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Mappings preserving zero products

by

M. A. Chebotar (Tainan), W.-F. Ke (Tainan),
P.-H. Lee (Taipei) and N.-C. Wong (Kaohsiung)

Abstract. Let θ : M→ N be a zero-product preserving linear map between algebras.
We show that under some mild conditions θ is a product of a central element and an
algebra homomorphism. Our result applies to matrix algebras, standard operator algebras,
C∗-algebras and W ∗-algebras.

1. Introduction. Let M and N be algebras over a field F and θ : M→ N

a linear map. We say that θ is a zero-product preserving map if θ(a)θ(b) = 0
in N whenever ab = 0 in M. For example, if h is an element in the center
of N and ϕ : M → N is an algebra homomorphism then θ = hϕ is zero-
product preserving. In this paper, we show that in many interesting cases
zero-product preserving linear maps arise in this way.

Let C(X) be the algebra of all continuous complex functions defined on
a compact Hausdorff space X. Then C(X) bears several different structures:
a commutative ring, a Banach algebra, a Banach lattice, a C∗-algebra and
so on. We are interested in relations among these structures. For example,
let θ : C(X) → C(Y ) be a linear map. Then θ is a ring isomorphism if
and only if θ(f) = f ◦ σ for a homeomorphism σ from Y onto X (see, e.g.,
[17, p. 57]). θ is a surjective isometry if and only if θ(f) = hf ◦ σ for a
homeomorphism σ from Y onto X and a unimodular continuous function
h by the Banach–Stone Theorem (see, e.g., [21]). In other words, θ = hϕ,
a product of h and an algebra isomorphism ϕ. On the other hand, θ is
a lattice isomorphism if and only if θ(f) = hf ◦ σ for a homeomorphism
σ and a nonvanishing positive continuous function h (see, e.g., [1]). The
common part of θ being a ring isomorphism, a surjective isometry and a
lattice isomorphism is that θ preserves zero products. In fact, θ preserves
zero products if and only if θ(f) = hf◦σ, where h can be zero somewhere and
σ is a general continuous map (see, e.g., [21]). In [1, 2, 12, 16, 18, 20, 21],
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to name a few, the above relations are extended to the case where θ is
not bijective, or is not continuous, or maps between vector-valued function
spaces. We are interested in the question if the zero-product preserving
property still plays an important role in a general algebraic setting.

Let θ : M → N be a continuous zero-product preserving linear map
between topological algebras. We see that in many situations, if M is unital
then

θ(1)θ(ab) = θ(a)θ(b) for all a, b ∈M.(1.1)

In particular, θ(1) commutes with θ(a) for all a in M. A direct consequence
of (1.1) is that θ preserves commutativity. Tools provided in, for example,
[6–10, 26, 27, 31] can thus be used.

In Section 2, we see that (1.1) holds when the subalgebra of M generated
by its idempotents is dense in M. If θ(1) is invertible in N or the subalgebra
of N generated by θ(M) has an identity, then θ = θ(1)ϕ for an algebra
homomorphism ϕ. As an application, we give a rather complete description
of all zero-product preserving linear maps between matrix algebras. Another
nice case is when M = B(H) consists of all bounded linear operators on an
infinite-dimensional complex Hilbert space H. In this case, it suffices to
assume θ to be just additive and the conclusion θ = θ(1)ϕ is still valid with
ϕ being a ring homomorphism.

In Section 3, we show that (1.1) holds when M has a complete system
of matrix units and the range of θ is dense in a prime subalgebra of N.
Indeed, θ is a scalar multiple of an algebra homomorphism in this case. As
a corollary, zero-product preserving linear maps between standard operator
algebras are proved to be of such form.

In Section 4, we deal with zero-product preserving linear maps between
operator algebras. Since W ∗-algebras are generated by idempotents, every
such map between them is of the expected form (see also [15]). However, the
C∗-algebra case is far more complicated. In [32], Wolff shows that if θ :A→B
is a bounded linear map between unital C∗-algebras preserving involution
and zero products of self-adjoint elements in A then θ=θ(1)J for a Jordan
∗-homomorphism J from A into B∗∗. We obtain a ∗-free version of this.

2. Zero-product preservers of algebras with dense subalgebra
generated by idempotents. By the subalgebra of an algebra M generated
by a subset S of M we mean the linear subspace of M spanned by the set
of all finite products of elements in S.

Lemma 2.1. Let M and N be topological algebras over a topological field
F and θ : M→ N a continuous linear map preserving zero products. Suppose
that the subalgebra of M generated by its idempotents is dense in M. Then

θ(a)θ(bc) = θ(ab)θ(c) for all a, b, c ∈M.(2.1)



Mappings preserving zero products 79

If , in addition, M has an identity , then

(i) θ(1)θ(a) = θ(a)θ(1) for all a ∈M.
(ii) θ(1)θ(ab) = θ(a)θ(b) for all a, b ∈M.

(iii) θ preserves commutativity.

Proof. Let e, a, c ∈M with e2 = e. As ae(c− ec) = 0, we have

0 = θ(ae)θ(c− ec) = θ(ae)(θ(c)− θ(ec)),
and so

θ(ae)θ(c) = θ(ae)θ(ec).(2.2)

On the other hand, from (a− ae)ec = 0, we obtain

0 = θ(a− ae)θ(ec) = (θ(a)− θ(ae))θ(ec).
Therefore,

θ(a)θ(ec) = θ(ae)θ(ec).(2.3)

Combining (2.2) and (2.3), we have

θ(a)θ(ec) = θ(ae)θ(c).(2.4)

Moreover, for idempotents e1, . . . , en in M, we have

θ(a)θ(e1 . . . enc) = θ(ae1 . . . en)θ(c)

by applying (2.4) repeatedly. Since the subalgebra of M generated by its
idempotents is dense and θ is a continuous map, we have

θ(a)θ(bc) = θ(ab)θ(c)

for all a, b, c ∈M. That is, (2.1) is established.
Suppose that M contains an identity. Then, by setting a = 1 in (2.1), we

get
θ(1)θ(bc) = θ(b)θ(c)

for all b, c ∈ M. That is, (ii) is established. And, setting a = c = 1 in (2.1),
we have

θ(1)θ(b) = θ(b)θ(1)

for all b ∈M. That is, (i) is also established. Finally, by (ii) we have

θ(1)θ(ab− ba) = θ(1)(θ(ab)− θ(ba)) = θ(a)θ(b)− θ(b)θ(a)

for all a, b ∈M. Then (iii) follows immediately.

Theorem 2.2. Let M and N be topological algebras over a topological
field F and θ : M → N a continuous linear map preserving zero products.
Suppose that M has an identity and the subalgebra of M generated by idem-
potents is dense. Let N′ be the subalgebra of N generated by θ(M).

(i) If θ(1) = 0 then θ(a)θ(b) = 0 for all a, b ∈M.
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(ii) If θ(1) is invertible in N, or N′ has an identity , then

θ(a) = hϕ(a) for all a ∈M,

where h = θ(1) and ϕ is an algebra homomorphism from M into N.

Proof. (i) is a direct consequence of Lemma 2.1(ii).
(ii) Suppose first that h = θ(1) is invertible in N. Let ϕ = h−1θ. Then it

follows from Lemma 2.1 that ϕ is an algebra homomorphism from M into N.
Next, we assume that N′ has an identity 1′. Write

1′ =
k∑

i=1

θ(ai1)θ(ai2) . . . θ(aili)

for some aij ’s in M. Then

1′ = 1′1′ =
( k∑

i=1

θ(ai1)θ(ai2) . . . θ(aili)
)2

= θ(1)b = bθ(1)

for some b in N′ by Lemma 2.1. Thus θ(1) is invertible in N′ and we are
done.

Remark 2.3. The conclusion in Theorem 2.2(ii) need not be true in
general even when θ : M → N is bijective. For an example, consider h0 =
(1, 1/2, 1/3, . . . , 1/n, . . .) in the abelian W ∗-algebra M = `∞. Let N = {h0a :
a ∈ `∞}. Then the bijective linear map θ(a) = h0a is continuous and zero-
product preserving. However, N does not have an identity and θ(1) is not
invertible. It is impossible to write θ = hϕ for any central element h in N

and for any algebra homomorphism ϕ from M into N. However, the identity
map would do the job if we are allowed to enlarge the co-domain of θ to `∞.

Corollary 2.4. Let F be an algebraically closed field of characteristic
0 and θ : Mn(F) → Mr(F) a linear map preserving zero products, where n
and r are positive integers with n ≥ 2 and n ≥ r. Then either Im(θ), the
image of θ, has trivial multiplication, or n = r and there exist an invertible
matrix A ∈Mn(F) and a nonzero scalar c such that

θ(T ) = cA−1TA for all T ∈Mn(F).

Proof. Note that θ preserves commutativity by Lemma 2.1. We claim
first that either Im(θ) is commutative, or n = r and θ(1) is in the center of
Mn(F). If n ≥ 3, this follows immediately from [27, main theorem]. If n = 2,
then either r = 1 in which case Im(θ) is commutative, or n = r = 2 in which
case the assertion follows from [27, Theorem 1.1].

Suppose first that Im(θ) is commutative. Recall that

θ(1)θ(ab) = θ(a)θ(b) for all a, b ∈Mn(F)
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from Lemma 2.1. We have

θ(1)θ(EklEij) = θ(Ekl)θ(Eij) = θ(Eij)θ(Ekl) = θ(1)θ(EijEkl),

which is 0 if i 6= l or j 6= k. Further, for any i, j, k, and l, we have

θ(Eij)θ(Eji) = θ(1)θ(Eii) = θ(Eik)θ(Eki)

= θ(Eki)θ(Eik) = θ(1)θ(Ekk) = θ(Ekl)θ(Elk).

Therefore, Im(θ) has nontrivial multiplication if and only if θ(Eij)θ(Eji) 6= 0
for all i and j. Assume that Im(θ) has nontrivial multiplication. For all k
and l, we have

θ(Ekl)
∑

i,j

λijθ(Eij) =
∑

i,j

λijθ(Ekl)θ(Eij) = λlkθ(1)θ(Ekk).

Thus, the set {θ(Eij) | i, j = 1, . . . , n} is linearly independent, and the
dimension of Im(θ) is n2. Since r ≤ n and Im(θ) is commutative, this is
not going to happen. Therefore, if Im(θ) is commutative, then it has trivial
multiplication.

Suppose next that n = r and c = θ(1) is in the center of Mn(F). If c = 0,
then it follows from Lemma 2.1 again that Im(θ) has trivial multiplication.
Assume that c 6= 0. Then we see that ϕ = c−1θ is a nonzero algebra ho-
momorphism on Mn(F). Note that Mn(F) is a simple algebra over F and
so ϕ is an F-automorphism on Mn(F). By the well-known Noether–Skolem
theorem, ϕ = c−1θ is an inner automorphism. This completes the proof.

The following result, which is inspired by an example in [27, p. 310],
shows that the condition n ≥ r is essential in the above result. Moreover, we
see there is a third possibility for a zero-product preserving linear map other
than being a product of a central element and an algebra homomorphism,
or having the image with trivial multiplication.

Example 2.5. Let F be a field. Consider θ : Mk(F)→Mk+2(F) defined
by

(aij) 7→




0 a11 a12 . . . a1k 0
0 0 0 . . . 0 a11
0 0 0 . . . 0 a21

...
. . .

...
0 0 0 . . . 0 ak1

0 0 0 . . . 0 0




.

Then θ is linear and preserves zero products. Since θ(E11)2 6= 0, the image
of θ carries a nontrivial multiplication. It is obvious that θ cannot be written
as cϕ for any fixed element c in Mk+2(F).
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Although the main objects in this paper are continuous linear maps
between topological algebras, results in this section can be strengthened
to additive maps between rings in a few cases where the domain is a ring
generated by its idempotents. For examples of such rings, see [29].

Theorem 2.6. Let M be a unital ring generated by its idempotents and θ
a zero-product preserving additive map from M into a ring N. Denote by N′

the subring of N generated by θ(M). Then

(i) θ(a)θ(bc) = θ(ab)θ(c) for all a, b, c ∈M.
(ii) θ(1)θ(a) = θ(a)θ(1) for all a ∈M.

(iii) θ(1)θ(ab) = θ(a)θ(b) for all a, b ∈M.
(iv) θ preserves commutativity.
(v) If θ(1) = 0 then θ(a)θ(b) = 0 for all a, b ∈M.

(vi) If θ(1) is invertible in N, or N′ has an identity , then θ(a) = θ(1)ϕ(a)
for all a ∈M, where ϕ is a ring homomorphism from M into N.

Proof. By inspection of the proofs of Lemma 2.1 and Theorem 2.2, one
can find that the continuity and linearity of θ are not used in this case.

The following result of Pearcy and Topping [28] was brought to the
authors’ attention by Professor Pei-Yuan Wu (see also the survey paper of
Wu [34]):

Every bounded linear operator on an infinite-dimensional complex
Hilbert space H is a sum of at most five idempotents.

Consequently, Theorem 2.6 applies to M = B(H), the algebra of all bounded
linear operators on H, and thus provides a supplement to Corollary 2.4.

Corollary 2.7. Let H be an infinite-dimensional complex Hilbert space
and θ a zero-product preserving additive map from B(H) into a ring N. Let
N′ be the subring of N generated by θ(M). Then θ(1) is in the center of N′

and
θ(1)θ(ST ) = θ(S)θ(T ) for all S, T ∈ B(H).

If , in addition, θ(1) is invertible in N or N′ has an identity , then θ = θ(1)ϕ
where ϕ is a ring homomorphism from B(H) into N.

The following result should be known (and might be proved by other
methods), although we do not have a handy reference.

Corollary 2.8. Let H1 and H2 be infinite-dimensional complex Hilbert
spaces and θ : B(H1) → B(H2) a bijective additive map preserving zero
products. Then

θ(T ) = λS−1TS for all T ∈ B(H1),

where λ is a nonzero scalar and S is an invertible bounded linear operator
from H2 onto H1.
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Proof. By Corollary 2.7, θ(1) is in the center ofB(H2) and so is a nonzero
scalar λ. Then ϕ = λ−1θ is a ring isomorphism from B(H1) onto B(H2).
By [3, Theorem 4] there exists an invertible bounded linear operator S from
H2 onto H1 such that ϕ(T ) = S−1TS for all T ∈ B(H1). Thus the assertion
follows.

3. Zero-product preservers of algebras with matrix units. Let F
be a topological field and A a topological algebra over F. We call A a prime
algebra if xAy = {0} implies x = 0 or y = 0. Let I be an index set, which
can be of arbitrary cardinality. Suppose that Eij exists in A for all i, j in I
and satisfies the following conditions.

1. EijErs = δjrEis for all i, j, r, s in I, where δjr = 1 if j = r and δjr = 0
otherwise.

2. {Eij : i, j ∈ I} is total in A, that is, the linear span of all Eij ’s is dense
in A.

In this case, we call {Eij : i, j ∈ I} a complete system of matrix units
in A.

Theorem 3.1. Let M and N be topological algebras over a complete
topological field F and θ : M → N a continuous zero-product preserving
linear map. Suppose that M has a complete system of matrix units {Eij :
i, j ∈ I}, and θ(M) is dense in a prime subalgebra N0 of N. Then there is a
nonzero λ in F and an algebra homomorphism ϕ from M into N such that
θ = λϕ. In particular , θ(M) is an algebra with a complete system of matrix
units {ϕ(Eij) : i, j ∈ I}.

Proof. Set Aij = θ(Eij) for i, j in I. Since EijEst = 0 for j 6= s, we have

AijAst = 0 if j 6= s.(3.1)

Let N′ be the linear span of all Aij ’s. Since {Eij : i, j ∈ I} is total in M and
θ(M) is dense in N0, the continuity of θ yields the density of N′ in N0. Then
the primeness of N0 implies that

xN′y 6= 0 for all nonzero x, y ∈ N0.(3.2)

Claim 1. For any s, t ∈ I, if Ast 6= 0 then Ats 6= 0, Ass 6= 0 and
Att 6= 0.

Indeed, it follows from {0} 6= AstN
′Ast ⊆ FAstAtsAst that Ats 6= 0.

Similarly, {0} 6= AstN
′Ats ⊆ FAstAttAts and {0} 6= AtsN

′Ast ⊆ FAtsAssAst
imply Att 6= 0 and Ass 6= 0 respectively.

Claim 2. For any i, k ∈ I, AiiAik = λikAik for some nonzero λik ∈ F.

Since N′ is dense in N0, we can find a net {Aα}α in N′ such that

AiiAik = lim
α
Aα.
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Write Aα =
∑

p,q∈I λpqαApq where λpqα ∈ F and for each α at most finitely
many λpqα’s are nonzero.

First we show that AiiAik ∈ FAik. It suffices to consider the case when
AiiAik 6= 0. As

AiiAik = lim
α

∑

p,q∈I
λpqαApq,(3.3)

we have
AiiAiiAikAkk = lim

α
λikαAiiAikAkk.

Since F is complete, the net {λikα}α converges to some λik in F. Define

x = AiiAik − λikAik = lim
α

∑

(p,q)6=(i,k)

λpqαApq.

Then

AjlxAst = Ajl(AiiAik − λikAik)Ast = 0

for all j, l, s, t ∈ I with (l, s) 6= (i, k)

and

AjixAkt = Aji

(
lim
α

∑

(p,q)6=(i,k)

λpqαApq

)
Akt = 0 for all j, t ∈ I.

Hence N′xN′ = {0}, and so x = 0. That is,

AiiAik = λikAik ∈ FAik.
If AiiAik 6= 0, certainly λik 6= 0. On the other hand, if AiiAik = 0 then

AiiN
′Aik ⊆ FAiiAiiAik = {0},

and so Aik = 0 by (3.2) and Claim 1. In this case, we can choose any nonzero
λik in F. Thus Claim 2 is verified.

In the next step, we observe that for any i, j, k in I with i 6= j, it follows
from

(Eii + Eij)(Eik − Ejk) = 0

that
(Aii + Aij)(Aik − Ajk) = 0.

As a consequence of (3.1) and Claim 2, we have

AijAjk = AiiAik = λikAik(3.4)

for some nonzero λik in F. Hence if Aii = 0 or Aij = 0 with j 6= i, then
λikAik = 0 and so Aik = 0 for any k ∈ I. Similarly, if Ajk = 0 then Aik = 0
for any i ∈ I with i 6= j. Consequently, if Ast = 0 for some s and t in I, then
Aij = 0 for all i and j in I. In this case, N′ = 0 and hence θ is a zero map,
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which is not true. Therefore,

Ast 6= 0 for all s, t ∈ I.(3.5)

By (3.4), we have

(AijAjk)Akl = λikAikAkl = λikλilAil,

Aij(AjkAkl) = λjlAijAjl = λjlλilAil,

for some nonzero λik, λil, λjl in F. Since Ail 6= 0, we have

λik = λjl for all i, j, k, l ∈ I.
Denote by λ this common nonzero value.

Finally, let ϕ = λ−1θ. By (3.1) and (3.4), we get

ϕ(Eij)ϕ(Est) = 0 for all i, j, s, t with j 6= s,

ϕ(Eij)ϕ(Ejk) = ϕ(Eik) for all i, j, k.

In other words,

ϕ(EijEkl) = ϕ(Eij)ϕ(Ekl) for all i, j, k, l ∈ I.
Since {Eij : i, j ∈ I} is total in M and ϕ is continuous, ϕ is actually an
algebra homomorphism. It is clear that θ(M) = ϕ(M) is an algebra with a
complete system of matrix units {ϕ(Eij) : i, j ∈ I}.

Corollary 3.2. Let Hi be a real or complex Hilbert space of arbitrary
dimension, and let K(Hi) be the algebra of all compact operators on Hi

for i = 1, 2. Then every surjective norm continuous zero-product preserving
linear map θ from K(H1) onto K(H2) is of the form

θ(T ) = λS−1TS for all T ∈ K(H1),

where λ is a nonzero scalar and S is an invertible bounded linear operator
from H2 onto H1.

Proof. Note that K(H1) has a complete system of matrix units {ei⊗ej :
i, j ∈ I}, where {ei : i ∈ I} is an orthonormal basis of the Hilbert space
H1 and ei ⊗ ej is the rank one operator x 7→ 〈x, ej〉ei for x in H1. Since
K(H2) is prime, it follows from Theorem 3.1 that θ is a surjective algebra
homomorphism ϕ multiplied by a nonzero scalar λ. Note that every nonzero
continuous algebra homomorphism out of K(H1) is injective. Thus by [13,
Corollary 3.2] the continuous algebra isomorphism ϕ between the operator
algebras K(H1) and K(H2) is of the form T 7→ S−1TS for some invertible
bounded linear operator S from H2 onto H1. This completes the proof.

In a similar manner, we can show the following

Corollary 3.3. Let E,F be Banach spaces such that E has a Schauder
basis. Then every surjective norm continuous zero-product preserving linear
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map θ from the Banach algebra K(E) of compact operators on E onto K(F )
is of the form

θ(T ) = λS−1TS for all T ∈ K(E),

where λ is a nonzero scalar and S is an invertible bounded linear operator
from F onto E.

Corollary 3.4. Let 〈E,F 〉 be two locally convex spaces in duality such
that E (resp. F ) is separable in the weak σ(E,F ) (resp. σ(F,E)) topology.
Suppose M is an algebra of linear operators on E which are σ(E,F )-σ(E,F )
continuous, contains all continuous finite rank operators, and is equipped
with the weak operator topology. Then every continuous zero-product pre-
serving linear map θ from M into a prime topological algebra N with dense
image is of the form θ = λϕ for a nonzero scalar λ and an algebra homo-
morphism ϕ from M into N.

Proof. We note that for such a dual pair 〈E,F 〉, there is a biorthogonal
system 〈{en}, {fn}〉, called the Markushevich basis for 〈E,F 〉, such that
{en : n = 1, 2, . . .} is σ(E,F ) total in E, {fn : n = 1, 2, . . .} is σ(F,E) total
in F , and 〈ei, fj〉 = δij for i, j = 1, 2, . . . (see [19, p. 289], and [25, p. 43] for
the Banach space version). Let ei ⊗ fj be the rank one operator defined by
x 7→ 〈x, fj〉ei for i, j = 1, 2, . . . Then {ei ⊗ fj : i, j = 1, 2, . . .} is a complete
system of matrix units for M, and Theorem 3.1 applies.

Recall that a subalgebra S of the algebra B(E) of all bounded linear
operators on a Banach space E is said to be standard if S contains all
continuous finite rank operators. Since the dual of a separable Banach space
is norm separable (see [19, p. 157]), the following result is a consequence
of Corollary 3.4. Here, it is not necessary to assume that S contains the
identity or is closed in any topology.

Corollary 3.5. Let Si be a standard operator algebra on a separable
Banach space Ei equipped with the weak operator topology for i = 1, 2. Let
θ be a continuous zero-product preserving linear map from S1 into S2 with
dense image. Then θ = λϕ for a nonzero scalar λ and an algebra homomor-
phism ϕ from S1 into S2.

Recently, Araujo and Jarosz [2] showed that every bijective linear op-
erator between two unital standard operator algebras which preserves zero
products in both directions is a scalar multiple of an algebra isomorphism.
However, in the nonbijective case it becomes a very difficult task without
assuming continuity. Even discontinuous algebra homomorphisms have com-
plicated structure ([22, 30]). In [33], one can find a purely algebraic approach
to zero-product preserving maps.



Mappings preserving zero products 87

4. Zero-product preservers of operator algebras. In this section we
shall discuss zero-product preserving linear maps between operator algebras
(over C). Since the linear span of projections is norm dense in a W ∗-algebra
which is unital, we can apply Lemma 2.1 and Theorem 2.2 to get

Theorem 4.1. Let θ : M → N be a norm continuous zero-product pre-
serving linear map between W ∗-algebras. Then

(i) θ(a)θ(bc) = θ(ab)θ(c) for all a, b in M.
(ii) θ(1)θ(a) = θ(a)θ(1) for all a, b in M.

(iii) θ(1)θ(ab) = θ(a)θ(b) for all a, b in M.
(iv) θ preserves commutativity.
(v) If θ(1) = 0 then θ(a)θ(b) = 0 for all a, b in M.

(vi) If θ(1) is invertible in N, or θ is surjective, then

θ(a) = θ(1)ϕ(a) for all a ∈M,(4.1)

where ϕ is an algebra homomorphism from M into N.

We remark that part of Theorem 4.1 was obtained by Cui and Hou [15]
using a different technique.

Recall that a W ∗-algebra is called properly infinite if it contains no
nonzero finite central projection. Since every element in a properly infinite
W ∗-algebra is a sum of at most five idempotents [28], Theorem 2.6 yields
the following

Theorem 4.2. Let M be a properly infinite W ∗-algebra and θ a zero-
product preserving additive map from M into a unital ring N. Then the
conclusions in Theorem 4.1 hold , except that ϕ is a ring homomorphism
from M into N.

Now, we turn to the C∗-algebra case. Since the linear sums of projections
are dense in a unital C∗-algebra of real rank zero [11], the conclusions in
Theorem 4.1 also hold for such C∗-algebras. However, to work with general
C∗-algebras requires more effort.

Recall that a linear map J between two algebras is said to be a Jordan
homomorphism if J(xy + yx) = J(x)J(y) + J(y)J(x) for all x, y. In case
the underlying field has characteristic not 2, this condition is equivalent to
J(x2) = (Jx)2 for all x in the domain. The following result was obtained
essentially by Wolff [32]. For a different approach, see also the thesis of
J. Schweizer, Interplay between noncommutative topology and operators on
C∗-algebras, Eberhard-Karls-Universität, Tübingen, 1997.

Theorem 4.3. Let A and B be C∗-algebras with A unital and θ : Asa →
Bsa a zero-product preserving bounded linear map. Then

θ(a) = θ(1)J(a) for all a in Asa,
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where J is a Jordan homomorphism from Asa into B∗∗sa and θ(1) commutes
with all the elements in the images of θ and J .

Note that as its original form that appeared in [32], the Jordan homo-
morphism J in the above theorem can be extended in a canonical way to
a Jordan ∗-homomorphism from A into B∗∗. In case θ(1) is invertible, the
range of J is contained in B. By a careful study of the original proof of
Wolff in [32], we obtain a ∗-free version of Theorem 4.3. A great part of our
arguments presented below is modeled on [32].

In what follows, we assume that A and B are C∗-algebras with A unital
and θ : A→ B is a bounded linear map such that θ(a)θ(b) = 0 for a, b ∈ Asa
with ab = 0.

Lemma 4.4. For any a in A, we have

(i) θ(1)θ(a) = θ(a)θ(1).
(ii) θ(1)θ(a2) = θ(a)2.

In particular , if θ(1) = 0 then θ(a)2 = 0 for all a in A.

Proof. First, we note that it suffices to check (i) and (ii) for self-adjoint
elements a of A. Identify the C∗-subalgebra of A generated by 1 and a with
C(X), where X ⊆ [−‖a‖, ‖a‖] is the spectrum of a. Denote again by θ the
bidual map of θ from C(X)∗∗ into B∗∗. For each positive integer n and each
integer k, let

Xn,k = (k/n, (k + 1)/n] ∩X.
Pick an arbitrary point xn,k from each nonempty Xn,k. Set xn,k = ∞ to
be the isolated point at infinity of X∞ = X ∪ {∞} if Xn,k = ∅. For any
f ∈ C(X), using the convention f(∞) = 0, we have

f = lim
n→∞

∑

k∈Z
f(xn,k)1Xn,k ,(4.2)

where 1Xn,k is the characteristic function of the Borel set Xn,k, and the limit
of the finite sums converges uniformly on X. In particular, for every fixed
positive integer n we have

1 =
∑

k∈Z
1Xn,k .(4.3)

For two disjoint nonempty sets Xn,j and Xn,k, we can find two sequences
{fm}m and {gm}m in C(X) such that fm+pgm = 0 for m, p = 0, 1, . . ., and
fm → 1Xn,j and gm → 1Xn,k pointwise on X. By the weak∗ continuity of θ,
we see that

θ(1Xn,j )θ(gm) = lim
p→∞

θ(fm+p)θ(gm) = 0 for all m = 1, 2, . . .
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Thus
θ(1Xn,j )θ(1Xn,k) = lim

m→∞
θ(1Xn,j )θ(gm) = 0.

Consequently, for each positive integer n and each integer j we have

θ(1)θ(1Xn,j ) =
∑

k∈Z
θ(1Xn,k)θ(1Xn,j) = θ(1Xn,j )

2 = θ(1Xn,j )θ(1).(4.4)

It follows from (4.2) and (4.4) that θ(1)θ(f) = θ(f)θ(1) and

θ(f)2 = lim
n→∞

(∑

k∈Z
f(xn,k)θ(1Xn,k)

)2
= lim

n→∞

∑

k∈Z
f(xn,k)2θ(1Xn,k)2

= lim
n→∞

θ(1)
∑

k∈Z
f(xn,k)2θ(1Xn,k) = θ(1)θ(f2),

for all f in C(X). In particular, θ(1)θ(a) = θ(a)θ(1) and θ(a)2 = θ(1)θ(a2).

Lemma 4.5. Suppose that B is also unital and θ(1) is invertible in B.
Then θ = θ(1)ϕ for a bounded unital Jordan homomorphism ϕ from A

into B.

Proof. By Lemma 4.4(i), θ(1)−1 commutes with θ(a) for all a ∈ A. Then
ϕ = θ(1)−1θ defines a bounded linear map from A into B with ϕ(1) = 1.
The assertion now follows directly from Lemma 4.4(ii).

Theorem 4.6. Let θ be a surjective bounded linear map from a unital
C∗-algebra A onto a C∗-algebra B. Suppose that θ sends zero products in
Asa to zero products in B. Then B is unital , θ(1) is invertible in the center
of B, and there is a surjective bounded unital Jordan homomorphism J from
A onto B such that

θ(a) = θ(1)J(a) for all a ∈ A.

Proof. Since θ(1)θ(a2) = θ(a)2 for all a in A and every element in a
C∗-algebra is an algebraic sum of square elements, we see that θ(1)B = B.
In particular, θ(1)e = θ(1) for some e in B. Hence,

θ(a)2e = θ(1)θ(a2)e = θ(a2)θ(1)e = θ(a2)θ(1) = θ(a)2 for all a ∈ A.

Thus be = b for all b ∈ B. Similarly, eb = b for all b ∈ B. This implies
that B is unital with identity e and it follows from θ(1)B = B that θ(1) is
invertible. The last assertion follows from Lemma 4.5.

It seems to be impossible to get a general result without assuming θ(1)
being invertible. The following theorem might be an optimal one as we shall
see in Example 4.8 after it. See also Example 4.10.

Theorem 4.7. Let θ be a bounded linear map from a unital C∗-algebra
A into a C∗-algebra B. Suppose θ sends zero products in Asa to zero prod-
ucts in B. If θ(1) is normal then there is a sequence of bounded Jordan
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homomorphisms Jn from A into B∗∗ such that θ(1)Jn(a) converges to θ(a)
strongly for all a in A.

Proof. We may assume that the ∗-subalgebra of B generated by θ(A) is
norm dense in B. Let h = θ(1). By Lemma 4.4 and the Fuglede–Putnam
Theorem, both h and h∗ are central elements in B. For each positive integer
n, let pn be the central projection in B∗∗ given by the spectral decomposition
of h∗h corresponding to the set {ζ ∈ σ(h∗h) : |ζ| ≥ 1/n}. Set hn = pnh.
Then hn is an invertible central element of pnB∗∗, and θn given by θn(a) =
pnθ(a) preserves zero products of self-adjoint elements. By Lemma 4.5, Jn =
h−1
n θn is a Jordan homomorphism from A into pnB∗∗ with Jn(1) = pn. Note

that hJn(a) = hnJn(a) = θn(a). Since pn converges strongly to the identity
of B∗∗, we see that θn(a) converges to θ(a) strongly for all a in A.

Example 4.8. Let M be the C∗-algebra
⊕

cM2 of all convergent se-
quences of 2× 2 complex matrices. For each positive integer n we define the
map θn : M2 →M2 by

θn(A) =
(

1 n
0 1

)
A

(
1 −n
0 1

)
,

and define θ : M→M by

θ
(⊕

n

An

)
=
⊕

n

θn(An)
‖θn‖

.

It is clear that ‖θn‖ ≥ 2n for n = 1, 2, . . . and θ is a zero-product preserving
linear map of norm one. Note that θ(1) =

⊕
n I/‖θn‖ is in the center of M,

where I is the 2×2 identity matrix. Moreover, θ is not surjective, and θ(1) is
normal with support projection 1 but not invertible. If we set Jn(

⊕
k Ak) =

θ1(A1)⊕ . . .⊕ θn(An)⊕ 0 . . . , then Jn is a bounded Jordan homomorphism
from M into M and θ(1)Jn(a) converges to θ(a) strongly for all a in M. But
there is no way to write θ = θ(1)J for any Jordan homomorphism J from
M into its second dual M∗∗ =

⊕
`∞M2.

Corollary 4.9. Let θ be a bounded linear map from a unital C∗-algebra
A into an abelian C∗-algebra B. Suppose that θ(a)θ(b) = 0 for all a, b ∈ Asa
with ab = 0. Then there is an open projection p1 in B∗∗ such that

(i) θ(1) = θ(1)p1.
(ii) θ(A)p0 = 0, where p0 = 1− p1.

(iii) θ(x)p1 = θ(1)ϕ(x) for all x ∈ A, where ϕ : A→ p1B
∗∗ is an algebra

homomorphism.

Consequently , θ = θ(1)ϕ.

Proof. Identify B with C0(Y ) for a locally compact Hausdorff space Y .
For each y in Y , denote by δy the point evaluation at y. Then the bounded
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linear functional δy ◦ θ is zero-product preserving. By Theorem 4.6, every
nonzero δy◦θ is a scalar multiple of a unital complex Jordan homomorphism,
and thus a character ϕy of A. Write

θ(a)(y) = h(y)ϕy(a) for all a ∈ A.

Note that h(y) = 0 if δy ◦ θ = 0. This gives the function h = θ(1) ∈ C0(Y ).
Let

Y0 = {y ∈ Y : h(y) = 0} and Y1 = Y \ Y0.

Clearly, Y0 is closed and Y1 is open. Let pi be the projection in B∗∗ induced
by the characteristic function of Yi for i = 0, 1. Define ϕ : A→ p1B

∗∗ by

ϕ(a)(y) = ϕy(a) for all a ∈ A and y ∈ Y1.

Then the conclusion follows.

The following example tells us that it is necessary to work with B∗∗ rather
than B for the co-domain of ϕ in the last corollary. In [21, Example 9], one
can see that it is also necessary to assume A is unital.

Example 4.10. Let θ : C[0, 1]→ C[0, 1] defined by

θ(f)(x) =
{
e−1/xf

(
sin 1

x

)
, x 6= 0,

0, x = 0.
Then θ is a zero-product preserving bounded linear map. In the notation of
Corollary 4.9, Y0 = {0} and Y1 = (0, 1]. Note that h = θ(1) ∈ C[0, 1]. But
the range of ϕ is not contained in C[0, 1].

In case θ preserves all zero products in A, we have the following

Theorem 4.11. Let θ be a surjective bounded linear map from a unital
C∗-algebra A onto a C∗-algebra B. Suppose that θ(a)θ(b) = 0 for all a, b ∈ A

with ab = 0. Then B is unital and θ(1) is an invertible element in the center
of B. Moreover , θ = θ(1)ϕ for a surjective algebra homomorphism ϕ from
A onto B.

To prove Theorem 4.11, we need the following results.
First, recall that an algebra A is semiprime if xAx 6= 0 for all nonzero

x ∈ A. An ideal I of an algebra A is said to be essential if I ∩ J 6= 0
for every nonzero ideal J of A. For semiprime algebras, this is equivalent
to the condition that Ia = 0 implies a = 0 for all a in A. For a Jordan
homomorphism θ, we denote by ker θ the kernel of θ, i.e., ker θ = {x :
θ(x) = 0}.

Theorem 4.12 ([5, Theorem 2.3]). Let A and B be algebras over any
field of characteristic not 2 with B semiprime and θ a Jordan homomor-
phism from A onto B. Then there exist ideals U and V of A and ideals U ′

and V ′ of B such that
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(i) U ∩ V = ker θ and U + V is an essential ideal of A.
(ii) U ′ ∩ V ′ = 0 and U ′ ⊕ V ′ is an essential ideal of B.

(iii) θ(U) = U ′ and θ(V ) = V ′.
(iv) θ(ux) = θ(u)θ(x) for all u ∈ U , x ∈ A.
(v) θ(vx) = θ(x)θ(v) for all v ∈ V , x ∈ A.

Moreover , if B is a normed algebra, then the ideals U ′ and V ′ are closed.

In general we cannot claim that U ⊕ V = A and U ′ ⊕ V ′ = B (see the
example in [4, p. 458] which the authors attribute to Kaplansky).

Theorem 4.13 (Brešar). Let θ be a Jordan isomorphism from a (com-
plex ) algebra A onto a C∗-algebra B. If θ preserves zero products, then θ is
an isomorphism.

Proof. Let U , V , U ′, V ′ be as in Theorem 4.12. Since V ′ is a closed
ideal of B, V ′ itself is a C∗-algebra. We claim that V ′ is commutative. If
not, then by Kaplansky’s theorem [23, p. 292] there would be a ∈ V ′ such
that a 6= 0 and a2 = 0. Set b = θ−1(a) ∈ V and c = θ−1(aa∗) ∈ V . By
Theorem 4.12(v) we have θ(cb) = θ(b)θ(c) = a2a∗ = 0 and so cb = 0. But
then aa∗a = θ(c)θ(b) = 0, a contradiction. Thus V ′ is indeed commutative.

We claim that V ′ lies in the center of B. Given a, b ∈ V ′ and x ∈ B we
see that a commutes with b and with bx, so that 0 = [a, bx] = b[a, x], that is,
V ′[B, V ′] = 0. Here [a, b] = ab−ba is the Lie product of a and b. In particular,
[B, V ′]B[B, V ′] = 0, which implies that [B, V ′] = 0, proving our claim.
Accordingly, Theorem 4.12(iv) and (v) together show that θ(wx) = θ(w)θ(x)
for all x ∈ A and all w from the essential ideal W = U ⊕ V . Consequently,
for all w ∈W and x, y ∈ A we have

θ(w)θ(xy) = θ(wxy) = θ((wx)y) = θ(wx)θ(y) = θ(w)θ(x)θ(y),

that is, θ(W )(θ(xy)−θ(x)θ(y)) = 0 for all x, y ∈ A. Since θ(W ) = U ′⊕V ′ is
an essential ideal of B by Theorem 4.12(ii), it follows that θ(xy) = θ(x)θ(y)
for all x, y ∈ A, that is, θ is an isomorphism.

Theorem 4.13 is an unpublished result due to Professor Matej Brešar,
who kindly agreed to it being included here. On the other hand, the proof
of the following elementary result of C. A. Akemann and G. K. Pedersen
was communicated by Professor Lawrence G. Brown.

Lemma 4.14 (Akemann and Pedersen). Let I be a closed two-sided ideal
of a C∗-algebra A. Let x = x + I ∈ A/I and y = y + I ∈ A/I be such that
xy = 0. Then there are a, b ∈ A such that x = a+ I, y = b+ I and ab = 0.

Proof. Observe that xy = 0 exactly when |x| |y∗| = 0, where |x| =
(x∗x)1/2 is the absolute value of x. In this case, z = |x| − |y∗| is self-adjoint.
As z + I = 1

2(z + z∗) + I, we may assume that z is a self-adjoint element
in A. Write z = c − d as the difference of its positive and negative parts.
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Note cd = dc = 0. It is easy to see that |x| = c + I and |y∗| = d + I. Let
0 < α < 1. By a standard result (see, e.g., [24, Proposition 2.9.2]), there
exist u, v in A/I such that x = u |x|α and y∗ = v |y∗|α. Then a = ucα and
b∗ = vdα will do the job.

Proof of Theorem 4.11. Taking into account Theorem 4.6, we only need
to show that ϕ is a homomorphism from A onto B. Let I be the kernel of ϕ,
which is a closed Jordan ideal of the C∗-algebra A. By [14], I is also a two-
sided ideal of A. Then ϕ induces a Jordan isomorphism from the quotient
algebra A/I onto B, which is again zero-product preserving by Lemma 4.14.
By Theorem 4.13, this is an algebra isomorphism. Consequently, ϕ is a
surjective algebra homomorphism from A onto B.
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