous function f = (J;-, fx from [0, 1] onto
M. Moreover, there are compact subsets By of [2:=2 2E=l] 55 in Lemmas 2, 4 or 5 such
that each By is of any pre-assigned Hausdorff dimension r, for 0 < r < 1, and g (By) fills
up the whole of [0,1]". In case 0 < r < ﬁ%, we can also assume that gy is one-to-one
over the image of a dense subset of By for each £ =1,2,... ,m.

We set

Al :Bla
Ay =g5 " (ha(U2\U1)) N B,

Ap =gn  (hy (U \(UL U ---U Uy, _1))) N By.

Since hy, is a homeomorphism, we see that each C, = g;  (hi(Ux\(U1 U --- UUg_1))) N By
is an open subset of By for £k = 1,2,... ,n. Set A = [J;_; A; C [0,1]. Then A is a
compact set of Hausdorff dimension r such that f(A) = M. Moreover, the restriction of
[ to A is one-to-one over the image of a dense subset of A contained in J;> Cj provided

log 2™
0S7< oginray- -
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3. TWO EXAMPLES

Example 7. A space-filling curve of the 3-dimensional cube [0, 1]3.
A space-filling curve t — (z(t), y(t), z(t)) of [0,1]? is given by writing

t = 0.t149--- in base 10 expansion

and
z(t) = 0.x129 - - -
y(t) =0.y192- - in base 2 expansion
z2(t) = 0.z129- -
(in particular, to = o = yo = 0) such that for & > 1,
(a, B,7), if0<ty—1=404+28+~v<T;
(ks Yrs 26) = § (Th—1, Yo—15 26-1), ifty =0=1tg_1orty =9 =1tg_q;

(I —zp—1,1 —yp—1,1 —2zg1), iftg=0Ftg 10rty =9tk 1.

In general, the first £ digits (in base 2) of z(t), y(t) and z(t) can be calculated in terms of
the first k£ digits (in base 10) of t. The image of

{ka t,=1,2,...,8, k:1,2,...}

fills up the entire cube [0,1]3. In this case, dim A = log8/log 10 and f is one-to-one over
the image of a dense subset of the compact set A.

To have an idea how the Hilbert cube H = H [O 1] is filled up, we re-scale our curve

=1
to the one f(t) = (z(t),y(t)/2, 2(t)/4). In Flgure 1, we draw three polygons each of which

approximates this space-filling curve within 1/2 (order 1), 1/4 (order 2), and 1/8 (order 3)
uniformly in all -, y- and z-directions, respectively. They are obtained by making linear
interpolation for the sets of data consisting of first one, two, and three digits of ¢, z(t), y(t)
and z(t), respectively, according to the methods described in [10] (in which we represent
1 =0.99--- in base 10 for convenience).

Example 8. A space-filling curve of the ellipsoid E = {(z,y,2) € R : w2 + *Z—; + i—; =1}
(a,b,c > 0).

We first construct a space-filling curve of the sphere S = {(z,y, z) € R® : 22+4%+22 = 1}.
Let 0 <e<1and

U ={(z,y,2) €8?: -1 <z<e}
Us = {(z,y,2) € S?: —e< 2z < 1}.

Then {U;,Us} is a compact covering of S. We are going to define the homeomorphisms h;
from U; onto [0,1]? for i = 1,2.

Consider the stereographic projections P; : U; — D via the north pole (when i = 1)
and the south pole (when 7 = 2), respectively, where

D={(a,b) eR :a® +b* <

1.

1+e¢
1—c¢

It is easy to see that

T Y T Y
Pl(x’y’Z):(]_—z’]_—z) and P2($ayaz):(1+zal+z)
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The next step is to consider the circle-to-square map

K (a,b) = ||||((f))|||'oo (a,b) ?f (a,b) # (0,0),
(0,0) if (a,b) = (0,0),

where
(a,b)ll2 = V'a® +b? and ||(a,b)|lcc = max{|al,[b]}.

It is plain that the map

1 /1—¢ 11
h(aab)ZE 1+6hl(aab)+(§a§)

is a homeomorphism from D onto [0, 1]2. Consequently, h; = h o P; is a homeomorphism
from U; onto [0,1]? for i = 1,2.

Let g : [0,1] — [0,1]? be a space-filling curve. For instance, we can take g to be
the one given by Lemma 5 as in [5, Example 3]. More precisely, the space-filling curve
g(t) = (z(t),y(t)) is given by writing

t = 0.t1t9--- in base 6 expansion

and
z(t) = 02125 } in base 2 expansion
y(t) = O.y1y2 .o
(in particular, tg = ¢ = yo = 0) such that for & > 1,
(o, B), if0<t,—1=220+8<3;
@k, y6) = (@r—1,Yk-1), Hig=0=1_1 orty =5=1p_1;

(I—zp_1,1 —yp—1), Hty=0#t_1orty=5#1_1.

Then g(A) = [0,1]? for the compact set A = {> 77, é—’,@ 11, =1,2,3,4, k=1,2,...} of
Hausdorff dimension log 4/ log 6. Moreover, g is one-to-one over the image of a dense subset
of A.

Let
f1:00,1/3] = Uy and fo:[2/3,1] = Us
be defined by
f1(t) = ' (g(3t)) and fa(t) = by (9(3 = 31)).
Following the proof of Theorem 6, we observe that

hifi(1/3) = haf2(2/3) = g(1) = (1,1) € [0, 1%,

(\/m’ \/1/—2’ 0) € U1 N Vs,

and

— = = = 1 [T—e 11 [T—¢ 1 )
We can extend f; from [0,1/3] to [0,1/2] and fp from [2/3,1] to [1/2, 1] by setting

1 | 1 /[1—¢ 1 1 /[1—€¢ 1
f1(§+>\g)_h1 ((1—>\)-1+>\-(2 1+6+2),(1—>\)-1+>\-(2 1+6+2))

A X Jl1—¢ A X J1—c¢€
_ =1l _ 2 A _ - n
=h (1 2+2\/1+e’1 2+2V1+e)’
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and similarly,

2
f(§_’\6) hy'! _+ V1+ 1+e

for 0 < A < 1. In this way, f1(1/2) = fo(1/2) = (1/1/2,+/1/2,0) and we have a continuous
map f = fi1 U fa from [0, 1] onto S. Suppose

f(t) = (z(t),y(t), 2(t)) for t € [0, 1].

Then, the map

9(t) = (az(t), by(t), cz(t))
is a space-filling curve of the ellipsoid E. Moreover, g maps the o g6—d1mens10nal compact
set A onto F such that g is one-to-one over the image of a dense subset of A.

In Figure 2, we draw approximating polygons of g when ¢ = 2b =4c =1 and ¢ = 0
for demonstration. To make the picture more easily to be visualized, only the lower hemi-
ellipsoid is shown. Note that setting ¢ = 0 (for simplicity) in this case is still good enough
for our task (either by direct observation or arguing by uniformity).
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FIGURE 1. Approximating polygons of order 1 (top), 2 (middle), and 3
(bottom) of a space-filling curve of [0,1] x [0, 5] x [0, 1]. These figures are
generated by Mathematica version 3.0 in SUN SPARC20-712.
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FIGURE 2. Approximating polygons of order 2 (top), 3 (second), 4 (third),
and 5 (bottom) of the lower half of a space-filling curve of the ellipsoid
x2 4 4y? + 1622 = 1. These figures are generated by Mathematica version
3.0 in SUN SPARC20-712.
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