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Abstract

If the solutions of a dynamic partial differential equation are couple, there are lots of troubles
to deal with it. A process on decouple of fast and slow dilational waves to solve the Biot’s
two-phase dynamic partial differential equation with decomposition the ¢ function was been
shown in this paper. There are the results of solving equation in paper, these results are compared
with previous solutions. The situation of good agreement of both is not only to express that the
results obtained in this paper are right, and indicate that a performing decomposition ¢ function
may be effective and convenient to solve the partial differential equation sometime.
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Introduction

There are lots of achievements obtained by dint of a generalized function ¢ to solve the

dynamic partial differential equation 1%

. However, if the solutions of a dynamic partial
differential equation are coupling, then we may face a lot of troubles when we use this ¢ function
to deal with ™%, In this aspect, Biot’s dynamic equations of a two-phase saturated medium are the
most typical 5.7 Biot’s dynamic equations of a two-phase saturated medium play an important

role in soil dynamics ®, seismic engineering "* **!, and geophysics ™! Because of the

existence and coupling of two dilational waves on solutions of Biot’s dynamic equations of a



two-phase saturated medium, the ordinary potential decomposition is inability, so that Chen.J
attained the results based on the continuation of the solution of partial differential equation with
o inhomogenous term and the discontinuous of the first-order derivation of that until the end of
last century [4°1 Chen’s solution is extremely complex. If we can decompose the ¢ function in
Biot’s two-phase dynamic partial differential equation, we can decouple fast and slow dilational
waves also %8 then make use of potential decomposition to solve the problems conveniently.

1. The solutions on Biot’s two-phase dynamic partial differential equations

1.1 the ordinary solution

Biot’s equation can be written as follows ¥

{(ﬂ“c + 240U 5 + 0y, Opili . + @MW 5 + F; = pU; + o Wi O

aMug; +Mw;; = p .U + 7 (@)W,
where Ac, 4, «.M are the mechanics parameters, U; is the displacement of solid skeleton in
i direction, (Ui, =d®u/dt?) w, is the average displacement of the fluid-phase relative to the
solid-phase in i direction( W, = B,(U, —u,) with U, denoting the average displacement of
fluid, W, =d’w/dt?). p P are the material density of the two-phase and the flow-phase
respectively; o,,, is the permutation tensor. The form of Laplace transmit on Eqn.(1) is:
(/1+,u)l]j,ij+,ul]j,jmlf)j—/r)lszl]i + f. =0 2)
~ S - -
é/pij ——P-m,80;,; +7=0 3)
M
Eqgn. (3) is got from Darcy’s law, where|, j =1, 2, 3 the tilde denotes the Laplace transformation,
m=a-psS m=a-pSC,p,=p-pis¢ ¢ =((1/x)+ ms)fl, K is the permeability,
m is the fluid of a unit volume, and S is the Laplace transform parameter. Equation(2) and (3)

are nondimensionalized by using the parameters [4. 51,



&= X and r:L 4)

' prey pK

where ¢, is the velocity of fast dilatinal wave, we define a dimensionless displacement and pore
pressure through, next:

U=-—i p=_P (5)

[ ' - 2
pKey Joleh

The nondimensional form for the field Eqgn. (2) and the energy Eqn.(3) is then
(A%+p*)0+ %0, = * P - p *sU, + F =0 (6)
~ S ~ ~ ~
C*Pii_mp_ﬂz*sui,iJrr:O ()

where Ifi and T are nondimensionalized body force and fluid source injection, and

A*:%’#*:% , M*:Lzlp*zll pf*:&7
A+2u+a°M A+2u+a°M A+2u+a°M o,
m*:m *=1 P*zp—(p *)ng* C*= 1
P P ! ’ m*s+1/x
Equation (2) and (3) can be written as follows * °!:
B(ox,s)U+F=0 (8)

where:

2

0
B, (%,8) = (A + i) ———+8; (ur~ps?) B (0%,5)=—¢—

8Xi8Xj OX,
0 S
Baj(ax,s):—czsax , Byu(ox,8)=¢A-=, ¢, =C,=a—p;S¢
i
So Equation (8) is as
1
det(B(0x,s)I —16(x)=0 9
[e((xs))}ws (x) ©)

Nondimensionalized Equation (8) can be expressed as 4.5

B(0%,5)B*(ox,5) ¢ + I%é(x)=0 (10)



For Eqn.(10), ¢,* = ¢,* = & — p, *s¢ *. Consequently, we get ™
G =B*(oxs)e (1)

The solution in time domain of Eqn (11) with the inverse of Laplace transformation under a

Heavide force is follows ™ °:

G; = .[: [P + R+ Pyle ™ 1y (&, \r* ~ 1/ 05 )drH (t-1/a,)
IR 4 P ) 4 P P P (t—7)+ Py (t—7)7]

5/2

xg e 22 = L&, \J7° —1*/aZ)dTH (t—r/a,) +[Pye ") + P,e ")
\l 2

r/a

+Pe %) 1 P+ Py (t—T/a,) + Py (t—r/a,)’1e ™" H (t - r/a,)
+ I:/al[Pme’b“’” + P £ P N (&, 77 — 1P YdrH (t-T/ey)
+I:/a1[P41e’a“”) +PLe ™ 1 P 4 P, + P (t—7) + Py (t—7)°]

_ Ia a(t-r/ey —b(t-r/ay
xg " /2/1 L (&2 —1?/a?)drH (t—1/a) +[P,e 20/ 4 P, 0/
\] 1

+Pe W 4 P, 4 P (t—r/a) + Py (t—1/a,)*le ™" H (t—r/at,)
t —NpT t —a(t—-r
+jr/ﬁ Pae "1y (&,72 — 12/ B2)dTH (t -1/, B) +Ir/ﬂ[P61e )1 p

210757 @r/ﬁ 2 2/p2
Py (t=7) + Py (t—7)°le " <= 1,(&,\ 7" — 1/ 7 )dTH (t =1/ )
/‘[Z—rz/ﬂz B

P 4 B, + By (t—1/B) + Py (t—1/B) 1 P H(t -1/ B) (12)
where |, and |, are the zero and first order of bassel’s function respectively. 7,, 17, arethe
dissipation factor of dilational and distortional wave, respectively. «,andgare the velocity of
slow dilational and distortional wave respectively. The meanings of the residual marks in

Eqgn.(12) can refer to Appendix 1

1.2 the decomposition of Generalized function ¢



For Egn (1), when u; and W, are components of the non-divergence field, we can derive the

following™":

{pf U + ()W, =0
(13)

W, =—p.4; ! y(w)

For the non-curl field, the components U; and W, can be written as

{uli Uy =4,
(14)
Gy + Uy = W,
and

& =4 +2u-pa})l(p,a; —aM)  (nN=12) (15)
Substituting Eqgns. (13) and (14) into Egn. (1), we obtain the foIIowing[”]:

(A +2u+aM fl)ulj,ij +(A +2u+aM é:z)uzj,ij + ﬂé}khahljui,lk

{(p + p S, +(p+ o E),, (non - curl field ) (16)

(p—pi 1y (@) (non - divergence field )

Introduction a generalized function &(r), &(r)=68(x—g), X and ¢, are the respective

components of x and ¢, the coordinates of the field point and the source point, respectively.

Thus, Egn. (15) becomes

{(/IC +2u+aME,  + (A +2u+aMEN,, o + 46,6,

aMuj,ij + MWj,ij = p; U, +y (@)W,

. .. (7)
(p+p: &)U, +(p+ p 5, 50
- =5(r
(p—p; 1 7(@))
The Fourier transform of Eqgn. (17) is
_ 3 P, y
(p+p, él)alzulj,ij +(po+ p; égz)azzuzj,ij +(p- 7)ﬂ25ikh5hljui,lk
(18)

{(p +p, &)o' +(p+ p, &)o',
+ =5(r)

(- P’ 1 7(@)a',

For @ <a,, where @, is a cut off frequency ® - 0.067k p .7 S, and low frequencies



y(w)=y, y isconstant"®. Then we decompose Generalized function 5(r) to yield™":
1 1
5= /n); :—E[(l/r)j'ij BB @I 1),y ]

1] 1+¢
- e ), -
Lo

(19)

Qi S m, @/ r). ij|

where r=[(X —¢)(X —gl)]“2 is the distance between the source point and the field point.

Comparing Eqgn. (19) with Egn. (18), we find that

1+¢ 1+¢,
—=(@/r).. d — 1/r1). .
Lgl_gz( )H} " Lgl_gz( )“}

are two field potentials of the dilational wave in a two-phase saturated medium, caused

by solid-fluid interaction. Equation (19) coincides with the compatibility of fast and
slow dilational waves indicated by Biot (1956) and examined by Chen (1994).

Substituting Eqgn. (19) into Egn. (18), we have;

2

(p+pf§l)a ulj ij +(p+pf§2)a2u21 ij +(p__)ﬂ ikh h|jal 1k
e

{(p +p, &)U, + (p+ p, &) 0°U,,
+ (20)

(p-p; 1 N)®"G,

Fog(a)) 1+¢
4z

§ ( / ) IJ é: _ii (1/ r)i,ij |kh m, (1/ r)l Ik:|

where K =wl/a, K =ola, and K, =wol/p are wave numbers of the fast and
slow dilational waves, and distortional wave, respectively. We get the solution of Eqn.(1)

easily.

~ 1 2 .
0 =- — (") - —— (" 1),
4ro’ | p+p, 5 p+pS, '

(21)
- 2/ o hlj (elKﬂr/r)llk}’ Kj =Gij (xg aa))‘ej



We define G;(xd ,®) to be the second-order tensor of Green’s function in the Fourier

transform domain ande; is the component of a unit force in the j™ direction ™9,

1 Y A, iK1
G;(xd ,0)=- { (") " 1r),;
drw p+pé

(22)

1 K r
- 5 é‘ikhé‘hlj (e ’ /r)i,lk
p-p ly

where 4, =(1+&)/(5-&,) and 4, =AxS, 1(5-4,).

Note that (5,,¢), =@, and &, (5.0 = Oun (@), S P The Green’s function in the

time-domain can be obtained using the inverse Fourier transformation as follows:

G;(x¢ ,t) =4i{iri(j [L%g(t—r/al)—;ig(t—r/ﬂ)

z\r p+pf§1 a, p_ple7ﬂ2
A 1 1 1
2 g(t-rla,) |[+—————g(t-1/B)5, + (23)
p+pf§2 &, p—pf/y,BI‘
rla rlp rla,
A 1 A
+ @/ F)‘ij { - J. g(t-r7)rdr — - J- g(t-r)rdr — : J. g(t—r)rdr:|
P+PE p=pr 1y P+pPE %

If g(t)=05(t) inEqgn. (23), we can obtain the following Green’s function for a impulse:

1 |1x-¢ X —¢. A 1 A 1
Gij:—{—' & X g‘[ : —ot-rla)- : —ot-rla,)
dr |r r r +p ¢ a +p¢ a
p pfl 1 p pfz 2

(24)

(m—;xa—c)}
r5

1 } 5 1 [ 1
ot—rlp) |+ —S{t-r/p)+|-—+3
r

p-p |7 B p=p, |y BT

A A 1
x{ L tH(t-r/a)- 2 tH(t—r/az)——th(t—r/ﬂ)}
p+pé p+ps, p—pf/7

For simplicity, the following notation is used:
D, =1/(p+p,&)a, D, =1p+p,&)a, . Dy=1p-p’ly()p’
which represents the flexibility coefficients of fast and slow dilational waves, and the distortional

wave, respectively. Replacing x, —¢; with x , we can rewrite Eqn. (24) as



X X
i
3

r r r Jj r
G, =— 4Dt -—) = 24,D,6(t-—) = D5 (t ——) |+ D;—o(t——)
r al az ﬂ r ﬂ (25)

1 aZ

XX,
+ [—%+3 — J|:a12/11DltH (t —L) —as 2 DtH(t —L) - B’ D tH(t —%)}}
r r

1.3 the comparison of the results between two methods

Integrating Eqgn.(25) or substituting g(t) = H(t) to Egn.(23), we can obtain the solution to

the Green’s function under Heaviside force, we have

G, =—{X‘—fi[/11D1 H(t-—) - 4,D, H{t-—) - DsH(t—L)} D, 2ne-5

+3%{a12/11D1%(t2 —r—;) -a52,D, %(tz —;—:2) - 5°D, %(tz —;—ZZ)}}

Then we substitute A" =0.1715, x4 =03007, « =10, p =10, p, =0.4325, «=0.779,
m =2.3006, M" =03742, y(w)=0.851e""*;and & =0.1548; & =-1.0076, A =0.991,
and 1, =-0.009 to Eqns.(25) and (11) respectively, where ¢ and & are the
non-dimensional parameters of & and &, , respectively; and 4 and A, are the

non-dimensional parameters of 4, and A,, respectively. The comparisons with both of results

are shown in Figures 1through to 6. A good agreement can be discovered easyly.
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Figure 1. Result of Glltcompared (the virtual Figure 2. Result of Gy, ‘compared (the virtual
line is from Eqn.(12)) line is from Eqn.(12))
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Figure 3. Result of Gs3 compared (the virtual Figure 4. Result of Gz; compared (the virtual

line is from Eqn.(12)) line is from Eqn.(12))
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Figure 5. Result of G;, compared (the virtual

line is from Eqn.(12))

Figure 6. Result of Gj;3 compared (the virtual

line is from Eqn.(12))

Figures 7 through to 10 are shown the compares with both of results on Eqns.(26) and (12)
when the field point (0.1,0.15,0.2) is changed to point (0.2,0.18,0.23). The comparison results (and
those obtained for other field points, although not shown here) indicate that calculations based on

the present Green’s functions are stable.
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Figure 7. Comparison of G, of arbitrary field point (the Figure 8. Comparison of G,, of arbitrary field point (the

virtual line is from Eqn.(12)) virtual line is from Eqgn.(12))
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2. the two-dimensional solution of Green function!?!

The two-dimensional solutions of Green’s function are a basic of solving to the dynamic
plane strain problem. Manoris indicated that the two-dimensional Green’s function g of the
displacement filed, can be obtained by integrating to the three-dimensional solution Gij along z
axis in infinite domain. Integrating Eqn.(26) of aspect z axis in (—oo; +oo) , We can get then:

g =— M{X‘—fj[ﬂlDlH(t—i)—ﬂzDzH(t—i>—DaH(t—L)}+DﬁH(t—l)
o= | r a, a, Jij r B

XX, 1 r’ 1 re 1 re
+3—L A D, = (' ——) -3 4,0, = (' -——) - p°D, = (t' -—) | pdz
r 2 25 20 B

1

2 2
:i{(D1 o [th —R—} H {t—i}/tl ~D,a’ {th —R—} H {t —5}/5
2 o, o, a, a,

-D,B’ {th —R—z} H {t——}/t ) i R" {DlafH (t —E)t1 —-D,ajH (t —i)t2
ﬂ a a

i

1 2

R o, R
_DsﬂzH(t_E)ta}R_zﬂ"‘DsH(t_E)é‘ln/ts} (27)

wheret, = 12 —R?*/ % . t, =’ =R*/a,? . t, =/’ =R?/ °

Figures 11 through to 13 are the comparison between results in this paper Eqn.(27) and results

preexisted Eqn.(28)

t
-b(t-7) —c(t-7)
9i |r/a2(|11e P.e Ra)

Jei/ cosh(¢,, \/z* —r/al)deH (t~r/a,)
2
+ :/az (lee*b(t—r) + P22e*C(t—r) + P23)ef’7azf Sinh(faz m)dTH (t _ r/az)

cosh(&, \J7° —r?/ef)drH (t-r/a,)

+I/ (P +Pe ) 4 Py) e
rjoy

Jri-r /oc1

+I:/ (P +P,e ™+ P)e ™" sinh(&, \J7° - r?/al)dcH (t-r/a,)



+f Pt.ﬂﬁcosh(gw/r2 —r?/)deH -1/ B)

+f) R SiN(E, =1/ B)deH (t -1/ ) (28)

where 77, and 7, are the dissipation factor of fast and slow dilational wave respectively.

The meanings of the residual marks on Eqgn. (28) can refer to Appendix 2

Fig.11 The result of g;; compared with Chen Fig.12 The result of gi, compared with Chen

Fig.13 The result of g,, compared with Chen

It also can be proved that g,, is stable by the comparison of the results that the coordinate of
the field point is changed.
3. Conclusion

3.1. The generalized functiond had been utilized to solve the partial differential equation, but



it is infrequent to decompose the ¢ function to solution the problems. A performing
decomposition o function may be effective and convenient to solve the partial differential
equation sometime.
3.2. The three or two dimensional Green’s functions provided in this paper can be used as a
integral kernel in dynamic BEM.
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Appendix 1
fio f

Pa :Eaz » B, = (‘ﬁ‘k f)a,, B;="f,a,

5 _ f, ~ f, . f, f
* (b-a)(c-a) a(b—a)(c—a) a’(b—a)ic—a) a°

fl f2 fS f4 f5
P, = — +— + +
(a—-b)(c—b) b(a-b)(c-b) b°(a-b)(c-b) c-b b(b-c)

fl f2 f3 f4 f5
P = - +— - - + f;
(a—-c)(b-c) c(a-c)(b-c) c°(a-c)(b—c) c-b c(b-c)

f, (ab+bc+ca)f, +£+£+f
8

P =
* abc (abc)? bc a’
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“ (b-a)(c-a) a(b—a)(c—a) a’(b—a)(c—a) a°

25

P, = 9, — 9 + 9s " 9, + 05
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P.= 9 — 9 + 93 9 Os
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4 v Uy T My = 5= » Us = ’
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fe = —K v O =ﬁ ’ f? =_A1jd62 i 0, = A1jd61 ’ fs = _Cije31 v U =Cije32 ’
—-B,e, +B;e,b Be, —B;eb B.e
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M A+2u



P 2pm-pI M A+2u)x 2 +2u
g otm g tom o, 1o 1 A
o2pm-pl T 2pm=pi " T 2u(pm—pf)* T " 2 k(pm—pi)’
e — 1 1 a’ o = 1 ﬂ+—a2m—p+2apf
Y2420\ M A+2u ) 7 2(A+2p) A+2u ’
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