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Abstract. Every (convex) star polygon with n vertices can be associated with a permu-

tation σ on {1, 2, . . . , n}. We give an exact formula to compute the sum of (interior)

angles in term of σ. In particular, the sum of angles of the polygon is solely deter-

mined by σ. We make use of this formula to derive a recurrence relation concerning the

number of star polygons having a particular value of sums of angles. The results are

summarized in a Pascal type triangle. By observing the relation of such numbers and

the Eulerian numbers, we obtain a closed formula. A possible application to quantum

physics is presented.
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1. Introduction

Let V1, V2, . . . , Vn be n points in the plane R2 in convex position, that is, each
Vi is an extreme point of the convex hull co{V1, V2, . . . , Vn} for i = 1, 2, . . . , n.
Denoted by P={V1V2 . . . Vn} the (convex) star polygon formed by joining Vi to
Vi+1 as edges for i = 1, 2, . . . , n. Here we set Vn+k = Vk. The sum of (interior)
angles of P is defined to be the algebraic sum

ang(P) =
n∑

i=1

∠Vi−1ViVi+1.

In this paper, we consider the counterclockwise orientation as positive.
We associate to P a permutation σ on {1, 2, . . . , n} such that σ(k) is the po-

sition of the vertex Vk in the list {V1V2 . . . Vn} in their counterclockwise ordering
in the plane R2. Two star polygons of n vertices are said to be combinatorially
equivalent if they define the same permutation up to rotation. In particular, the
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permutations are fixed if we assume σ(1) = 1 always. In this paper, we show
that the sum of angles of P is given by

ang(σ) = π

n∑

i=1

sign[σ(i− 1)− σ(i)],

where we set σ(n + k) = σ(k) for convenience. This includes, in particular, a
result of Bezdek and Fodor in [1] asserting that if two star polygons are combina-
torially equivalent then the sums of angles of them are equal. We also discuss the
question about the number nk of combinatorially non-equivalent star polygons
with n vertices and sum of angles kπ. The results is summarized in a Pascal
type triangle. It is interesting to see that these numbers, whenever nonzero, are
exactly the Eulerian numbers. Thus a closed formula is obtained:

nk =

n+k
2 −1∑

j=0

(−1)j

(
n + k

2
− j

)n−1 (
n + 1

k

)
,

whenever n + k is even; and nk = 0 if n + k is odd.
We include a possible application to quantum physics at the end of the paper.

The problem can also be formulated into the one discussing the probability a
random star polygon having a particular sum of angles.

2. The Results

Theorem 2.1. Let σ be the permutation associated to a star polygon P = {V1 V2

. . . Vn}. Then the sum of angles of P is

ang(σ) = π

n∑

i=1

sign[σ(i− 1)− σ(i)], (†)

where we set σ(n + k) = σ(k) for convenience.

Before we present the proof, let’s look at some examples.

Example 2.2. It is clear that all triangles have sum of angles ±π. More

precisely, they are either associated with the permutation σ3 =
(

1 2 3
1 2 3

)
or

τ3 =
(

1 2 3
1 3 2

)
. Note that ang(σ3) = −π and ang(τ3) = π.
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the permutation it defines is

σ =
(

1 2 3 4 5
1 3 5 2 4

)
.

For instance, σ(4) = 2 since the vertex V4 is in the second position in the list
V1, V4, V2, V5, V3 in their counterclockwise ordering. Applying the formula (†),
the sum of angles of the 5-star is

[sign(1− 3) + sign(3− 5) + sign(5− 2) + sign(2− 4) + sign(4− 1)]π = −π.

Proof. [Proof of Theorem 2.1] The conclusion will follow from induction. When
n = 3, the result is clear (see Example 2.2). Suppose that it holds for star
polygons of up to n− 1 vertices for n ≥ 4.

Given a star polygon P with n vertices and associated with a permutation
σn. Without loss of generality, we can assume that σn(1) = 1. Join the two
vertices Vn−1 and V1 by a pair of parallel but opposite edges. Then we divide
the star polygon P into two new star polygons. One of them has n− 1 vertices
V1, V2, . . . , Vn−1 and the other one is a triangle with vertices V1, Vn−1, Vn.
The new star polygon and the triangle give rise to permutations σn−1 and σ′3,
respectively, where

σn−1(k) =
{

σn(k) if σn(k) < σn(n),
σn(k)− 1 if σn(k) > σn(n),



Sums of Angles of Star Polygons and the Eulerian Numbers 3

and

σ′3 =





(
1 2 3
1 2 3

)
if σn(n− 1) < σn(n),

(
1 2 3
1 3 2

)
if σn(n− 1) > σn(n).

It is plain that the sum of angles of the star polygon P is equal to the sum of
the sums of angles of the new star polygon and the triangle. By the induction
hypothesis, the sum of angles of P is the sum ang(σn−1) + ang(σ′3).

We claim that the correspondence σn(i) −→ σn−1(i) between the finite se-
quences

{σn(1), σn(2), . . . , σn(n− 1)} and {σn−1(1), σn−1(2), . . . , σn−1(n− 1)}

is order preserving. In fact, if σn(k) and σn(k + 1) are both less than σn(n),
then σn−1(k) = σn(k) and σn−1(k + 1) = σn(k + 1). Hence they have the same
ordering. If they are both greater than σn(n), then σn−1(k) = σn(k) − 1 and
σn−1(k + 1) = σn(k + 1)− 1. This also gives the same ordering. There are two
other cases, where the value of σn(n) is strictly in between the values of σn(k)
and σn(k + 1), then the value of σn(n) is also in between (but not necessarily
strictly) the values of σn−1(k) and σn−1(k + 1). Hence the ordering does not
change, either.

Now the sum of angles of P is

ang(σn−1) + ang(σ′3) = π

n−1∑

i=1

sign[σn−1(i− 1)− σn−1(i)] + π sign[σ′3(2)− σ′3(3)].

Here we note σ′3(1) = 1. But the sum

n−1∑

i=1

sign[σn−1(i− 1)− σn−1(i)] =
n−1∑

i=1

sign[σn(i− 1)− σn(i)]

and,
sign[σ′3(2)− σ′3(3)] = sign[σn(n− 1)− σn(n)].

Hence the sum of angles of P equals

π

n−1∑

i=1

sign[σn(i− 1)− σn(i)] + π sign[σn(n− 1)− σn(n)]

= π

n∑

i=1

sign[σn(i− 1)− σn(i)]

= ang(σn),

as asserted.
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As a direct consequence of Theorem 2.1, we obtain a new proof of the fol-
lowing result in [1].

Corollary 2.4. If two star polygons are combinatorially equivalent then their
sums of angles are equal.

We now discuss the question how many star polygons with n vertices having
sums of angles kπ. More precisely, it is ]{σ ∈ Sn : ang(σ) = kπ} by Theorem
2.1. Here, Sn denotes the nth symmetric group, as usual. Since rotating a star
polygon does not change the sum of angles, we have

]{σ ∈ Sn : ang(σ) = kπ} = n× ]{σ ∈ Sn : σ(1) = 1 and ang(σ) = kπ}.
Set

Pn,k = {σ ∈ Sn : σ(1) = 1 and ang(σ) = kπ},
and

nk = ]Pn,k.

Note that Pn,k consists of all combinatorially non-equivalent star polygons with
n vertices and sum of angles kπ.

Theorem 2.5. For all n ∈ N, all k ∈ Z, we have

(1) nk = 0 if k < −n + 2 or k > n− 2;

(2) nk = n−k;

(3) (2n)2k+1 = 0;

(4) (2n + 1)2k = 0;

(5) nk = n+k
2 (n− 1)k+1 + n−k

2 (n− 1)k−1.

Proof. The assertions (1) and (2) are obvious. For (3) and (4), recall the sum
of angles is given by

ang(σ) = π

n∑

i=1

sign[σ(i− 1)− σ(i)].

The above summation is an algebraic sum of n “+1” and “−1”. In case n is even,
the number of “+1” and “−1” have the same parity and thus their difference
must be even. When n is odd, the number of “+1” and “−1” are of different
parity and their difference must be odd. This forces (2n)2k+1 = (2n + 1)2k = 0
for all n ∈ N and k ∈ Z.

For (5), let a (resp. b) be the number of “+1” (resp. “−1”) in the above
algebraic sum. Then a = n+k

2 and b = n−k
2 are constants for all σn in Pn,k.
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Thus we may write a(n, k) and b(n, k) to indicate they are functions of n and k.
Consider the following n different ways to obtain a permutation σn+1 in Sn+1

by modifying σn in Sn with σn(1) = σn+1(1) = 1: we set

σn+1(k) =





σn(k) if 1 ≤ k < k0 ,
n + 1 if k = k0 ,
σn(k − 1) if k > k0 ,

(‡)

where k0 can be any one of 2, 3, . . ., n + 1. Note that if σn ∈ Pn,k then either

σn+1 ∈ Pn+1,k+1 or σn+1 ∈ Pn+1,k−1.

Indeed, since σn+1(k0) = n + 1 we have

ang(σn+1) = π

n+1∑

i=1

sign[σn+1(i− 1)− σn+1(i)]

= π

{
k0−1∑

i=1

sign[σn+1(i− 1)− σn+1(i)]

+ sign[σn+1(k0 − 1)− σn+1(k0)] + sign[σn+1(k0)− σn+1(k0 + 1)]

+
n+1∑

i=k0+2

sign[σn+1(i− 1)− σn+1(i)]

}

= π

{
k0−1∑

i=1

sign[σn(i− 1)− σn(i)] + (−1) + (+1)

+
n+1∑

i=k0+2

sign[σn(i− 2)− σn(i− 1)]

}

= π

n∑

i=1

sign[σn(i− 1)− σn(i)]− π sign[σn(k0 − 1)− σn(k0)]

= ang(σn)− π sign[σn(k0 − 1)− σn(k0)]
= kπ − π sign[σn(k0 − 1)− σn(k0)].

Hence there are exactly b(n, k) of such σn+1’s in Pn+1,k+1 and a(n, k) of such
σn+1’s in Pn+1,k−1.

In view of the above argument, each σn in Pn,k can be uniquely obtained
from a σn−1 in either Pn−1,k−1 or Pn−1,k+1 as in (‡). We thus have

nk = b(n− 1, k − 1)(n− 1)k−1 + a(n− 1, k + 1)(n− 1)k+1

=
n− k

2
(n− 1)k−1 +

n + k

2
(n− 1)k+1.

We summarize the results in Theorem 2.5 into the following Pascal type
triangle.
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Each entry in the triangle represents nk. The first row for n = 2 is added
for convenience. Note that on each of the right to left diagonals, the function
a(n, k) = n+k

2 is constant and indicated above the edges. Similarly, b(n, k) =
n−k

2 is constant on each of the left to right diagonals and indicated above the
edges, too. They are weights to bring two consecutive nonzero entries to the
one direct down in the next row. For example, the left “26” in the fifth row is
obtained by

26 = 4× 1 + 2× 11,
or

6−2 = b(5,−3)× 5−3 + a(5,−1)× 5−1.
The information the fifth row represents is that the total number among those
6!
6 = 120 combinatorially non-equivalent star hexagons with sum of angles ± 4π
is 1, ± 3π is 0, ± 2π is 26, ±π is 0, and 0 is 66. In particular, the probability
that the sum of angles of a random star hexagon is zero is 66/120, or 11/20.

One might notice the nonzero entries in the table of nk coincide with those
in the one of the Eulerian numbers. Recall that the descent set of a permutation
σ in Sn is

D(σ) = {1 ≤ i ≤ n− 1 : σ(i) > σ(i + 1)} ∪ {n}.
The Eulerian numbers are defined by

E(n, a) = ]{σ ∈ Sn : d(σ) = a}, a = 1, . . . n,

where d(σ) = ]D(σ) is the number of decents in σ. It is well known that the
Eulerian numbers satisfy the equation

∑
r,s

E(r, s)
xrys

(r + s + 1)!
=

ex − ey

xey − yex
,

as well as the recurrence relations E(1, 1) = 1, E(1, a) = 0 for a 6= 1, and in
general,

E(n, a) = aE(n− 1, a) + (n− a + 1)E(n− 1, a− 1). (*)

Indeed, we have

E(n, a) =
a−1∑

j=0

(−1)j(a− j)n

(
n + 1

k

)

for n = 1, 2, . . . and a = 1, . . . , n. For general properties of the Eulerian numbers,
the readers are referred to [3].

Comparing (*) with Theorem 2.5(5), we have

Theorem 2.6. The relation between nk and E(n, a) is given by

E(n, a) = (n + 1)2a−n−1.
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Therefore, we have

nk =





n+k
2 −1∑

j=0

(−1)j

(
n + k

2
− j

)n−1
(

n + 1
k

)
, if n + k is even;

0, if n + k is odd.

3. A possible application

To end this paper, we present a possible application. We imagine that the
data in the triangle of nk might be useful in some physics experiments. For
example, suppose an electron is ejected into a black box through a window.
Assume that there are a number of moving attractor-reflectors installed in the
box, that the electron is attracted and rejected from each of them one by one
without going back, and that it finally escapes from the box through the same
window where it submerged. Then the locus of the electron is a random star
polygon. If the measurement of the magnetic field changes above the box is
neutral approximately every 11 times out of 20, then one can conclude that
there are exactly 6 attractor-reflectors in the box. In other setups, the data
in the triangle can help to determine both the number and the position of the
attractor-reflectors.

One particular interesting related problem is about the probability that the
sum of angles of a random star m-polygon being zero. In case m = 2n− 1, the
probability is clearly zero, and that for m = 2n, by an integral representation
for the Eulerian numbers [5], is

(2n)0 =
E(2n− 1, n)

(2n− 1)!
=

2
π

∫ ∞

0

(
sin t

t

)2n

dt.

Consequently, the chance of getting a random star polygon of zero sum of angles
tends to zero as the number of vertices approaches to infinity. Indeed, these
numbers E(2n − 1, n)/(2n − 1)! are decreasing to zero [4]. In general, one can
find the probability that a random star (n + 1)-polygon having sum of angles
(2a− n− 1)π by the asymptotic formula

(n + 1)2a−n−1

n!
=

E(n, a)
n!

=
ϕ(a−mn)

sn
2

+ O(n−3/4).

Here, mn = (n + 1)/2 and sn
2 = (n + 1)/12 are the mean and variance of the

distribution E(n, a)/n! which converges to the normality as n → ∞, and ϕ is
the normal density function [2].
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