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Abstract. In this note, we will discuss what kind of operators between C*-algebras

preserves Jordan triple products {a, b, c} = (ab∗c + cb∗a)/2. These include especially

isometries and disjointness preserving operators.
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1. Introduction

Recall that a Banach algebra A is an algebra with a norm ‖ · ‖ such that ‖ab‖ ≤
‖a‖‖b‖, and every Cauchy sequence converges. A complex Banach algebra A
is a C*-algebra if there is an involution ∗ defined on A such that ‖a∗a‖ =
‖a‖2. A special example is B(H), the algebra of all bounded linear operators
on a (complex) Hilbert space H. By the Gelfand-Naimark-Sakai Theorem, C*-
algebras are exactly those norm closed *-subalgebras of B(H). An abelian C*-
algebra A can also be represented as the algebra C0(X) of continuous functions
on a locally compact Hausdorff space X vanishing at infinity. X is compact if
and only if A is unital.

It is well known that the algebraic structure determines the geometric (norm)
structure of a C*-algebra A. Indeed, the norm of a self-adjoint element a of A
coincides with the spectral radius of a, and the latter is a pure algebraic object.
In general, the norm of an arbitrary element a of A is equal to ‖a∗a‖1/2, and
a∗a is self-adjoint. For an abelian C*-algebra A = C0(X), we note that the
underlying space X can be considered as the maximal ideal space of A consisting
of complex homomorphisms (= linear and multiplicative functionals) of A. The
topology of X is the hull-kernel topology, and thus be solely determined by the
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algebraic structure of A.
In this note, we will discuss how much the algebraic structure can be recovered

if we know the norm, or other, structure of a C*-algebra. In particular, isometries
and disjointness preserving operators of C*-algebras preserve triple products
{a, b, c} = (ab∗c+ cb∗a)/2.

The author is very grateful to our late friend, Kosita Beidar, from whom he
learnt how to look at a seemingly pure analytic problem from the point of view
of an algebraist.

2. The geometric structure determines the algebraic structure

Suppose T : A −→ B is an isometric linear embedding between C*-algebras.
That is, ‖Tx‖ = ‖x‖ for all x in A. We are interested in knowing what kind
of algebraic structure T inherits from A to its range, which is in general just a
Banach subspace of B. We begin with two famous results.

Theorem 2.1. (Banach and Stone; see, e.g., [5]) Let X and Y be locally compact
Hausdorff spaces. Let T : C0(X) −→ C0(Y ) be a surjective linear isometry.
Then T is a weighted composition operator

Tf = h · f ◦ ϕ, ∀f ∈ C0(X),

where h is a continuous scalar function on Y with |h(y)| ≡ 1, and ϕ is a homeo-
morphism from Y onto X. Consequently, two abelian C*-algebras are isomorphic
as Banach spaces if, and only if, they are isomorphic as ∗-algebras.

Here is a sketch of the proof. Let T ∗ : M(Y ) −→M(X) be the dual map of
T , which is again a surjective linear isometry from the Banach space M(Y ) =
C0(Y )∗ of all bounded Radon measures on Y onto that on X. Restricting T ∗

to the dual unit balls, which are weak* compact and convex, we get an affine
homeomorphism. Since the extreme points of the dual unit balls are exactly
unimodular scalar multiples of point masses together with zero, T ∗ sends a
point mass δy to λδx. Here y ∈ Y , x ∈ X and |λ| = 1. We write x = ϕ(y) and
λ = h(y) to indicate that x and λ depend on y. It follows that

Tf(y) = T ∗(δy)(f) = h(y)δϕ(y)(f) = h(y)f(ϕ(y)).

In other words, Tf = h · f ◦ ϕ, ∀f ∈ C0(X). It is then routine to see that h is
unimodular and continuous on Y , and that ϕ is a homeomorphism from Y onto
X.

Theorem 2.2. (Kadison [6]) Let A and B be C*-algebras. Let T : A −→ B be a
surjective linear isometry. Then there is a unitary element u in B̃ = B ⊕ C1,
the unitalization of B, and a Jordan ∗-isomorphism J : A −→ B such that

Ta = uJ(a), ∀a ∈ A.
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Consequently, two C*-algebras are isomorphic as Banach spaces if, and only if,
they are isomorphic as Jordan ∗-algebras.

Recall that a Jordan ∗-isomorphism J preserves linear sums, involutions and
Jordan products: a ◦ b = (ab+ ba)/2. It is easy to see that the abelian case can
also be written in this form with u = h and Jf = f ◦ϕ. In general, the product
of a pair of elements in A can be decomposed into two parts ab = a ◦ b+ [a, b],
the sum of the Jordan product and the Lie product [a, b] = (ab − ba)/2. It is
plain that a ◦ b = b ◦ a is commutative and [a, b] = −[b, a] is anti-commutative.
However they are not associative. The Kadison theorem states that the norm
structure of a C*-algebra determines completely its Jordan structure.

It is interesting to note that Jordan products are determined by squares:

a ◦ b =
(a+ b)2 − a2 − b2

2
, ∀a, b ∈ A.

A similar algebraic structure exists in C*-algebras, namely, the Jordan triple
products:

{a, b, c} =
ab∗c+ cb∗a

2
.

There is also a polar identity for triples:

{a, b, c} =
1
8

∑
α2=1

∑
β4=1

αβ{a+ αb+ βc}(3),

Hence, a linear map T between C*-algebras preserves triple products if and only
if it preserves cubes a(3) = {a, a, a} = aa∗a.

Kaup [7] rephrased Kadison theorem: a linear surjection between C*-algebras
T : A −→ B is an isometry if and only if it preserves triple products. A geometric
proof of the Kadison Theorem is given by Dang, Friedman and Russo [2]. It goes
first to note that a norm exposed face of the dual unit ball UB∗ is of the form
Fu = {ϕ ∈ B∗ : ‖ϕ‖ = ϕ(u) ≤ 1} for a unique partial isometry u in B∗∗. For
two ϕ,ψ in B∗, they are said to be orthogonal to each other if they have polar
decompositions ϕ = u|ϕ|, ψ = v|ψ| such that u ⊥ v, i.e., u∗v = uv∗ = 0. This
amounts to say that ‖ϕ ± ψ‖ = ‖ϕ‖ + ‖ψ‖. Two faces Fu, Fv are orthogonal if
and only if u ⊥ v. Then they verify that the adjoint T ∗ of the surjective linear
isometry T maps faces to faces and preserves orthogonality. Consequently, T
sends orthogonal partial isometries to orthogonal partial isometries. By the
spectral theory, every element a in A can be approximated in norm by a finite
linear sum of orthogonal partial isometries

∑
j λjuj . Then its cube a(3) can also

be approximated by
∑

j λ
(3)
j uj . It follows that T (a(3)) and (Ta)(3) can both be

approximated by
∑

j λ
(3)
j Tuj . Hence T (a(3)) = (Ta)(3), and thus T preserves

triple products by the polar identity.
We note that the above (geometric) proof of the Kadison theorem quite

depends on the fact the range of the isometry is again a C*-algebra. Extending
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the Holsztynski theorem [3, 5], Chu and Wong [1] studied non-surjective linear
isometries between C*-algebras.

Theorem 2.3. (Chu and Wong [1]) Let A and B be C*-algebras and let T be
a linear isometry from A into B. There is a largest closed projection p in B∗∗

such that T (·)p : A −→ B∗∗ is a Jordan triple homomorphism and

T (ab∗c+ cb∗a)p = T (a)T (b)∗T (c)p+ T (c)T (b)∗T (a)p, ∀a, b, c ∈ A.

When A is abelian, we have ‖T (a)p‖ = ‖a‖ for all a in A. In particular, T
reduces locally to a Jordan triple isomorphism on the JB*-triple generated by
any a in A, by a closed projection pa.

Beside the triple technique, the proof of above theorem also makes use of
the concept of representing elements in a C*-algebra as special sections of a
continuous field of Hilbert spaces developed in [8]. It is still geometric.

3. Disjointness preserving operators are triple homomorphisms

In this section, we do not assume the operator T is isometric. Although the fol-
lowing statement might have been known to experts, we provide a new and short
proof here as we do not find any in the literature. For simplicity of notations,
we also write T for its bidual map T ∗∗ : A∗∗ −→ B∗∗.

Theorem 3.1. Let T : A −→ B be a bounded linear map between C*-algebras.
Then T is a triple homomorphism if and only if T sends partial isometries to
partial isometries.

Proof. One direction is trivial. Suppose T sends partial isometries to partial
isometries. Let u, v be two partial isometries in A. Observe that they are
orthogonal to each other, namely, u∗v = uv∗ = 0, if and only if they have
orthogonal initial spaces and orthogonal range spaces. This amounts to say that
u + λv is a partial isometry for all scalar λ with |λ| = 1. Consequently, T
sends orthogonal partial isometries to orthogonal partial isometries. For every
a in A, approximate a in norm by a finite linear sum

∑
n λnun of orthogonal

partial isometries. Then its cube a(3) = aa∗a can also be approximated in norm
by
∑

n λ
(3)
n un. It follows that Ta and T (a(3)) can be approximated in norm

by
∑

n λnTun and
∑

n λn
(3)Tun, respectively. This gives T (a(3)) = (Ta)(3),

∀a ∈ A. By the polar identity, we see that T is a triple homomorphism.

We say that a linear map T : A −→ B between C*-algebras is disjointness
preserving if

a∗b = ab∗ = 0 implies (Ta)∗(Tb) = (Ta)(Tb)∗ = 0, ∀a, b ∈ A.
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Clearly, T is disjointness preserving if and only if it preserves disjointness of par-
tial isometries. It is clear that every triple homomorphism preserves disjointness.
Looking at the well-known abelian case, that is, the Jarosz theorem [4, 5], we see
that not every disjointness preserving map is a triple homomorphism. Indeed,
let T : C0(X) −→ C0(Y ) be a bounded disjointness preserving linear map be-
tween abelian C*-algebras. Then there is a closed subset Y0 of Y on which every
Tf vanishes. On Y1 = Y \ Y0 there is a bounded continuous function h and a
continuous map ϕ from Y1 into X such that Tf|Y1 = h · f ◦ϕ for all f in C0(X).
Hence, T is a triple homomorphism if and only if T1 is a partial isometry in
C0(Y )∗∗. We end this note with a proof of this fact for the non-abelian case.

Theorem 3.2. Let T : A −→ B be a bounded linear map between C*-algebras.
Then T is a triple homomorphism if and only if T is disjointness preserving and
T1 is a partial isometry.

Proof. We verify the sufficiency only. By the polar identity it suffices to check
that T sends the cube a(3) to the cube (Ta)(3) for every element a of A. Identify
the JB*-triple of A generated by 1 and a with C(X) (see [7, Corollary 1.15]),
where X is some compact set of complex numbers. Denote again by T the bidual
map of T from C(X)∗∗ into B∗∗.

Let X = ∪nXn be any finite Borel partition of X and pick an arbitrary point
xn from Xn. In particular,

1 =
∑

n

1Xn ,

where 1Xn
is the characteristic function of the Borel set Xn. For j 6= k, we

can find two sequences {fm}m and {gm}m in C(X) such that fm+pgm = 0 for
m, p = 0, 1, . . ., fm → 1Xj and gm → 1Xk

pointwisely on X. By the weak∗

continuity of T , we see that

T (1Xj )T (gm)∗ = lim
p→∞

T (fm+p)T (gm)∗ = 0 for all m = 1, 2, . . ..

Thus
T (1Xj

)T (1Xk
)∗ = lim

m→∞
T (1Xj

)T (gm)∗ = 0.

Similarly, we have
T (1Xj

)∗T (1Xk
) = 0.

Consequently, for each j we have

T (1)T (1Xj )
∗T (1) =

∑
m,n

T (1Xn)T (1Xj )
∗T (1Xm) = (T (1Xj ))

(3).

This gives ∑
n

T (1Xn) = T1 = (T1)(3) =
∑

n

(T (1Xn))(3).
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Multiplying the above identity on the left by T (1Xn
))∗ and (T (1Xn

))(3)
∗

respec-
tively, we see that

(T (1Xn
)− (T (1Xn

))(3))∗(T (1Xn
)− (T (1Xn

))(3)) = 0.

Hence T (1Xn
) is a partial isometry for each n and orthogonal to the others. It

follows that

(T (f))(3) = lim

(∑
n

f(xn)T (1Xn
)

)(3)

= lim
∑

f(xn)(3)(T (1Xn
))(3)

= lim
∑

f(xn)(3)T (1Xn) = T (f (3)),

for all f in C(X). This completes the proof.
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