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Abstract. We obtain several Banach-Stone type theorems for vector-valued func-
tions in this paper. Let X, Y be realcompact or metric spaces, E,F locally convex
spaces, and φ a bijective linear map from C(X, E) onto C(Y, F ). If φ preserves zero
set containments, i.e.,

z(f) ⊆ z(g) ⇐⇒ z(φ(f)) ⊆ z(φ(g)), ∀ f, g ∈ C(X, E),

then X is homeomorphic to Y , and φ is a weighted composition operator. The above
conclusion also holds if we assume a seemingly weaker condition that φ preserves
nonvanishing functions, i.e.,

z(f) = ∅ ⇐⇒ z(φf) = ∅, ∀ f ∈ C(X, E).

These two results are special cases of the theorems in a very general setting in this
paper, covering bounded continuous vector-valued functions on general completely
regular spaces, and uniformly continuous vector-valued functions on metric spaces.
Our results extend and generalize many recent ones, while our arguments are not
usually seen in the literature.

1. Introduction

The classical Banach-Stone theorem states that the geometric structure of the Ba-

nach space C(X) of continuous scalar-valued functions on a compact (Hausdorff) space

X determines X. In the cases a Banach space E or its Banach dual E∗ is strictly con-

vex, Jerison [20] and Lau [22], respectively, showed that the vector-valued function

space C(X,E) also determines X. More precisely, they showed that if φ is a sur-

jective linear isometry from C(X,E) onto C(Y,E), then there is a homeomorphism

τ : Y → X and fiber surjective linear isometries Jy of E such that φ carries a weighted
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composition operator form

φ(f)(y) = Jy(f(τ(y))), ∀ y ∈ Y.(1.1)

It is, however, not always the case, unless the Banach spaces E is uniformly non-square

[19] or with trivial centralizers [9]. See also, e.g., [8, 10].

Some efforts in obtaining similar conclusions for bijective linear maps of continuous

vector-valued functions preserving other properties have appeared in the literature.

When E = F is the scalar field K = R or C, it is well-known that every ring iso-

morphism φ : C(X) → C(Y ) gives rise to a homeomorphism τ : Y → X such that

φ(f) = φ(1)f ◦ τ for all f in C(X) (see, e.g., [16]). As a substitute for the multi-

plication preservers, which makes no sense for vector-valued functions, a linear map

φ : C(X,E) → C(Y, F ) is said to be separating [15, 7, 3], or disjointness preserving

[1, 2], if for any f, g ∈ C(X,E),

‖f(x)‖‖g(x)‖ = 0,∀x ∈ X =⇒ ‖φ(f)(y)‖‖φ(g)(y)‖ = 0,∀y ∈ Y ;

and φ is biseparating if the inverse implication also holds. If we let

z(f) = {x ∈ X : f(x) = 0}

be the zero set of f , then φ is biseparating exactly when

z(f) ∪ z(g) = X ⇐⇒ z(φ(f)) ∪ z(φ(g)) = Y, ∀ f, g ∈ C(X,E).

Without any additional assumption on E and F , surjective biseparating linear maps

also provide homeomorphisms between the compact spaces X and Y (see, e.g., [3,

14, 15]). Moreover, φ carries the weighted composition operator form (1.1). The

fiber bijective linear maps Jy are all bounded if and only if φ is bounded; indeed,

‖φ‖ = supy∈Y ‖Jy‖ (see, e.g., [18, 14]).

When X, Y are realcompact and the Banach spaces E,F are infinite dimensional,

surjective biseparating linear maps φ : Cb(X,E) → Cb(Y, F ) between bounded contin-

uous vector-valued function spaces again gives rise to a homeomorphism τ : Y → X

and carries the form (1.1) as well (see, e.g., [4, 5, 6, 7]). Surprisingly, the following ex-

ample from [16, 4M] shows that the algebra, the lattice, and the geometric structures

of the Banach algebra Cb(X) of bounded continuous functions altogether are still not

enough to determine a realcompact space X.

Example 1.1. Let Σ be N∪{σ} (where σ ∈ βN\N). Then N is dense in Σ, and every

function f in Cb(N) can be extended uniquely to a function fσ in Cb(Σ). Although

the bijective linear map φ from Cb(N) onto Cb(Σ) defined by f 7→ fσ provides an

isometric, algebraic and lattice isomorphism, the realcompact spaces N and Σ are not

homeomorphic.
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We are now looking for an ultimate condition to ensure a Banach-Stone type theo-

rem for vector-valued functions on realcompact, or more generally, completely regular

spaces in this paper. We see in Example 1.1 and Theorem 3.4 that the correct condi-

tion for the realcompact case is not being biseparating but that of preserving zero set

containments (in two directions), i.e.,

z(f) ⊆ z(g) ⇐⇒ z(φ(f)) ⊆ z(φ(g)).

This condition ensures a homeomorphism τ : Y → X, and fiber bijective linear maps

Jy : E → F such that (1.1) holds. An even weaker condition is that of preserving

nonvanishing functions (in two directions), i.e.,

z(f) = ∅ ⇐⇒ z(φ(f)) = ∅.

In many interesting cases, we shall see that this condition also suffices to ensure the

desired conclusion, as shown in Theorems 4.4 and 4.7.

Finally, we mention that our results work for the case E,F being locally convex

spaces. Moreover, we develop our results in a general setting, which covers in particular

also uniformly continuous vector-valued functions on metric spaces. Our results extend

and generalize those mentioned above and also those in [4, 5, 28, 11, 13, 21, 25, 27],

while our arguments are not usually seen in the literature. As an application, we show

that every surjective local automorphism of C(X) is an automorphism, where X is a

completely regular space.

2. Topological preliminaries

Assume the underlying field is R in this section. We can describe the realcom-

pactification υX of a completely regular space X by z-ultrafilters. For any set A of

continuous functions on X, denote by

Z(A) = {z(f) : f ∈ A}

the family of zero sets of functions in A. In particular, we write

Z(X) := Z(C(X)) = Z(Cb(X)).

A z-filter F on X is a filter of zero sets in Z(X). Call F a z-ultrafilter if it is a

maximal z-filter; and call F prime if A ∈ F or B ∈ F whenever X = A ∪ B and

A,B ∈ Z(X). Associated to each z-ultrafilter F , a maximal ideal I of C(X) consists

of all continuous function f such that z(f) ∈ F . Call F fixed if
⋂
F is a singleton,

and call F real if the quotient field C(X)/I is isomorphic to R.
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The Stone-C̆ech compactification βX can be identified with the set of all z-ultrafilters

on X. In this setting, X consists of all fixed z-ultrafilters. The Hewitt-Nachbin real-

compactification υX consists of all real z-ultrafilters. It is worthwhile to remark that

the realcompactification υX of X is the largest subspace of its Stone-C̆ech compact-

ification βX such that every continuous real function on X extends uniquely to υX,

while exactly every bounded continuous real function on X extends uniquely to the

whole of βX.

Clearly, X is compact if and only if X = βX. Call X a realcompact space if

X = υX. In fact, X is realcompact if and only if every prime z-filter with the

countable intersection property is fixed. For instance, Linderlöf (and thus separable

metric) spaces are realcompact, and discrete spaces of non-measurable cardinality are

another examples. Especially, all subspaces of the Euclidean spaces Rn (and Cn as

well) are realcompact. In general, a topological space X is completely regular if and

only if X can be embedded into a product of real lines, and X is realcompact (resp.

compact) if and only if X is homeomorphic to a closed (resp. compact) subspace of a

product of real lines. However, the ordinal interval [0, ω1) is not realcompact, where

ω1 is the first uncountable ordinal.

Since every Gδ-point forms a zero set, βX\X contains no Gδ-point in βX. As every

zero set in υX meetsX, we see that υX\X contains noGδ-point in υX either. We refer

the readers to the books [16] and [29] for more about z-ultrafilters and realcompact

spaces.

3. A Banach-Stone theorem for linear zero set containment

preservers

Suppose that X is a completely regular space, and E is a locally convex space with

the topological dual space E∗ over the scalar field K = R or C. If f is in C(X) and e

is a vector in E, denote by f ⊗ e the function x 7→ f(x)e in C(X,E). In particular,

1⊗ e denotes the constant function x 7→ e on X.

Let A(X,E) be a vector subspace of C(X,E), and let

A(X) := {ψ ◦ f : f ∈ A(X,E), ψ ∈ E∗},

be the subset of C(X) consisting of coordinate functions of all f in A(X,E). Denote

by Ab(X) = A(X) ∩ Cb(X).

Definition 3.1. A vector subspace A(X,E) of C(X,E) is said to be nicely regular if

the following conditions hold.
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(A1) A(X) is self-adjoint if K = C, and its hermitian part ReA(X) is a sublattice of

C(X) containing all constant functions.

(A2) For any h in A(X) and any e in E, the function h⊗ e is in A(X,E).

(A3) Z(X) = Z(A(X)) = Z(A(X,E)).

(A4) If hn ≥ 0 is in Ab(X) for n = 1, 2, . . ., then there is a strictly positive sequence

{αn} such that the sum
∑

n αnhn converges pointwisely to a function in A(X).

The basic models of nicely regular function spaces are C(X,E) and Cb(X,E). For

a metric space X and a normed space E, the spaces UC(X,E) and UCb(X,E) of

uniformly and bounded uniformly continuous functions, respectively, are also nicely

regular.

Lemma 3.2. Let X, Y be completely regular spaces, and E,F be locally convex spaces.

Assume both A(X,E) and A(Y, F ) are nicely regular, and φ is a linear bijection from

A(X,E) onto A(Y, F ). If φ is nonvanishing preserving, i.e.,

z(f) = ∅ ⇐⇒ z(φ(f)) = ∅, ∀ f ∈ A(X,E),

then φ is biseparating, i.e.,

z(f) ∪ z(g) = X ⇐⇒ z(φ(f)) ∪ z(φ(g)) = Y, ∀ f, g ∈ A(X,E).

Proof. Suppose that f and g are in A(X,E) with z(f) ∪ z(g) = X, but z(φ(f)) ∪
z(φ(g)) 6= Y . Let y0 be in Y such that (φf)(y0) 6= 0 and (φg)(y0) 6= 0. Without loss

of generality, we can assume that there exists a linear functional ψ in F ∗ such that

ψ((φf)(y0)) = ψ((φg)(y0)) = 1.

Define h in A(Y ) by

h(y) = max

{
0,

1

2
− Reψ((φf)(y)),

1

2
− Reψ((φg)(y))

}
, y ∈ Y.

Let

k = φ−1(h⊗ (
(φf)(y0) + (φg)(y0)

2
)).

Claim: z(φf + φk) = ∅.

Assume on the contrary that y1 belongs to z(φf + φk), that is,

(φf)(y1) + (φk)(y1) = 0.(3.1)

In particular,

ψ(φ(f)(y1)) + h(y1) = 0.

This implies a contradiction

h(y1) ≥
1

2
− Reψ(φ(f)(y1)) =

1

2
+ h(y1).
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It follows from z(φf + φk) = ∅ that z(f + k) = ∅. In a similar way, z(g + k) = ∅.
Because z(f) ∩ z(k) ⊂ z(f + k) and z(g) ∩ z(k) ⊂ z(g + k), we have z(f) ∩ z(k) =

z(g) ∩ z(k) = ∅. By the assumption that z(f) ∪ z(g) = X, we conclude z(k) = ∅.
This is a contradiction since (φk)(y0) = 0 and φ is nonvanishing preserving. Hence,

z(φf) ∪ z(φg) = Y , as asserted.

Similarly, we can derive that φ−1 is also separating. �

We note that a biseparating map might not be nonvanishing preserving as shown in

Example 1.1.

Remark 3.3. In [13, Theorem 2], it is mentioned that following a result in [14] a

“biseparating” linear map φ : C(X,E) → C(Y, F ) between spaces of continuous Ba-

nach space vector-valued functions on compact spaces is a weighted composition op-

erator. This is, however, not quite accurate. Indeed, the “biseparating” maps in [13]

actually refer to maps “preserving pairs of functions without common zeros”, i.e.,

z(f) ∩ z(g) = ∅ ⇔ z(φ(f)) ∩ z(φ(g)) = ∅, ∀ f, g ∈ C(X,E).

As such maps automatically preserve nonvanishing functions (by setting f = g), in

view of Lemma 3.2, they are also biseparating in the original sense in [14]. Therefore,

this citation is correct anyway.

Recall that a linear map φ : A(X,E) → A(Y, F ) is continuous with respect to the

topologies of uniform convergence if for any continuous seminorm q of F there is a

continuous seminorm p of E such that

sup
y∈Y

q(φ(f)(y)) ≤ sup
x∈X

p(f(x)), ∀ f ∈ A(X,E).

On the other hand, a family Jy : E → F of linear operators is equicontinuous if for

any continuous seminorm q of F there is a continuous seminorm p of E such that

q(Jy(e)) ≤ p(e), ∀ e ∈ E, y ∈ Y.

Theorem 3.4. Suppose that X, Y are realcompact topological spaces and E,F are

locally convex spaces. Assume both A(X,E) and A(Y, F ) are nicely regular, and φ is

a linear bijective map from A(X,E) onto A(Y, F ) preserving zero set containments,

i.e.,

z(f) ⊆ z(g) ⇐⇒ z(φ(f)) ⊆ z(φ(g)), ∀ f, g ∈ A(X,E).

Then there exist a homeomorphism τ : Y → X and, for each y in Y , a bijective linear

map Jy : E → F such that

(φf)(y) = Jy(f(τ(y))), ∀ f ∈ A(X,E), y ∈ Y.
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Furthermore, if both A(X,E) and A(Y, F ) are equipped with the topologies of uni-

form convergence, then the linear map φ is continuous if and only if the family of fiber

linear maps {Jy} is equicontinuous.

We will establish the proof of Theorem 3.4 in several lemmas.

Lemma 3.5. The map φ is biseparating and preserves nonvanishing functions.

Proof. In view of Lemma 3.2, it suffices to check that φ preserves nonvanishing func-

tions. Suppose z(f) = ∅ for some f in A(X,E), then z(f) ⊆ z(g) for all g in A(X,E).

This implies that z(φ(f)) ⊆ z(φ(g)). Because φ is surjective and A(Y, F ) is nicely

regular, z(φ(f)) = ∅ as asserted. �

For any x0 in X, let

Kx0 = {f ∈ A(X,E) : f(x0) = 0},

and

Zx0 = Z(φ(Kx0)) = {z(φf) : f ∈ Kx0}.

Lemma 3.6. Zx0 is a prime z-filter in Z(Y ) with the countable intersection property.

Proof. Note that A(Y, F ) is nicely regular and φ is surjective, every zero set in Z(Y )

can be written as z(φ(f)) for some f in A(X,E).

Since φ is nonvanishing preserving, the empty set ∅ is not in Zx0 . Let f ∈ Kx0 and

C = z(φ(g)) ∈ Z(Y ) such that z(φ(f)) ⊆ C. Then z(f) ⊆ z(g) since φ preserves

zero set containments, and hence g ∈ Kx0 . This means that C ∈ Zx0 . Let {fn} be

a sequence of functions in Kx0 . By the regularity of A(X,E), one can choose a non-

negative real-valued function gn from Ab(X) for each n = 1, 2, . . ., with z(gn) = z(fn),

and also a strictly positive sequence {αn} such that the pointwise sum g =
∑∞

n=1 αngn

belongs to A(X). Fix a nonzero vector e in E, and define a vector-valued function h

in Kx0 by

h = g ⊗ e.

Clearly,

x0 ∈ z(h) =
∞⋂

n=1

z(gn) =
∞⋂

n=1

z(fn).

It follows from the zero set containment preserving property of φ that

∅ 6= z(φh) ⊆
∞⋂

n=1

z(φ(fn)).

Therefore, Zx0 is a z-filter with the countable intersection property.
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Finally, we show that the z-filter Zx0 is prime. Suppose that A,B are two zero sets

in Z(Y ) with A ∪ B = Y . By the regularity assumption, there are f, g in A(X,E)

such that A = z(φ(f)) and B = z(φ(g)). In particular, z(φf) ∪ z(φg) = Y . Then

z(f)∪ z(g) = X since φ is biseparating by Lemma 3.2. As a result, x0 must be in z(f)

or z(g), and this means that f or g belongs to Kx0 . Therefore, A or B is in Zx0 , as

asserted. �

Since Y is realcompact, from Lemma 3.6, we see that the intersection of Zx0 is a

singleton, and we denote it by σ(x0). In other words,

f(x0) = 0 =⇒ φ(f)(σ(x0)) = 0, ∀f ∈ A(X,E).(3.2)

Lemma 3.7. For any f ∈ A(X,E) and x ∈ X, we have

(φf)(σ(x)) = φ(1⊗ f(x))(σ(x)).

Moreover, f(x) = 0 if and only if (φf)(σ(x)) = 0.

Proof. For any f in A(X,E) and x in X, the function f − 1⊗ f(x) belongs to Kx. It

follows from (3.2) that

φ(f − 1⊗ f(x))(σ(x)) = 0,

and thus (φf)(σ(x)) = φ(1⊗ f(x))(σ(x)).

Finally, if φ(f)(σ(x)) = 0 then z(φ(1⊗ f(x))) 6= ∅. This gives z(1⊗ f(x)) 6= ∅, and

forces f(x) = 0. The reverse implication is trivial. �

Proof of the Theorem 3.4. Since φ−1 also preserves zero set containment, there exists

a map τ from Y into X such that

{τ(y)} =
⋂
{z(φ−1g) : g ∈ A(Y, F ), g(y) = 0}, ∀ y ∈ Y.

For any x in X, we claim that τ(σ(x)) = x. Indeed, if τ(σ(x)) = x′ 6= x, then there

exists a function g1 in A(X) such that g1(x
′) 6= 0 and g1(x) = 0. Define f1 = g1⊗e for

some nonzero vector e in E, by Lemma 3.7, one can conclude that (φf1)(σ(x)) = 0.

By Lemma 3.7 again, we also have (φ−1(φf1))(τ(σ(x))) = 0, that is, f1(x
′) = 0. This

is a contradiction. Similarly, we can also conclude that σ(τ(y)) = y for all y in Y .

Therefore, τ = σ−1.

For each y in Y , define Jy : E → F by

Jy(e) = φ(1⊗ e)(y), ∀ e ∈ E.

Each Jy is linear and injective. By Lemma 3.7, we see that

φ(f)(y) = φ(1⊗ f(τ(y)))(y) = Jy(f(τ(y)))(3.3)

is true for all y in Y and f in A(X,E). In particular, all Jy are surjective.
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We claim that τ is a homeomorphism from Y onto X. Indeed, suppose that yλ → y

in Y but {τ(yλ)} does not approach to τ(y) in X. Then, by passing to a subnet and

using the regularity, we can choose a function f2 from A(X,E) such that f2(τ(yλ)) = 0

for all λ but f2(τ(y)) 6= 0. However, by (3.3) and the continuity of φ(f2), we derive a

contradiction

0 6= φ(f2)(y) = lim
λ
φ(f2)(yλ) = 0.

Therefore, τ is continuous. Arguing with φ−1 we will see τ−1 = σ is also continuous,

and thus τ is a homeomorphism.

Next, assume φ is continuous with respect to the topologies of uniform convergence.

For every continuous seminorm q of F there is a continuous seminorm p of E such that

sup
y∈Y

q(φ(f)(y)) ≤ sup
x∈X

p(f(x)), ∀ f ∈ A(X,E).

This implies

q(Jy(e)) = q(φ(1⊗ e)y) ≤ p(e), ∀ e ∈ E, ∀ y ∈ Y.

Hence, the family {Jy} of fiber linear maps is equicontinuous.

Conversely, assume {Jy} is equicontinuous. By (3.3), for any continuous seminorm

q of F there exists a continuous seminorm p of E such that

q(φ(f)(y)) = q(Jy(f(τ(y)))) ≤ p(f(τ(y))) ≤ sup
x∈X

p(f(x)), ∀ f ∈ A(X,E),∀ y ∈ Y.

Thus, φ is continuous with respect to topologies of uniform convergence. �

The following theorem arises when we consider the nicely regular space Cb(X,E).

Theorem 3.8. Suppose that X, Y are realcompact, E,F are Banach spaces, and φ is

a bijective linear map from Cb(X,E) onto Cb(Y, F ) preserving zero set containments.

Then there exist a homeomorphism τ : Y → X and, for each y in Y , a bijective linear

map Jy : E → F such that

(φf)(y) = Jy(f(τ(y))), ∀ f ∈ Cb(X,E), y ∈ Y.

Moreover, φ is norm bounded if and only if all fiber linear maps Jy are bounded. In

this case, we have

‖φ‖ = sup
y∈Y

‖Jy‖,

and J is a continuous map from Y into (L(E,F ), SOT).

Proof (modified on [23, Lemma 2.4]). By Theorem 3.4, it suffices to prove the “more-

over” part. Suppose that φ is bounded, then for any e in E, we have

‖Jy(e)‖ = ‖φ(1⊗ e)(y)‖ ≤ ‖φ(1⊗ e)‖ ≤ ‖φ‖‖e‖.
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Thus, ‖Jy‖ ≤ ‖φ‖ for all y in Y .

Next, assume that all fiber linear maps Jy are bounded.

Claim. supy∈Y ‖Jy‖ < +∞.

Suppose on the contrary that there exists a yn in Y and an fn in Cb(X,E) such

that ‖fn‖ ≤ 1 and ‖φ(fn)(yn)‖ > n3 for n = 1, 2, . . .. Let xn = σ(yn) and Vn be a

neighborhood of xn in X (n = 1, 2, . . .) such that the family {Vn} are pairwise disjoint.

By regularity, we can choose a gn in Cb(X) such that 0 ≤ g ≤ 1, gn(xn) = 1 and gn = 0

outside Vn for any n = 1, 2, . . .. Observe that

φ(fn)(yn) = φ(gnfn)(yn) + φ((1− gn)fn)(yn)

= φ(gnfn)(yn),

as ((1− gn)fn)(xn) = 0. So we can assume fn is supported in Vn for n = 1, 2, . . .. Let

f =
∞∑

n=1

1

n2
fn ∈ Cb(X,E).

Since (n2f−fn)(xn) = 0, we have that n2φ(f)(yn) = φ(fn)(yn), and thus ‖φ(f)(yn)‖ >
n for any n = 1, 2, . . .. As φ(f) is a bounded vector-valued function on Y , we arrive at a

contradiction. For any f in Cb(X,E) and y in Y , we have ‖(φf)(y)‖ = ‖Jy(f(τ(y)))‖ ≤
‖Jy‖‖f‖. This implies ‖φ‖ ≤ supy∈Y ‖Jy‖. Therefore, ‖φ‖ = supy∈Y ‖Jy‖.

Finally, if a net {yλ} converges to y in Y , then, for any e in E,

‖Jyλ
(e)− Jy(e)‖ = ‖φ(1⊗ e)(yλ)− φ(1⊗ e)(y)‖ → 0

since φ(1 ⊗ e) is continuous on Y . Therefore, J is a continuous map from Y into

L(E,F ) with respect to the strong operator topology. �

Remark 3.9. We note that in the above theorem, a bijective linear zero set contain-

ment preserver φ between bounded continuous vector-valued function spaces on even

compact spaces can be unbounded in general (see, e.g., [14, Example 2.4]).

4. A Banach-Stone theorem for linear nonvanishing preservers

Lemma 4.1. Let X, Y be completely regular spaces, and E,F be locally convex vector

spaces. Assume that both A(X,E) and A(Y, F ) are nicely regular, and φ : A(X,E) →
A(Y, F ) is a bijective linear map preserving nonvanishing functions.

(1) If dimE = n is finite then dimF = n.
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(2) If E,F are of finite dimensional, then φ sends functions without common zeros

to functions without common zeros. That is, for any m ∈ N and f1, . . . , fm in

A(X,E), we have

m⋂
k=1

z(fk) = ∅ ⇐⇒
m⋂

k=1

z(φ(fk)) = ∅.(4.1)

Proof. (1) Fix a basis {e1, . . . , en} of E, and let gk = φ(1 ⊗ ek) in A(Y, F ) for k =

1, 2, . . . , n.

Claim 1. {g1(y), . . . , gn(y)} is a basis of F for all y in Y .

Suppose that λ1, . . . , λn are scalars such that
∑n

k=1 λkgk(y) = 0 for some y in Y .

Then z(
∑n

k=1 λkgk) 6= ∅ implies that z(
∑n

k=1 λk(1 ⊗ ek)) 6= ∅, and thus λ1 = . . . =

λn = 0. Therefore, {g1(y), . . . , gn(y)} is linearly independent in F for all y in Y .

Consequently, dimF ≥ n.

If F has n + 1 linearly independent vectors, then by arguing with φ−1 in a similar

way, one can see that dimE ≥ n+ 1. This contradiction tells us that dimF = n and

{g1(y), . . . , gn(y)} is a basis of F for every y in Y .

(2) First note that, by Lemma 3.2, φ is biseparating. Composing φ with any linear

topological isomorphism between the n-dimensional locally convex spaces E and F , we

can assume that E = F and φ is a linear biseparating map from A(X,E) into C(Y,E)

sending nonvanishing functions to nonvanishing functions. Let {e′1, . . . , e′n} be the

basis of E∗ dual to {e1, . . . , en}. It follows from Claim 1 that the inverse G(y) of the

n×n scalar matrix
[
g1(y) g2(y) · · · gn(y)

]
, with respect to the basis {e1, . . . , en}

of E = F , exists for all y in Y . All entries in G(y) give rise to continuous functions in

C(Y ).

Define φ′ : A(X,E) → C(Y,E) by

φ′(f)(y) := G(y)φ(f)(y), ∀y ∈ Y.

Note that

z(φ′(f)) = z(φ(f)), ∀f ∈ A(X,E),

and

φ′(1⊗ e) = 1⊗ e, ∀e ∈ E.

Moreover, φ′ is also nonvanishing preserving.

Claim 2. Let f ⊗ e ∈ A(X,E) for some e in E. Then φ′(f ⊗ e) = g⊗ e such that the

ranges f(X) and g(Y ) coincide.



12 LEI LI AND NGAI-CHING WONG

For any u in F independent of e, we see that f ⊗ e+α⊗u is nonvanishing for every

nonzero scalar α. Thus φ′(f ⊗ e + α ⊗ u) is nonvanishing as well. This shows that

φ′(f⊗e)(y) is never equal to any nonzero multiple of u. In other words, φ′(f⊗e) = g⊗e
for some g in C(Y ). Furthermore, let λ ∈ K\ f(X). Then (f −λ)⊗ e is nonvanishing.

It follows that φ′((f − λ) ⊗ e) = g ⊗ e − λ ⊗ e is also nonvanishing. Consequently,

λ /∈ g(Y ). The reverse inclusion follows similarly.

For any f in A(X,E) we can write

f(x) = e′1(f(x))⊗ e1 + · · ·+ e′n(f(x))⊗ en,

and all the coordinate functions e′k(f) are in A(X). On the other hand, every contin-

uous scalar function h in A(X) can be written uniquely as a sum of four non-negative

continuous real functions in A(X),

h = h1 − h2 + i(h3 − h4),

such that h1h2 = h3h4 = 0. Consequently, we can write

f =
n∑

k=1

(fk1 − fk2 + i(fk3 − fk4))⊗ ek

such that all fkj are continuous non-negative real functions in A(X), and fk1fk2 =

fk3fk4 = 0 for k = 1, 2, . . . , n. Accordingly, we associate a function |f | in A(X,E) to

f by defining

|f | =
n∑

k=1

(fk1 + fk2 + fk3 + fk4)⊗ ek.

Note that z(f) = z(|f |).

Claim 3. |φ′(f)| = φ′(|f |) for all f in A(X,E).

It follows from Claim 2 that we can write

φ′(f) =
n∑

k=1

(gk1 − gk2 + i(gk3 − gk4))⊗ ek

such that all gkj are non-negative continuous real functions. Inherited from φ, on the

other hand, φ′ is separating. Consequently, gk1gk2 = gk3gk4 = 0 for k = 1, 2, . . . , n. As

a result,

|φ′(f)| =
n∑

k=1

(gk1 + gk2 + gk3 + gk4)⊗ ek = φ′(|f |).

Now, let f1, . . . , fm be in A(X,E) such that

∅ =
m⋂

i=1

z(fi) =
m⋂

i=1

z(|fi|) = z(
m∑

i=1

|fi|).
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Observe that

∅ = z(φ′(
m∑

i=1

|fi|)) = z(
m∑

i=1

φ′(|fi|)) = z(
m∑

i=1

|φ′(fi)|)

=
m⋂

i=1

z(|φ′(fi)|) =
m⋂

i=1

z(φ′(fi)) =
m⋂

i=1

z(φ(fi)).

Therefore, φ sends functions without common zeros to functions without common

zeros. Arguing with φ−1 similarly, we will establish the reverse preservation, and the

proof is thus complete. �

When putting m = 1 in (4.1) we see that a linear map preserving functions without

common zeros is nonvanishing preserving. Employing an argument similar as in the

last part of the proof of Lemma 4.1, we can establish the following result in [25] (see,

also, [12]).

Lemma 4.2. Suppose that X, Y are completely regular spaces, and E,F are locally

convex Riesz spaces and φ : A(X,E) → A(Y, F ) sends exactly positive elements to

positive elements. Then φ preserves functions without common zeros if and only if φ

is nonvanishing preserving.

Lemma 4.3. Let X, Y be completely regular spaces, and E,F be locally convex spaces.

Assume both A(X,E) and A(Y, F ) are nicely regular. Suppose that a linear bijective

map φ : A(X,E) → A(Y, F ) preserves pairs without common zeros, i.e.,

z(h1) ∩ z(h2) = ∅ ⇐⇒ z(φ(h1)) ∩ z(φ(h2)) = ∅, ∀h1, h2 ∈ A(X,E).

Then φ preserves zero set containments, i.e.,

z(f) ⊆ z(g) ⇐⇒ z(φ(f)) ⊆ z(φ(g)), ∀ f, g ∈ A(X,E).

Proof. Suppose that z(f) ⊂ z(g) and y ∈ Y satisfies φ(g)(y) 6= 0. As in the proof of

Lemma 3.2, we can find a function k in A(X,E) such that

z(φ(g) + φ(k)) = ∅ and φ(k)(y) = 0.

By the assumption,

z(f) ∩ z(k) ⊆ z(g) ∩ z(k) ⊆ z(g + k) = ∅.

This implies

z(φ(f)) ∩ z(φ(k)) = ∅,

and thus φ(f)(y) 6= 0, as asserted. The other direction is similar. �

Case 3 in the following theorem extends [25, Theorem 10].
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Theorem 4.4. Suppose that X, Y are realcompact spaces, E,F are locally convex

spaces, and both A(X,E) and A(Y, F ) are nicely regular. Let φ : A(X,E) → A(Y, F )

be a bijective linear map preserving nonvanishing functions. Assume that any one of

the following conditions holds.

(1) E or F (and thus both) is of finite dimension.

(2) E and F are locally convex Riesz spaces, and φ sends exactly positive functions

to positive functions.

(3) φ preserves pairs of functions without common zeros.

Then φ carries the form

(φf)(y) = Jy(f(τ(y))), ∀f ∈ A(X,E), y ∈ Y.

Here, τ is a homeomorphism from Y onto X, and all fiber linear maps Jy : E → F

are bijective. When A(X,E) and A(Y, F ) are equipped with the topologies of uniform

convergence, φ is continuous if and only if the family {Jy} is equicontinuous.

Proof. The conclusions follow from Theorem 3.4, and Lemmas 4.1, 4.2 and 4.3. �

The following special case of Theorem 4.4(2) extends [11] and [13], in which X and

Y are assumed to be compact Hausdorff spaces.

Corollary 4.5. Suppose that X, Y are realcompact spaces, and E and F are Banach

lattices. Let φ be a linear bijective map from C(X,E) (resp. Cb(X,E)) onto C(Y, F )

(resp. Cb(Y, F )). Assume that φ is nonvanishing preserving, and sends exactly positive

functions to positive functions. Then there exist a homeomorphism τ from Y onto X

and, for any y in Y , an (automatically bounded) linear Riesz isomorphism Jy from E

onto F such that

(φf)(y) = Jy(f(τ(y)))

for all f in C(X,E) (Cb(X,E), respectively) and y in Y .

In Corollary 4.5, we assume that φ is nonvanishing preserving. The following exam-

ple shows that the theorem is no longer valid if φ is not nonvanishing preserving.

Example 4.6. Let X be {1, 2} in the discrete topology and Y be the one-point

topological space {0}. Equip the spaces C(X,R) and C(Y,R2) with the usual pointwise

ordering and sup norm. Suppose that φ is a map from C(X,R) into C(Y,R2), defined

by (φf)(0) = (f(1), f(2)) for all f in C(X,R). Then φ is a Riesz isomorphism but

it is not nonvanishing preserving. Note that the compact spaces X and Y are not

homeomorphic.
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Denote by UC(X,E) (resp. UCb(X,E)) the nicely regular spaces of (resp. bounded)

uniformly continuous functions from a metric space X into a normed space E.

Theorem 4.7. Suppose that X,Y are realcompact spaces and E,F are Banach spaces.

Let φ be a linear bijective map between the following nicely regular function spaces

preserving nonvanishing functions.

Case 1. φ : C(X,E) → C(Y, F ).

Case 2. φ : Cb(X,E) → Cb(Y, F ).

Case 3. φ : UC(X,E) → UC(Y, F ), where X, Y are metric spaces.

Case 4. φ : UCb(X,E) → UCb(Y, F ), where X, Y are metric spaces.

Then φ carries the form

(φf)(y) = Jy(f(τ(y))), ∀f ∈ A(X,E), y ∈ Y.

Here, τ is a homeomorphism from Y onto X and all fiber linear maps Jy : E → F

are bijective. When the vector-valued function spaces are equipped with the topology of

uniform convergence, then φ is continuous if and only if the family {Jy} is equicon-

tinuous.

In Cases 2 and 4, φ is bounded if and only if all fiber linear maps Jy are bounded,

and

‖φ‖ = sup
y∈Y

‖Jy‖.(4.2)

Moreover, in Cases 3 and 4, τ is a uniform homeomorphism.

Proof. By Lemma 3.2, φ is biseparating. Cases 1 and 3, follow from [5, Theorem

3.5] (see also [4]). When E,F are of infinite dimension, Cases 2 and 4 follow from [5,

Theorem 3.5]. When one (and thus both) of E,F is of finite dimension, all cases follow

from Theorem 4.4. The uniform continuity of τ and τ−1 follow from the arguments in

[24, Theorem 2.3]. The equality (4.2) follows from the arguments in Theorem 3.8. �

On the other hand, as in the next example, we can see that the requirement of

realcompactness of the topological spaces X and Y is necessary in above theorems.

Example 4.8. Let ω1 be the first uncountable ordinal. It is well-known that the

ordinal interval X = [0, ω1) is not realcompact, while Y = [0, ω1] is compact and

hence realcompact. Since every continuous function in C(X) is eventually constant,

we have C(X) = Cb(X) (see [16, Section 5.12]). For any f in C(X), we can extend it

to a unique function φ(f) in C(Y ). Then φ is a linear lattice isomorphism from C(X)

onto C(Y ) preserving nonvanishing functions. Nevertheless, X is not homeomorphic

to Y .
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5. Banach-Stone theorems for completely regular spaces

We now discuss the general case when X is a completely regular space and E is a

realcompact locally convex space, e.g., E is a separable Banach or Frechet space. As

noted in [16, Chapter 8], every function f in C(X,E) has a unique extension fυ in

C(υX,E), and z(f) = ∅ if and only if z(fυ) = ∅. Therefore, if X, Y are completely

regular spaces and E,F are realcompact locally convex spaces, every linear bijection φ

from C(X,E) onto C(Y, F ) has a linear extension φυ from C(υX,E) onto C(υY, F ),

defined in the canonical manner φυ : fυ 7→ (φf)υ. Moreover, φ preserves zero set

containments or nonvanishing functions if and only if φυ does. Note that if A(X,E)

is a nicely regular function space then

Aυ(υX,E) := {fυ : f ∈ A(X,E)}

is also nicely regular. The following theorem holds for example when X, Y are metriz-

able spaces.

Theorem 5.1. Suppose that X, Y are completely regular spaces and E,F are realcom-

pact locally convex spaces. If there exists a linear bijection φ : A(X,E) → A(Y, F )

between nicely regular function spaces preserving zero set containments, then the real-

compatifications υX and υY are homeomorphic by a homeomorphism τ . In particular,

if X, Y are realcompact, or all points in X, Y are Gδ, then X, Y are homeomorphic

and τ(Y ) = X. Moreover,

φ(f)υ(y) = Jy(f
υ(τ(y))), ∀f ∈ C(X,E),∀ y ∈ υY.

Here, all the fiber maps Jy : E → F are bijective and linear. Furthermore, φ is

continuous with respect to the topologies of uniform convergence if and only if the

family {Jy} is equicontinuous.

The same conclusions hold provided that φ preserves nonvanishing functions instead

and any one of the conditions in Theorems 4.4 or 4.7 is assumed.

Proof. The results follows from Theorems 3.4, 4.4 and 4.7, and the fact that no point

in υX \X is Gδ. �

Let A be an algebra and φ be a map from A into itself. Recall that φ is an

automorphism if φ is bijective, linear and multiplicative; and φ is a local automorphism

if φ agrees at each point a in A with an automorphism φa. Equipped with Theorem

5.1, we investigate when a local automorphism of C(X) is an automorphism. This is

nontrivial even in the caseX is compact, as we cannot use the Gleason-Kahane-Zelazko

Theorem when the underlying field is the real R. For more “preserver problems” of a

similar nature, readers are referred to [17, 26].
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Corollary 5.2. Suppose that X is a completely regular space. Then every surjective

linear local automorphism φ of C(X) is an automorphism.

Proof. Since φ is a local automorphism, φ is injective, φ(1) = 1, and sends exactly

invertible elements to invertible elements. As invertible elements in C(X) are exactly

nonvanishing functions, φ is nonvanishing preserving. By Theorem 5.1, φυ is a compo-

sition operator arising from a homeomorphism. In particular, inherited from φυ, the

bijective linear map φ is multiplicative, and hence an automorphism. �
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Matemática, No. 57, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Pub-
lishing Co., Inc., New York, 1975.

School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071,

China

E-mail address: leilee@nankai.edu.cn

Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung

80424, Taiwan

E-mail address: wong@math.nsysu.edu.tw


