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Abstract

Let A be an operator ideal on LCS’s. A continuous seminorm p of a LCS X
is said to be A–continuous if Q̃p ∈ Ainj(X, X̃p), where X̃p is the completion of
the normed space Xp = X/p−1(0) and Q̃p is the canonical map. p is said to be a
Groth(A)–seminorm if there is a continuous seminorm q of X such that p ≤ q and
the canonical map Q̃pq : X̃q −→ X̃p belongs to A(X̃q, X̃p). It is well-known that
when A is the ideal of absolutely summing (resp. precompact, weakly compact)
operators, a LCS X is a nuclear (resp. Schwartz, infra–Schwartz) space if and
only if every continuous seminorm p of X is A–continuous if and only if every
continuous seminorm p of X is a Groth(A)–seminorm. In this paper, we extend
this equivalence to arbitrary operator ideals A and discuss several aspects of these
constructions which are initiated by A. Grothendieck and D. Randkte, respectively.
A bornological version of the theory is obtained, too.

1 Introduction

Let X be a LCS (locally convex space) and p a continuous seminorm of X. Denote by

Xp the quotient space X/p−1(0) equipped with the quotient seminorm (in fact, norm)

‖ · ‖p. Qp denotes the canonical map from X onto Xp and Q̃p denotes the unique map

induced by Qp from X into the completion X̃p of Xp. If q is a continuous seminorm of
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X such that p ≤ q (i.e. p(x) ≤ q(x),∀x ∈ X), the canonical map Qpq : Xq −→ Xp and

Q̃pq : X̃q −→ X̃p are continuous.

Let A be an operator ideal on Banach spaces. Following A. Pietsch [10], we call a

LCS X a Groth(A)–space if for each continuous seminorm p of X there is a continuous

seminorm q of X such that p ≤ q and Q̃pq ∈ A(X̃q, X̃p). This amounts to say that the

completion X̃ of X is a topological projective limit lim←− Q̃pqX̃q of Banach spaces of type

A (cf. [7]). A. Grothendieck’s construction of nuclear spaces is a model of Groth(A)–

spaces. In fact, a LCS X is a nuclear (resp. Schwartz, infra–Schwartz) space if it is a

Groth(N)–space (resp. Groth(Kp)–space, Groth(W)–space), where N (resp. Kp, W) is

the ideal of nuclear (resp. precompact, weakly compact) operators. It was known that

a locally convex space X is a Groth(A)–space if and only if the identity operator idX of

X belongs to the right superior extension Arup of A to LCS’s [10].

Another usual way to deal with these kind of spaces is due to D. Randkte [11]. A

continuous seminorm p of a LCS X is said to be A–continuous if the canonical map

Q̃p : X → X̃p belongs to the injective hull Ainj of A. X is said to be an A–topological

space if every continuous seminorm of X is A–continuous. For example, a LCS X is

nuclear (resp. Schwartz, infra–Schwartz) if X is a N– (resp. Kp–, W– ) topological

space.

The advantage of the construction of Grothendieck is that we need to pay attention

only on Banach spaces operators, while the construction of Randkte appears to be

simpler and easier to apply. In this paper, we shall prove that these two constructions

are in fact equivalent. Motivated by those examples of classical spaces, we define the

notions of ideal topologies (A–topologies in §3) and Grothendieck topologies (Groth(A)–

topologies in §4) associated to an operator ideal A. Our main result, Theorem 5.1, says

that Groth(Ainj)–topology = Arup–topology on LCS’s. In particular, a LCS X is a

Groth(Ainj)–spaces if and only if X is a Arup–topological space.

We also discuss dual concepts of Grothendieck spaces and A–topological spaces, i.e.

co–Grothendieck spaces and A–bornological spaces, which also attract some research

interests covering co–nuclear spaces, co–Schwartz spaces, semi–Montel spaces, and semi–

reflexive spaces.

Finally, we refer the readers to [4, 5, 7–10, 20] concerning Groth(A)–spaces and

co–Groth(A)–spaces, and to [6, 9, 11, 13–17, 19, 20] concerning A–topological spaces

and A–bornological spaces for further information, and in particular, to [21] for a quick
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review of the theory of ideal topologies and bornologies.

2 Notations and preliminaries

We shall follow the terminologies in [21]. Let X and Y be LCS’s. We denote by Lb(X, Y ),

L(X, Y ), and L×(X, Y ) the collection of all operators from X into Y which are bounded

(i.e. sending a 0-neighborhood to a bounded set), continuous, and locally bounded (i.e.

sending bounded sets to bounded sets), respectively. Denote by XG a vector space X

equipped with a locally convex (Hausdorff) topology G, and by XM a vector space X

equipped with a convex vector (separated) bornology M. UN always denotes the closed

unit ball of a normed space N .

A subset B of a LCS X is said to be a disk if B is absolutely convex, i.e. λB+βB ⊂ B

whenever |λ|+ |β| ≤ 1. A disk B is said to be a σ–disk, or absolutely σ–convex if Σnλnbn

converges in X and the sum belongs to B whenever (λn) ∈ Ul1 and bn ∈ B, n = 1, 2, . . .

Associated to each bounded disk B in X a normed space X(B) = ∪λ>0λB equipped

with the gauge γB of B as its norm, where γB(x) = inf{λ > 0 : x ∈ λB},∀x ∈ X(B).

The canonical map JB sending x in X(B) to x in X is continuous. Moreover, if A is a

bounded disk in X such that B ⊂ A then the canonical map JAB sending x in the normed

space X(B) to x in the normed space X(A) is bounded. A bounded disk B in X is said

to be infracomplete if X(B) is complete with respect to γB. It is known that a bounded

and closed disk B in X is absolutely σ–convex if and only if B is infracomplete [21]. X

is said to be infracomplete if the von Neumann bornology Mvon(X), i.e. the bornology of

all topologically bounded subsets of X, has a basis consisting of infracomplete subsets of

X, or equivalently, σ–disked subsets of X. In other words, (X, Mvon(X)) is a complete

convex bornological vector space (cf. [2]).

Let X and Y be LCS’s. Q1 in L(X,Y ) is said to be a bornological surjection if Q1

is onto and induces the bornology of Y (i.e. for each bounded subset B of Y there is

a bounded subset A of X such that Q1A = B). Let C be either the class L of locally

convex spaces or the class B of Banach spaces. An operator ideal A on C is said to

be bornologically surjective if whenever T is a continuous operator from X into Y and

Q is a bornological surjection from X0 onto X such that TQ ∈ A(X0, Y ), we have

T ∈ A(X, Y ), where X, X0, Y ∈ C. The bornologically surjective hull Absur of A is the

intersection of all bornologically surjective operator ideals containing A. If C = B, we

have Absur = Asur. But, if C = L then they are, in general, different objects, cf. [18]. We
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would like to mention that since a surjection is not always a bornological surjection (cf.

[12, ex. 4.9 and 4.20] or [18]), Theorem 4.10(c) in [21] should be rewritten by replacing

the word “surjective” by the phrase “bornologically surjective”. All other results in [21]

are unaffected.

We quote two recent results for later reference.

Proposition 2.1 ([1]) We can associate to each LCS Y a LCS Y ∞ and an injection

J∞Y in L(Y, Y ∞) such that the injective hull Ainj of an operator ideal A on LCS’s is given

by

Ainj(X, Y ) = {T ∈ L(X, Y ) : J∞Y T ∈ A(X,Y ∞)}.

Proposition 2.2 ([18]) We can associate to each LCS X a LCS X1 and a bornological

surjection Q1
X in L(X1, X) such that the bornologically surjective hull of an operator ideal

A on LCS’s is given by

Absur(X, Y ) = {T ∈ L(X,Y ) : TQ1
X ∈ A(X1, Y )}.

3 A–topologies and A–bornologies

Let A be an operator ideal on C, where C is either the class of LCS’s or the class of

Banach spaces. The A–topology T(A)(X0) of an X0 in C is defined to be the projective

topology of X0 with respect to the family {T ∈ A(X0, Y ) : Y ∈ C} and the A–bornology

B(A)(Y0) of an Y0 in C is defined to be the inductive bornology of Y0 with respect to the

family {T ∈ A(X, Y0) : X ∈ C}. In other words, T(A)(X0) is the coarsest locally convex

topology T of X0 such that all operators in A with X0 as domain are still continuous

with respect to T, i.e. A(X0, Y ) ⊆ L(X0T, Y ),∀Y ∈ C; and B(A)(Y0) is the smallest

convex vector bornology B of Y0 such that all operators in A with Y0 as range are still

locally bounded with respect to B, i.e. A(X, Y0) ⊆ L×(X, Y B
0 ), ∀X ∈ C. Even more

precisely, a seminorm p of X0 is T(A)–continuous (or simply A–continuous) if and only

if there is a T in A(X0, Y ) for some Y in C and a continuous seminorm q of Y such that

p(x) ≤ q(Tx), ∀x ∈ X0; and a subset B of Y0 is B(A)–bounded (or simply A–bounded)

if and only if there is a T in A(X,Y0) for some X in C and a bounded subset A of X

such that B ⊆ TA (see [21]).

4



3.1 A–topologies and A–topological spaces

Proposition 3.1 Let A be an operator ideal on LCS’s. The A–topology coincides with

the Ainj–topology on every LCS X. Moreover, a continuous seminorm p of X is A–

continuous if and only if Qp ∈ Ainj(X, Xp) if and only if Q̃p ∈ Ainj(X, X̃p).

Proof. It is obvious that the Ainj–topology is always finer than the A–topology on

X. It suffices to show that for every LCS Y and T in Ainj(X, Y ), T is also continuous

with respect to the A–topology of X. By Proposition 2.1, J∞Y T ∈ A(X, Y ∞). Since

J∞Y is an injection, the first assertion follows. On the other hand, we have shown in

[21] that Qp ∈ Ainj(X, Xp) if and only if p is Ainj–continuous, and thus if and only if p

is A–continuous. We are done as the canonical map Jp : Qp → Q̃p is an injection and

Q̃p = JpQp. �

Recall that a LCS X is said to be A–topological if its original topology Gori(X)

coincides with the A–topology, i.e. Gori(X) = T(A)(X) (cf. [21]).

Corollary 3.2 Let A be an operator ideal on LCS’s and X a LCS. The following are

all equivalent.

(1) X is A–topological.

(2) Lb(X,Y ) ⊂ Ainj(X, Y ) for every LCS Y .

(3) L(X, F ) = Ainj(X, F ) for every normed (or Banach) space F .

Example 3.3 When A is the ideal N of nuclear operators or the ideal P of absolutely

summing operators (resp. the ideal Kp of precompact operators, the ideal W of weakly

compact operators), the corresponding A–topological spaces are nuclear spaces (resp.

Schwartz spaces, infra–Schwartz spaces). Corollary 3.2 serves as a prototype of a class

of theorems concerning these spaces (see e.g. [20, pp. 17, 26, 149 and 157]).

In sequel, C denotes either the class of LCS’s or the class of Banach spaces. The

following includes a result of Jarchow [6, Proposition 3] in the context of Banach spaces.

Theorem 3.4 Let A be a surjective operator ideal on C and X, Y ∈ C. If Y is a (topo-

logical) quotient space of X then the A–topology of Y is the quotient topology induced

by the A–topology of X.
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Proof. Let Q be the quotient map from X onto Y . Let XA (resp. YA) denote the

LCS X (resp. Y ) equipped with the A–topology. We have Q ∈ L(XA, YA) [21, Theorem

3.8]. It implies that the A–topology of Y is weaker than the quotient topology induced

by the A–topology of X. Let p be an A–continuous seminorm of X and q the quotient

seminorm of Y induced by p. Let Q̃p : X → X̃p, Q̃q : Y → Ỹq and Q̃qp : X̃p → Ỹq be the

canonical maps. By Proposition 3.1 (or [21, Lemma 3.3] for the Banach space version),

Q̃p ∈ Ainj(X, X̃p). Now Q̃qQ = Q̃qpQ̃p ∈ Ainj(X, Ỹq) implies Q̃q ∈ (Ainj)sur(Y, Ỹq) since

Q is a surjection. However, (Asur)inj is always surjective, by Proposition 2.1. As a

result, (Ainj)sur ⊂ (Asur)inj. Thus Q̃q ∈ (Asur)inj(Y, Ỹq) = Ainj(Y, Ỹq) since A is surjective.

It implies that q is A–continuous. Therefore, the A–topology of Y coincides with the

quotient topology induced by the A–topology of X. �

Corollary 3.5 Let A be a surjective operator ideal on C. Then a quotient space of an

A–topological space is again an A–topological space.

3.2 A–bornologies and A–bornological spaces

Proposition 3.6 Let A be an operator ideal on LCS’s. The A–bornology coincides with

the Absur–bornology on every LCS. Moreover, a bounded subset B0 of a LCS Y is A–

bounded if and only if JB ∈ Absur(Y (B), Y ), where B is the absolutely convex hull of B0

and JB is the canonical map. When A is surjective, we can replace Absur by A.

Proof. The first part is similar to Proposition 3.1. For the rest, W.O.L.G. we can

assume that A is bornologically surjective. If JB ∈ A(Y (B), Y ) then B0 ⊂ JBUY (B)

is, by definition, A–bounded in Y . Conversely, if B0 is A–bounded in Y , B is also A–

bounded in Y and we can choose a bounded disk A in a LCS X and a T in A(X, Y )

such that TA = B. So we have a T0 in L(X(A), Y (B)) such that TJA = JBT0. Now

TJA ∈ A(X(A), Y ) and the bornological surjectivity of T0 implies JB ∈ A(Y (B), Y ). The

last assertion follows from [18, Corollary 2.6] which says that Absur(N, Y ) = A(N, Y ) for

every normed space N and every LCS Y if A is surjective. �

Recall that a LCS Y is said to be A–bornological if its von Neumann bornology of Y

(i.e. the family of all topologically bounded subsets of Y ) coincides with the A–bornology

(cf. [21]).

Corollary 3.7 Let A be an operator ideal on LCS’s and Y a LCS. The following are

all equivalent.
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(1) Y is A–bornological.

(2) Lb(X, Y ) ⊂ Absur(X, Y ) for every LCS X.

(3) L(N, Y ) = Absur(N, Y ) for every normed space N .

In case Y is infracomplete, they are all equivalent to

(3)′ L(E, Y ) = Absur(E, Y ) for every Banach space E.

If A is surjective, we can replace Absur by A in all above statements.

Proof. We just mention that the last assertion follows from [18, Corollary 2.6]. �

Example 3.8 When A is the ideal N of nuclear operators or the ideal P of abso-

lutely summing operators (resp. the ideal Kp of precompact operators, the ideal W

of weakly compact operators), the corresponding A–bornological spaces are co–nuclear

spaces (resp. semi–Montel spaces and semi–reflexive spaces). Corollary 3.7 serves as a

prototype of a class of theorems concerning these spaces (see e.g. [3]).

Let C be either the class of LCS’s or the class of Banach spaces.

Theorem 3.9 Let A be an injective operator ideal on C and X, Y ∈ C. If Y is a

(topological) subspace of X then the A–bornology of Y is the subspace bornology inherited

from the A–bornology of X.

Proof. Similar to Theorem 3.4. Note that we have (Absur)inj = (Ainj)bsur by Proposi-

tions 2.1 and 2.2 in this case. �

Corollary 3.10 Let A be an injective operator ideal on C. Then a subspace of an A–

bornological space is again an A–bornological space.

4 Grothendieck topologies and Grothendieck borno-

logies

4.1 Groth(A)–topologies and Groth(A)–spaces

Definition Let A be an operator ideal on Banach spaces. We call a continuous seminorm

p of a LCS X a Groth(A)–seminorm if there is a continuous seminorm q of X such that

p ≤ q and Q̃pq ∈ A(X̃q, X̃p).
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Remark Two operator ideals A and B on Banach spaces are said to be equivalent if

there are positive integers m and n such that Am ⊆ B and Bn ⊆ A. In this case,

a continuous seminorm p of a LCS X is a Groth(A)–seminorm if and only if p is a

Groth(B)–seminorm (cf. [10] or [7]). An operator ideal A is said to be quasi–injective

if A is equivalent to an injective operator ideal. For example, the ideal N of nuclear

operators is quasi–injective since it is equivalent to the injective ideal P of absolutely

summing operators. In fact, P3 ⊂ N ⊂ P (cf. [20, p.145]).

Proposition 4.1 Let A be an operator ideal on Banach spaces and let p, p1, . . . , pn be

Groth(A)–seminorms of a LCS X.

(a) λp is a Groth(A)–seminorm of X for all λ ≥ 0.

(b) If p0 is a continuous seminorm of X such that p0 ≤ p then p0 is a Groth(A)–

seminorm.

(c) p1 + p2 + · · ·+ pn is a Groth(Ainj)–seminorm. In case A is quasi–injective, p1 + p2 +

· · ·+ pn is a Groth(A)–seminorm.

Proof. (a) and (b) are trivial. For (c), let q1, . . . , qn be continuous seminorms of X

such that pi ≤ qi and Qi = Q̃piqi
∈ A(X̃qi

, X̃pi
), i = 1, 2, . . . , n. Let p0 = p1 + · · · + pn

and q0 = q1 + · · · + qn. Let Jp : X̃p0 −→ ⊕`1X̃pi
and Jq : X̃q0 −→ ⊕`1X̃qi

be the

canonical isometric embeddings. Let jk : X̃pk
−→ ⊕`1X̃pi

and πk : ⊕`1X̃qi
−→ X̃qk

,

k = 1, . . . , n, be the canonical embeddings and projections, respectively. We want to

prove that Q0 = Q̃p0q0 belongs to Ainj(X̃q0 , X̃p0). Note that JpQ0 = (j1Q1π1 + j2Q2π2 +

· · · + jnQnπn)Jq. Since Qk ∈ A(X̃qk
, X̃pk

), k = 1, 2, . . . , n, JpQ0 ∈ A(X̃q0 ,⊕`1X̃p1) and

hence Q0 ∈ Ainj(X̃q0 , X̃p0). That is, p0 is a Groth(Ainj)–seminorm of X. �

Definition Let A be a quasi–injective operator ideal on Banach spaces and X a LCS.

The Groth(A)–topology of X is defined to be the locally convex (Hausdorff) topology of

X determined by all Groth(A)–seminorms.

Recall that a LCS X is called a Groth(A)–space for some operator ideal A on Banach

spaces if idX ∈ Arup(X, X) (cf. [10]). It is easy to see that for a quasi–injective operator

ideal A on Banach spaces, a LCS X is a Groth(A)–space if and only if the topology

of X coincides with the Groth(A)–topology. In this case, the completion X̃ of X is a

topological projective limit lim←− Q̃pqX̃q of Banach spaces of type A (cf. [7]).
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4.2 Groth(A)–bornologies and co–Groth(A)–spaces

Definition Let A be an operator ideal on Banach spaces. A bounded σ–disk B in a

LCS X is said to be Groth(A)–bounded in X if there is a bounded σ–disk A in X such

that B ⊂ A and the canonical map JAB ∈ A(X(B), X(A)). Note that, in this case, both

X(A) and X(B) are Banach spaces.

Remark If A and B are two equivalent operator ideals on Banach spaces then a bounded

σ–disk B in a LCS X is Groth(A)–bounded if and only if B is Groth(B)–bounded (cf.

[7]). An operator ideal A is said to be quasi–surjective if A is equivalent to a surjective

operator ideal.

Proposition 4.2 Let A be an operator ideal on Banach spaces and let B, B1, . . . , Bn be

Groth(A)–bounded σ–disks in a LCS X.

(a) λB is Groth(A)–bounded for all λ ≥ 0.

(b) If B0 is a bounded subset of X and B0 ⊂ B then the σ–disked hull Γσ(B0) of B0

exists in X and is Groth(A)–bounded in X.

(c) Γσ(B1 + · · · + Bn) is Groth(Asur)–bounded in X. In case A is quasi–surjective,

Γσ(B1 + · · ·+ Bn) is Groth(A)–bounded in X.

Proof. Similar to Proposition 4.1. �

Definition Let A be a quasi–surjective operator ideal on Banach spaces. The Groth(A)–

bornology of a LCS X is defined to be the convex vector bornology of X determined by

all Groth(A)–bounded σ–disks in X.

Definition A LCS is called a co–Groth(A)–space if all bounded σ–disks in X are

Groth(A)–bounded. It is equivalent to say that idX ∈ Alup(X, X).

It is easy to see that for a quasi–surjective operator ideal A on Banach spaces, an

infracomplete LCS X is a co–Groth(A)–space if and only if the von Neumann bornology

Mvon(X) of X coincides with the Groth(A)–bornology. In this case, the complete convex

bornological space X is a bornological inductive limit lim−→ JABX(B) of Banach spaces of

type A.
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5 Coincidence of ideal topologies (bornologies) and

Grothendieck topologies (bornologies)

Theorem 5.1 Let A be an operator ideal on Banach spaces. The Groth(Ainj)–topology

coincides with the Arup–topology on every LCS and the Groth(Asur)–bornology coincides

with the Alup–bornology on every infracomplete LCS. In particular, we have

(a) A LCS X is a Groth(Ainj)–space if and only if X is an Arup–topological space.

(b) An infracomplete LCS X is a co–Groth(Asur)–space if and only if X is an Alup–bor-

nological space.

(c) The A–topology (resp. A–bornology) coincides with the Groth(Ainj)–topology (resp.

Groth(Asur)–bornology) on Banach spaces.

Proof. Let p be an Arup–continuous seminorm of X. Then Q̃p ∈ (Arup)inj(X, X̃p)

= (Ainj)rup(X, X̃p), by [18, Proposition 3.5]. Consequently, a factorization of Q̃p = ST

exists, where S ∈ Ainj(E, X̃p) and T ∈ L(X, E) for some Banach space E. Define

q(x) = ‖S‖ ‖Tx‖,∀x ∈ X.

Then q is a continuous seminorm of X such that

p(x) = ‖Q̃p(x)‖ = ‖STx‖ ≤ ‖S‖ ‖Tx‖ = q(x),∀x ∈ X.

Note that T induces an R in L(X̃q, E) such that T = RQ̃q. Now, Q̃pq = SR ∈
Ainj(X̃q, X̃p). Therefore, p is a Groth(Ainj)–seminorm of X.

Conversely, if p is a Groth(Ainj)–seminorm of X then there exists a continuous semi-

norm q of X such that p ≤ q and Q̃pq ∈ Ainj(X̃q, X̃p). As a result, Q̃p = Q̃pqQ̃q ∈
Ainj(X, X̃p) and thus p is A–continuous.

We leave the bornological case to the readers, and comment that the assumption on

infracompleteness is merely to give us a chance to utilize the extension condition. �

Remark Let A be an operator ideal on Banach spaces and A0 be an extension of A

to LCS’s. It is plain that if A0 ⊂ Arup then A0–topology = Arup–topology; and if

A0 ⊂ Alup then A0–bornology = Alup–bornology at least on infracomplete LCS’s. For

instance, N = Ninf
B [20, p.144], where NB is the quasi–injective ideal of nuclear operators

between Banach spaces. Consequently, N–topology = Groth(NB)–topology on every
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LCS. This explains why the constructions of Grothendieck and Randkte match in the

case of nuclear spaces. The discussion is similar for Schwartz and infra–Schwartz spaces

and their “co–spaces”.
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