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Abstract. In this note, we study geometric unitaries of JB-algebras (in particular, self-
adjoint parts of C∗-algebras). By using order theoretical arguments, we show that the
geometric unitaries of a JB-algebra are precisely the central algebraic unitaries (or central
symmetries).

1. Introduction and Preliminaries

The celebrated result of Kadison in [12] shows that a surjective isometry between unital
C∗-algebras that preserve identities is a Jordan isomorphism. The corresponding result in the
case of JB-algebras was proved by Wright and Youngson in [18]. Indeed, further codifying the
idea in [18], Isidro and Rodŕıguez [13] showed that the extreme points of the closed unit ball
of a JB-algebra are exactly symmetries, and the isolated points of the set of symmetries are
exactly central symmetries. Thus a surjective isometry of JB-algebras preserves symmetries
and central symmetries. It is then routine to see that such a surjective isometry is a Jordan
isomorphism by standard spectral arguments.

In the case of complex unital C∗-algebras, a norm characterization of their unitaries was
given in [2, Theorem 2] (as pointed out in [15], this characterization can also be found in
[7, 4.1] and [14, 9.5.16]). Motivated by this result, the notion of geometric unitaries was
introduced in [3, 2.1] and there are a number of recent researches on geometric unitaries (see
e.g. [4–6, 8–10, 15]).

Compared with geometric unitaries of complex Banach spaces, those of real Banach spaces
are less well studied and these two are not directly related (see the discussion below). As far
as we know, the paper [9] of Fernández-Polo, Moreno and Peralta is the only one that studies
the real case. In particular, they showed that for real JB∗-triples, geometric unitaries are
the same as vertices of the closed unit balls. They also gave a characterization in terms of
the associated Jordan product (i.e. a real analogue of [16, 19.13] in the light of [15, 2.1]).
However, this equivalent condition is not easy to check (even in the case of L(H)sa) and is
not totally algebraical (some norm conditions need to be verified).

The aim of this article is to give some totally algebraical equivalent descriptions of the
geometric unitaries of unital JB-algebras, and to reprove [9, 2.8] in the case of unital JB-
algebras using an elementary and order theoretical argument. The referee has kindly pointed
out to us the following theorem based on [9] and [13], which has some overlap with our main
result. Therefore, this paper gives another autonomous proof of this theorem. We would
like to mention that our proof does not depend on the results about vertices in general real
JB*-triples given in [9].

Theorem 1.1. A JB-algebra A has vertices in its unit ball (see Section 2 for their definitions)
if and only if it has a unit. In this case, vertices of A are precisely its central symmetries.
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Proof. It is well known that central symmetries in unital JB-algebras are vertices (a con-
sequence of [11, 1.2.6 and 3.3.10]). Let u be a vertex of A. Since JB-algebras are real
JB∗-triples, Proposition 2.8 of [9] applies. Therefore, the Banach space of A, endowed with
a suitable product, becomes a JB-algebra (say Au) with unit u. Now the mapping a 7→ a is a
surjective linear isometry from Au onto A, and hence, by Theorem 1.9 of [13], there exists a
central symmetry b in the JB-algebra of multipliers of A, together with a surjective algebra
isomorphism Φ : Au → A, such that we have

(1.1) a = b · Φ(a)

for every a ∈ A. It follows that A has a unit (namely, Φ(u)), and then (by taking a = u in
(1.1)) that u = b is indeed a central symmetry in A. �

2. Geometric unitaries of JB-algebras

In the following, we will first recall the definition of geometric unitaries and give some
remarks about them. However, we will not recall the definitions of (real and complex) JB∗-
triples nor that of JB-algebras. Readers can find their definitions and basic properties in
standard textbooks (e.g. [1], [11] and [16]).

Definition 2.1. Suppose that X is a real or complex normed space with unit sphere S1(X)
and dual spaceX∗. An element u ∈ S1(X) is called a vertex of the unit ball of X (respectively,
a geometric unitary of X) if its exposed face

Su,X := {f ∈ X∗ : ‖f‖ = 1 = f(u)}
separates points of X (respectively, spans X∗). We denote by V(X) (respectively, GU(X))
the set of all vertices of the unit ball of X (respectively, geometric unitaries of X).

Remark 2.2. Let X be a normed space over F (where F = R or C) and u ∈ S1(X).
(a) If Y is a subspace of X, then GU(X) ∩ Y ⊆ GU(Y ) and V(X) ∩ Y ⊆ V(Y ).
(b) Su,X 6= ∅ and one defines a semi-norm ru(x) := supf∈Su,X

|f(x)|.
(c) Notice that Ku,X :=

⋃
λ∈R+

λSu,X is a proper cone, and Ku,X is generating if and only if
u ∈ GU(X). If we put

Cu := {x ∈ X : f(x) ≥ 0; f ∈ Ku,X},
then u ∈ V(X) if and only if Cu is a proper cone.
(d) If F = R, then u ∈ V(X) if and only if there is a proper and generating closed cone C
containing u as an order unit such that the order unit norm γu,C is dominated by ‖ · ‖. If,
in addition, X is a real Banach space, then u ∈ GU(X) if and only if there is a proper and
generating closed cone C containing u as an order unit such that γu,C is a complete norm
dominated by ‖ · ‖. In fact, the forward implications of the above two statements follow
from part (c) (and the completeness of γu,Cu in the second statement follows from a similar
argument as [3, 3.1]). The backward implications follow from standard results concerning
ordered normed spaces.
(e) Let (E, ‖ ·‖, {· · ·}) be a real JB∗-triple. If there exist a closed cone C ⊆ E and v ∈ S1(E)
which is an order unit in C such that the order unit norm γv,C is dominated by ‖ · ‖, then
there is a unital JB-algebra structure on E (with the same norm) such that the triple product
is defined by the Jordan product in the canonical way. In fact, by part (d), v is a vertex of
the unit ball of E and so [9, 2.8] tells us that the Jordan product x • y := {x, v, y}, together
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with the original norm, defines a JB-algebra structure on E with identity v such that {·, ·, ·}
is given by •.
(f) Let Ω be a locally compact Hausdorff space. If V(C0(Ω; R)) 6= ∅, then Ω is compact.
In this case, V(C(Ω; R)) ⊆ U(C(Ω; R)). Indeed, if u ∈ V(C0(Ω; R)) and µ ∈ Su,X , we
have 1 = |µ|(Ω) =

∫
Ω u dµ =

∫
Ω uf d|µ| (for a measurable function f : Ω → {1,−1}). As

uf = 1 |µ|-a.e., we have |µ|(W ) = 0 where W := {ω ∈ Ω : u(ω) /∈ {1,−1}}. We can then use
the Urysohn lemma to show that W = ∅.

Notation 2.3. (a) Let A be a real Jordan Banach algebra. We denote by Z(A) the center
of A and by Aut(A) (respectively, Iso(A)) the sets of all isometric Jordan isomorphisms
(respectively, surjective isometries) from A onto A. If A is unital, we denote by U(A) the set
of all elements u ∈ A with u2 = 1.
(b) Let B be a JB∗-algebra. We denote by U(B) the set of all elements u with u ◦ u∗ = 1
and u2 ◦ u∗ = u. Moreover, we define the following maps in L(B):

Mb(x) := b ◦ x and Ub(x) := [b, x, b] (b, x ∈ B)

where [x, y, z] := x ◦ (y ◦ z)− y ◦ (z ◦ x) + z ◦ (x ◦ y) (x, y, z ∈ B).

In the following, we will study geometric unitaries of unital JB-algebras. By [15, 2.1],
geometric unitaries of a unital JB∗-algebra are the same as its algebraic unitaries. Therefore,
a näıve guess is that if A is a unital JB-algebra, then GU(A) coincides with the set U(A)
of algebraic unitaries of A. Surprisingly, it is not the case. Geometric unitaries in A are, in
fact, central algebraic unitaries. Another surprising fact is that one can use order theoretical
argument to obtain this equivalence (which relates the norm structure with the algebraic
structure).

Our next lemma is a crucial result that gives certain algebraic properties of vertices of
closed unit balls of JB-algebras. The last statement of this lemma tells us that the set of
geometric unitaries is transitive.

Lemma 2.4. Let B be a unital JB∗-algebra and A = Bsa. For any u ∈ V(A), there exists
v ∈ U(B) such that v2 = u, Uv(A) = A and U2

v = id. Consequently, GU(A) = {Ψ(1) : Ψ ∈
Iso(A)} = V(A) ⊆ U(A).

Proof: Define ψ : A∗ → B∗ by ψ(f)(x + iz) = f(x) + if(z). Then ψ is an isometry.
Moreover,

ψ(A∗) = B∗
h := {f ∈ B∗ : f(A) ⊆ R} and ψ(A∗+) = B∗

+.

For any f ∈ Ku,A, we have ‖ψ(f)‖ = ‖f‖ = f(u) = ψ(f)(u) which means that

(2.1) ψ(Ku,A) = Ku,B ∩B∗
h.

Since elements of V(A) are extreme points of the closed unit ball of A, [13, Lemma 1.2]
applies to deduce that u belongs to U(A). Put v := 1+u

2 + i1−u
2 ∈ B. Then v lies in U(B) and

v2 = u. As v is a unitary, Uv∗ ◦Uv = id (see e.g. [16, 19.18]) and U∗
v : B∗ → B∗ is a surjective

isometry. Thus, for any g ∈ B∗, we have ‖U∗
v (g)‖ = ‖g‖ and U∗

v (g)(1) = g(u) which implies
that

(2.2) U∗
v (Ku,B) = K1,B = B∗

+.

Since A∗ = Ku,A −Ku,A
σ(A∗,A) (a reformulation of the fact that u belongs to V(A)), and ψ

is weak-*-continuous,

(2.3) B∗
h ⊆ ψ(Ku,A)− ψ(Ku,A)

σ(B∗,B) ⊆ Ku,B −Ku,B
σ(B∗,B)

.
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Using the weak-*-continuity of U∗
v , relations (2.3) and (2.2) tell us that U∗

v (B∗
h) ⊆ B∗

h.
Thus, f([v, a, v]) ⊆ R (a ∈ A; f ∈ B∗

h) and so Uv(A) ⊆ A. This is the same as [v∗, a, v∗] =
[v, a, v]∗ = [v, a, v] (a ∈ A), i.e. Uv = Uv∗ . This gives

(2.4) (Uv)2(b) = b (b ∈ B).

Consequently, Uv(A) = A. The last statement follows from the above consideration. �

Corollary 2.5. Let A be a unital JB-algebra and u ∈ S1(A).
(a) The seminorm ru in Remark 2.2(b) is a norm if and only if ru coincides with the original
norm of A.
(b) The closed cone Cu in Remark 2.2(c) is proper if and only if there exists Ψ ∈ Iso(A) such
that Ψ(A+) = Cu and Ψ(1) = u.

Proof: (a) If ru is a norm, then u ∈ V(A). By Lemma 2.4 (note that A is the self-adjoint
part of a JB∗-algebra by [17]), there is a surjective isometry U that sends u to 1. Hence,
U∗(S1,A) = Su,A and so ru(a) = ‖U(a)‖ = ‖a‖ (a ∈ A).
(b) Suppose that Cu is proper. Then u ∈ V(A) (because of Remark 2.2(d)). The existence of
Ψ ∈ Iso(A) with Ψ(1) = u is ensured by Lemma 2.4, and clearly Ψ preserves the corresponding
cones. �

The following is our main result, which covers especially Theorem 1.1. Note that conditions
(iv), (v) and (vi) are totally algebraical and the equivalences of (i), (ii) and (vii) are precisely
those in [9, 2.8]. Notice also that (vi) is a disguised form of A = A1(u) (in the notation of
[9]) and “E = E1(u)” is an intermediate step in the proof of [9, 2.8]. Hence statement (vi)
is actually included implicitly in [9]. However, we will not use [9, 2.8] but reprove it here in
this case of unital JB-algebras. Our proof is order theoretical and elementary.

Theorem 2.6. Suppose that A is a unital JB-algebra and u ∈ A. Then the following
statements are equivalent.

(i). u ∈ GU(A).
(ii). u ∈ V(A).
(iii). u is an isolated point of U(A) (endowed with the norm topology).
(iv). u ∈ U(A) ∩ Z(A).
(v). M2

u = id.
(vi). Uu = id.
(vii). If a • b := [a, u, b], then (A, •) is a JB-algebra with identity u.

Proof: Let B be the JB∗-algebra with A = Bsa (see [17]).
(i)⇒(ii). This implication is clear.
(ii)⇒(iii). By Lemma 2.4, there exists Ψ ∈ Iso(A) such that u = Ψ(1). Since elements of
U(A) can be geometrically characterized (indeed, by [13, 1.2], they are the extreme points of
the closed unit ball of A), and 1 is an isolated point of U(A) (by the “if” part of [13, 1.3]),
the above implies Statement (iii).
(iii)⇒(iv). By the only if part of [13, 1.3].
(iv)⇒(v). For any a ∈ A, the operator commutativity of u and a implies that M2

u(a) =
Mu(Mu(a)) = Ma(Mu(u)) = a (as u2 = 1).
(v)⇒(vi). Note that u2 = M2

u(1) = 1 and Uu = 2M2
u −Mu2 = id.
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(vi)⇒(vii). As [u, 1, u] = 1, we see that u ∈ U(A). The involution on B is given by a+ bi :=
a − bi (a, b ∈ A). Note that, as u ∈ U(B), B becomes another JB∗-algebra under the new
product x • y := [x, u, y] and the new involution x∗ := [u, x̄, u] (see e.g. [16, 19.13]). Since
Uu = id, we see that (a+ bi)∗ = a− bi and so A is the selfadjoint part of (B, •, ∗). Therefore,
A is a JB-algebra under this new product •.
(vi)⇒(i). This follows directly from [11, 3.3.10] and Remark 2.2(d). �

As an application of this theorem, we have the following corollary. Note that it is pretty
hard to determine directly those elements u ∈ S1(L(H)sa) with (L(H)sa, ‖ ·‖, •) being a JB-
algebra (where a • b := (aub + bua)/2), and it is not easy to obatin GU(L(H)sa) = {1,−1}
from [9, 2.8] directly.

Corollary 2.7. If H is a Hilbert space, then GU(L(H)sa) = {1,−1}.

It is well known that u 7→ (1 − u)/2 gives a bijective correspondence between central
symmetries and central projections of a unital JB-algebra. Since a JBW -algebra is generated
by its projections (see e.g. [11, 4.2.3]), we obtain directly part (a) of the following interesting
application of geometric unitaries. Note that part (b) is a generalization of Corollary 2.7.

Corollary 2.8. Let A be a JBW -algebra. Then we have
(a) The closed linear span of GU(A) is the center of A.
(b) A is a JBW -factor if and only if GU(A) = {1,−1}.

Remark 2.9. Given a dual Banach space X (with its predual denoted by X∗), one can define
weak*-geometric unitaries of X as those norm-one elements u of X such that X∗ equals the
linear span of the set {ω ∈ X∗ : ‖ω‖ = 1 = ω(u)}. Since weak*-geometric unitaries are
vertices of the closed unit ball, it follows from Theorem 2.6 that weak*-geometric unitaries
of a JBW -algebra are geometric unitaries. The converse is also true. Indeed, by [11, 4.5.3],
the unit 1 of a JBW -algebra A is a weak*-geometric unitary of A, and, if u is any geometric
unitary of A, then, again by Theorem 2.6, the mapping a 7→ ua becomes a weak*-continuous
surjective linear isometry on A sending 1 to u.
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