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Abstract. In this note, we will discuss what kind of operators between C*-algebras
preserves Jordan triple products {a,b,c} = (ab*c + c¢b*a)/2. These include especially
isometries and disjointness preserving operators.
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1. Introduction

Recall that a Banach algebra A is an algebra with a norm || - || such that ||ab|| <
lal/]|b]|, and every Cauchy sequence converges. A complex Banach algebra A
is a C*-algebra if there is an involution * defined on A such that |a*a| =
la||?. A special example is B(H), the algebra of all bounded linear operators
on a (complex) Hilbert space H. By the Gelfand-Naimark-Sakai Theorem, C*-
algebras are exactly those norm closed *-subalgebras of B(H). An abelian C*-
algebra A can also be represented as the algebra Cy(X) of continuous functions
on a locally compact Hausdorff space X vanishing at infinity. X is compact if
and only if A is unital.

It is well known that the algebraic structure determines the geometric (norm)
structure of a C*-algebra A. Indeed, the norm of a self-adjoint element a of A
coincides with the spectral radius of a, and the latter is a pure algebraic object.
In general, the norm of an arbitrary element a of A is equal to ||a*al/*/2, and
a*a is self-adjoint. For an abelian C*-algebra A = Cy(X), we note that the
underlying space X can be considered as the maximal ideal space of A consisting
of complex homomorphisms (= linear and multiplicative functionals) of A. The
topology of X is the hull-kernel topology, and thus be solely determined by the
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algebraic structure of A.

In this note, we will discuss how much the algebraic structure can be recovered
if we know the norm, or other, structure of a C*-algebra. In particular, isometries
and disjointness preserving operators of C*-algebras preserve triple products
{a,b,c} = (ab*c + cb*a)/2.

The author is very grateful to our late friend, Kosita Beidar, from whom he
learnt how to look at a seemingly pure analytic problem from the point of view
of an algebraist.

2. The geometric structure determines the algebraic structure

Suppose T : A — B is an isometric linear embedding between C*-algebras.
That is, ||Tz|| = ||z|| for all  in A. We are interested in knowing what kind
of algebraic structure T inherits from A to its range, which is in general just a
Banach subspace of B. We begin with two famous results.

Theorem 2.1. (Banach and Stone; see, e.g., [5]) Let X and Y be locally compact
Hausdorff spaces. Let T : Co(X) — Co(Y) be a surjective linear isometry.
Then T is a weighted composition operator

Tf:thQD, \V/fECO(X),

where h is a continuous scalar function on'Y with |h(y)| = 1, and ¢ is a homeo-
morphism fromY onto X. Consequently, two abelian C*-algebras are isomorphic
as Banach spaces if, and only if, they are isomorphic as *-algebras.

Here is a sketch of the proof. Let T* : M(Y) — M (X) be the dual map of
T, which is again a surjective linear isometry from the Banach space M(Y) =
Co(Y)* of all bounded Radon measures on Y onto that on X. Restricting T
to the dual unit balls, which are weak* compact and convex, we get an affine
homeomorphism. Since the extreme points of the dual unit balls are exactly
unimodular scalar multiples of point masses together with zero, T sends a
point mass d, to Ady. Here y € Y, € X and |A| = 1. We write = ¢(y) and
A = h(y) to indicate that 2 and A depend on y. It follows that

Tf(y) =T"(0,)(f) = h(y)dpy)(f) = h(y) f(e(y)).

In other words, Tf = h- fop, Vf € Co(X). Tt is then routine to see that h is
unimodular and continuous on Y, and that ¢ is a homeomorphism from Y onto
X.

Theorem 2.2. (Kadison [6]) Let A and B be C*-algebras. Let T : A — B be a
surjective linear isometry. Then there is a unitary element u in B = B & Cl1,
the unitalization of B, and a Jordan *-isomorphism J : A — B such that

Ta=ud(a), Vae€A.
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Consequently, two C*-algebras are isomorphic as Banach spaces if, and only if,
they are isomorphic as Jordan *-algebras.

Recall that a Jordan *-isomorphism J preserves linear sums, involutions and
Jordan products: aob = (ab+ ba)/2. Tt is easy to see that the abelian case can
also be written in this form with w = h and Jf = f o . In general, the product
of a pair of elements in A can be decomposed into two parts ab = a o b+ [a, b],
the sum of the Jordan product and the Lie product [a,b] = (ab — ba)/2. It is
plain that a o b = b o a is commutative and [a,b] = —[b, a] is anti-commutative.
However they are not associative. The Kadison theorem states that the norm
structure of a C*-algebra determines completely its Jordan structure.

It is interesting to note that Jordan products are determined by squares:

(a+b)? —a® — b2
2 b

aob= Ya,b € A.
A similar algebraic structure exists in C*-algebras, namely, the Jordan triple
products:
ab*c+ cb*a
{a,b,c} = —

There is also a polar identity for triples:

{a,b,c} :é Z Z af{a+ ab+ Bc}®,

a?2=13%=1

Hence, a linear map T between C*-algebras preserves triple products if and only
if it preserves cubes a®) = {a,a,a} = aa*a.

Kaup [7] rephrased Kadison theorem: a linear surjection between C*-algebras
T : A — Bis anisometry if and only if it preserves triple products. A geometric
proof of the Kadison Theorem is given by Dang, Friedman and Russo [2]. It goes
first to note that a norm exposed face of the dual unit ball Ug~« is of the form
F, ={p € B*: |¢|| = ¢(u) < 1} for a unique partial isometry u in B**. For
two @, in B*, they are said to be orthogonal to each other if they have polar
decompositions ¢ = u|p|, ¥ = v|| such that v L v, i.e., u*v = wv* = 0. This
amounts to say that [|¢ & 1| = [|¢|| + ||| Two faces F,, F, are orthogonal if
and only if v | v. Then they verify that the adjoint T of the surjective linear
isometry T maps faces to faces and preserves orthogonality. Consequently, T
sends orthogonal partial isometries to orthogonal partial isometries. By the
spectral theory, every element a in A can be approximated in norm by a finite
linear sum of orthogonal partial isometries > j Ajug. Then its cube a®) can also

be approximated by > /\§-3)uj. It follows that T'(a®) and (Ta)®® can both be
approximated by >, A§3)Tuj. Hence T'(a®) = (Ta)®, and thus T preserves
triple products by the polar identity.

We note that the above (geometric) proof of the Kadison theorem quite
depends on the fact the range of the isometry is again a C*-algebra. Extending
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the Holsztynski theorem [3, 5], Chu and Wong [1] studied non-surjective linear
isometries between C*-algebras.

Theorem 2.3. (Chu and Wong [1]) Let A and B be C*-algebras and let T be
a linear isometry from A into B. There is a largest closed projection p in B**
such that T(-)p: A — B** is a Jordan triple homomorphism and

T(ab*c+ cb*a)p =T (a)T(b)*T(c)p+T(c)T(b)*T(a)p, Va,b,ce A.

When A is abelian, we have || T(a)p|| = |la| for all a in A. In particular, T
reduces locally to a Jordan triple isomorphism on the JB*-triple generated by
any a i A, by a closed projection p,.

Beside the triple technique, the proof of above theorem also makes use of
the concept of representing elements in a C*-algebra as special sections of a
continuous field of Hilbert spaces developed in [8]. It is still geometric.

3. Disjointness preserving operators are triple homomorphisms

In this section, we do not assume the operator T is isometric. Although the fol-
lowing statement might have been known to experts, we provide a new and short
proof here as we do not find any in the literature. For simplicity of notations,
we also write T for its bidual map T** : A** — B**.

Theorem 3.1. Let T : A — B be a bounded linear map between C*-algebras.
Then T is a triple homomorphism if and only if T sends partial isometries to
partial isometries.

Proof. One direction is trivial. Suppose T sends partial isometries to partial
isometries. Let u,v be two partial isometries in A. Observe that they are
orthogonal to each other, namely, u*v = wv* = 0, if and only if they have
orthogonal initial spaces and orthogonal range spaces. This amounts to say that
u —+ Av is a partial isometry for all scalar A with |A| = 1. Consequently, T
sends orthogonal partial isometries to orthogonal partial isometries. For every
a in A, approximate a in norm by a finite linear sum ) A,u, of orthogonal
partial isometries. Then its cube a(®) = aa*a can also be approximated in norm
by > APu,. Tt follows that Ta and T(a®) can be approximated in norm
by >, AnTu, and >, AP T, respectively. This gives T(a®) = (Ta)®,
Va € A. By the polar identity, we see that T is a triple homomorphism. ]

We say that a linear map T : A — B between C*-algebras is disjointness
preserving if

a*b=ab* =0 implies (Ta)*(Th) = (Ta)(Th)* =0, Va,be A
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Clearly, T is disjointness preserving if and only if it preserves disjointness of par-
tial isometries. It is clear that every triple homomorphism preserves disjointness.
Looking at the well-known abelian case, that is, the Jarosz theorem [4, 5], we see
that not every disjointness preserving map is a triple homomorphism. Indeed,
let T : Cop(X) — Co(Y) be a bounded disjointness preserving linear map be-
tween abelian C*-algebras. Then there is a closed subset Yy of Y on which every
Tf vanishes. On Y7 = Y \ Yj there is a bounded continuous function h and a
continuous map ¢ from Y7 into X such that T'fjy, = h- f oy for all fin Co(X).
Hence, T is a triple homomorphism if and only if T'1 is a partial isometry in
Co(Y)**. We end this note with a proof of this fact for the non-abelian case.

Theorem 3.2. Let T : A — B be a bounded linear map between C*-algebras.
Then T is a triple homomorphism if and only if T is disjointness preserving and
T1 is a partial isometry.

Proof. We verify the sufficiency only. By the polar identity it suffices to check
that T sends the cube a(®) to the cube (T'a)® for every element a of A. Identify
the JB*-triple of A generated by 1 and a with C(X) (see [7, Corollary 1.15]),
where X is some compact set of complex numbers. Denote again by T the bidual
map of T from C(X)** into B**.

Let X = U, X,, be any finite Borel partition of X and pick an arbitrary point
x, from X,. In particular,
n

where 1x, is the characteristic function of the Borel set X,,. For j # k, we
can find two sequences {fy,}m and {gm}m in C(X) such that fp,+pgm = 0 for
m,p = 0,1,..., fru — lx, and g, — lx, pointwisely on X. By the weak®
continuity of T', we see that

T(1x,)T(gm)* = pllrrgo T(frm4p)T(gm) =0 forallm=1,2,...

Thus
T(lXj)T(lxk)* = lim T(lXj)T(gm)* =0.

m—0o0

Similarly, we have
T(1x,)"T(1x,) = 0.

Consequently, for each j we have

T(MT(1x,)"T(1) =Y T(1x,)T(1x,) T(1x,,) = (T(1x,))?.

This gives
Y T(x,) =T1=(T)® =3 (T(1x,)?.

n n
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Multiplying the above identity on the left by T(1x,))* and (T(1x,))® " respec-
tively, we see that

(T(1x,) — (T(1x,)) )" (T(1x,) — (T(1x,))®) =0.

Hence T'(1x,,) is a partial isometry for each n and orthogonal to the others. It
follows that

(3)
(T(f))® =lim (Zf(xn)T(lxn)> =lim Y f(a.)®(T(1x,))®
=1lim ) f(z,) DT (1x,) = T(f9),

for all f in C'(X). This completes the proof. ]
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