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Objectives
- |

» Explore the theoretical result on RBF
collocation by numerical experiment.

» The tool used is arbitrary precision
computation.



..
» Issues examined include:

Positive definiteness

Error estimate with respect to fill distance
Infinitely flat shape parameter

Error estimate with respect to shape parameter
Optimal shape parameter

Condition number

Effective condition number

Round off error

Edge effect

Error estimate on derivative data and PDE
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Example: Madych’s Error Estimate
-]

For a class of interpolators that include GA, MQ and IMQ, Madych provided the following error

estimates: for f€B_,

EMD(E‘W}ECM), for 0<A<1 and a>0 (47)
andfor fcE_,

EmO(e“z)«.”h], for 0<A<1 and a>0 (48)

We observe that these error estimates are made of the product of two competing terms as ¢ becomes

large—one part grows exponentially, and the other decays exponentially.



Empirical Error Estimate

- |
» IMQ

Em{}[e“‘m}fiu’“), for 0<A<1 and a>0

» (Gaussian

Em{}(e“fu”“), for 0<A<1 and a>0



S —
RBF COLLOCATION METHOD



Approximation of Function

]
» Problem statement: Approximate a function f(x),
using the following series

f0= F0=2 o) 5 =[x x|
» where ¢(r.) is a radial basis (distance) function

» Method of solution: Select a set of locations,
o A=l m and require
j! SR )



Solution of PDE (Collocation Using

Derivative Data)
N N

» Problem statement: Find f(x) that (approximately)
satisfies

Lif(x)}=g(x), xe);
Bif(x)}=b(x), xel;

» Method of solution: approximate f(X) as

F9~ F00 =Y ap(e) 1 =[x -]



Collocation
..

» Require
L{f(x = L{Z a,o(r;)} = ZOé,-L{SO( r)}= ZOé,L,, =g(x;),
X, €8; j=1,...,n,

B{f (%)} =B oyl )} = oBl(r )} = Za,e,, =b(x,),
X \ SRSl n

» Data is given not as the function itself, but
as its derivates.
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EXAMPLES OF RBF



Examples of RBF

e pseudo-polynomial (1-D and 2-D) and polyharmonic spline (3-D)

o=r"" k=1,2,3,...

e polyharmonic spline (1-D and 2-D)

o=r*Inr, k=1,2,3,...
e generalized multiquadric [4, 37]

.- _( 5 2 kf2 .
w=|\r"+c ) , k is any real number =0,2,4,...



e shifted logarithmic [24]
o =In(r* +¢?)

e shifted polyharmonic spline

o=(r"+c)In(r* +¢%), k=1,2,3,...

® (Gaussian



Schoenberg 1937

Schoenberg in 1937 [84] first demonstrated that if ix,,x,,...,x,} are a set
of distinct data locations, then the interpolation matrix [a] for the
conical RBF ¢=r, with its elements q,=r,, is nonsingular and invertible.



Hardy’s Multiquadric (1971)

N
» Multiquadric

(p: r2_|_C2

» Inverse multiquadric

Y= 1/\/r2 +c?
» Generalized multiquadric (Barnhill and
Stead 1984)

_( 5 5 k/2
W=l =6 ) , kK any real number =0,2,4,...



Duchon Splines (1976)

..
> Minimize

i)

» Polyharmonic spline (2-D)

B (x)H dx, dx,

C—nellneste—1,2,3,. ..
» Pseudo-polynomials (3-D)

e 1)) 3,



Gaussian

N
» Used for interpolation since 1970s.

» Widely used in Neural Network since
1980'’s.

T _rZ/CZ



Franke (1982)

N
» Franke (1982) reported MQ as the best
interpolation method, even outperforms
thin plate spline, to the surprise of
mathematicians.

» This article has set off a large number of
mathematical investigation of RBF
interpolation.



Micchelli (1986)

N
» Micchelli investigated the coefficient matrix
of RBF interpolants with distinct centers,
and proved the invertibility and
conditionally positive definiteness of these
matrices.
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NUMERICAL EXPERIMENTS



Franke’s Test Functions

B R s (O 1) 9yl

3
fl—zexp[ h ]+4exp[ e T ] 5
i (9x -7y +(9y—3). 1 2 a2
+Eexp[— 5 ]—Eexp[—(9x—4) 9y —7)]
1
f, :§[tanh(9y—9x)—i—1] (2)
e 1.25—|—cos(5.42y) 3)
6[1+(3x—1)7]
1 81 R 1Y’
f4—§eXpi—E X_E T V—E l (4)
i) 81 1Y 1Y’
f-”_gem{_T = 0 K } (5)
1 1Y’ 22 1
fe 25164—81 [X_E] -+ y—z] ] —E (6)
f,=14+x+y (7)

defined within 0<x<1 and 0<y<1.



sinx sin/mx sin3my sin5my
o= (1)
6 4 4 4

sin27x sin27w
e 4 2)
2tx 21y










Error Measures
D ,,—,—,—,—,—,

L_ (maximum) error, ¢, and an L, (root-mean-square) error, ¢.__

max ~

= max{‘f(x,.)—f(xi)‘,izl ..... m} (1)

maXx

T \/%Zm;[f(x ) )] 2




S —
INVERTIBILITY AND POSITIVE

DEFINITENESS



Schoenberg and Micchelli
- |

Name RBF
Inverse multiquadric | (r> 4+-¢?)’, ¢>0, <0 0
Multiquadric (—1)“’](r2 +c’)’, ¢>0, 3>0, &N [5]
Gaussian exp(—r®/c®), ¢>0 0
Polyharmonic spline | (—1)***r*Inr, keN k41
Shifted logarithmic In(r* +¢?), ¢>0 1
Shifted spline (BRI c*), c>0, keN | k+1
Polynomial (—1)*4rf, 8>0, B¢2N 16/2]

Table 1 Conditionally positive definite radial basis functions of order m. ([ﬁ] denotes ceiling function,
which gives the least integer not smaller than 3, and N is natural number.) Compiled from [64, 65, 69,
74].



S —
NUMERICAL EXPERIMENT



Conclusion

N
» Missing polynomial augmentation does not
seem to be an issue



e N
ERROR ESTIMATE WITH RESPECT 10
FILL DISTANCE



Summary by Wendland

Name RBF Error Estimate
Inverse multiquadric | (r>+¢*)°, ¢>0, <0 exp(—a/ h)
Multiquadric (—1°1(r* +2)°, ¢>0, B>0, B¢N exp(—a/ h)
Gaussian exp(—r’/c?), ¢>0 exp(—alogh/h)
Polyharmonic spline | (—1)*'r*Inr, keN h%¢
Polynomial (1?4 B3>0, B¢2N B

Table 1: Error estimates for various RBF interpolants in terms of fill distance h (following Wendland
[95]).
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Polyharmonic Splines

Fill Distance RMS Error
h r’Inr r*Inr rlInr rinr

1/4 2.62x10° | 3.12x10* | 4.16x10% | 4.39x10°"

1/8 5.32x10° | 3.90x10* | 3.70x10° | 4.40x10°°

1/16 462x10" | 1.36x10* | 5.00x10° | 8.23x10°

1/32 6.91x10° | 1.11x10° | 2.29x10°° | 7.37x10”’
Observed convergence rate h%’ h3® h*4 he®
Theoretical convergence rate h? h* h® h®

Table 1: Root mean square error for interpolation of Franke’s function 1, using polyharmonic splines.
Theoretical convergence rate is based on Wendland [95].

Fill Distance Max Error
h r’Inr riinr reinr rélinr

1/4 7.70x10* | 7.56x10* | 1.06x10°" | 1.46x10°

1/8 3.98x107% | 2.90x10* | 2.45x10* | 2.10x10°°

1/16 466x10° | 1.40x10° | 3.02x10"* | 6.26x10°*

1/32 1.56x10° | 2.54x10™* | 2.29x10° | 8.10x10°°
Observed convergence rate h® h*° h37 ho3
Theoretical convergence rate h? h* h® h®

convergence rate is based on Wendland [95].

Table 2: Maximum error for interpolation of Franke’s function 1, using polyharmonic splines. Theoretical




Gaussian and IMQ

Fill Distance A A
h GA IMQ GA IMQ
1/5 1.08x10° 7.94%10°? 1.82x10°° 6.21x10°
1/10 2.45x10°7 1.34x10° 2.47x10°° 2.34x10°’
1/20 1.32x10 % | 4.87x107Y | 7.89x10°*° | 5.90x10° "
1/30 8.52x10* 1.16x10° | 5.29x10* | 1.46x10 %
Observed convergence rate )\ LH AL A/ A/

Table 1: Root mean square error of interpolation of two functions using inverse multiquadric (IMQ) and
Gaussian (GA) for various fill distances. c=1.5 and 6.0 are respectively used for GA and IMQ.
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Figure 1: Root mean square error for interpolation of f, using Gaussian and inverse multiquadric. The

dashed lines are given by ¢ =2.65 h®’*®/" for Gaussian, and ¢ =185 h*’*/" for IMQ.
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Figure 1: Root mean square error for interpolation of f, using Gaussian and inverse multiquadric. The

dashed lines are given by € =0.37 h®"*®*/" for Gaussian, and ¢ =4.06 h®**" for IMQ.



Summary of Error Estimate
- |

(=) r*Inr, ¢~ 0(h*")

{E e ~ O(h")



S —
INFINITELY FLAI RBF



Flattening of the basis
function by adjusting
the shape factor: (a)
multiquadric
(normalized), (b)
inverse multiquadric
(normalized), and (c)
Gaussian.

(a)

(®)

(c)

WN

1.0

exp[—72/c2]
1.4

1.2




Flatness

» As the basis function becomes flatter, the
interpolant becomes more accurate.

» The matrix becomes more ill-conditioned, and
finite precision numerical solution of the matrix
fails.

» But the matrix remains positive definite and is in
theory solvable.



Theoretical Limitas s=(1/c)—0

- |
» Baxter 1992; Driscoll and Fornberg 2002;
Fornberg et al. 2004; Larsson and Fornberg 2005;

Schaback 2005:

» MQ behaves like polynomials, particularly in 1-D, it
becomes Lagrangian polynomial interpolation.
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NUMERICAL EXPERIMENT



Interpolation by IMQ in 2D with
Uniform Grid

In this first example. we use IMQ) to interpolate the function u = sin(27x) +
cos(2my). A 21 x 21 uniform grid is laid over the unit square domain, to give
a mesh size h = 1/20. The interpolation is performed using a whole range
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Figure 2. RMS error £y5(s, u) for interpolating u = sin(2mx) 4+ cos(2my) using IMQ:
mesh size h = 1/20, in smaller ¢ range.
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Figure 1. RMS error cgy¢( 8, ) for interpolating v = sin(2wx ) +ecos( 27y ) using IM
mesh size h = 1/20, in large ¢ range.



As a confirmation of polynomial limit, we have tested a number of polynomial
functions, with only one example given here as an illustration. For the case
u = r?y, we use a uniform grid with 2 = 1/10 for interpolation. The resultant
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Figure 3. RMS error egys(s.u) for interpolating u = 2y using IMQ: mesh size
h = 1/10, in large ¢ range.



We now use IMQ) to interpolate u = sin(27x) cos(27y) over the unit square.
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Figure 5. RMS error spys(s, u) for interpolating u = sin(27x) cos(2my) using IMQ:
mesh size h = 1/20, in large ¢ range.



Interpolation by GA with Uniform Grid
-]

For the function u = sin(27x) cos(2my),

RMS
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Figure 7. RMS error cpys(s.u) for solution of PDE with exact solution
w(x,y) = sin(27zx) 4+ cos(2ry) using IMQ: mesh size h = 1/20, in large ¢ range.



Conclusion: Huang, et al (2010)

For interpolation in one-dimensional space using a class of infinitely smooth basis functions that can
be expanded into a power series (this class includes GA, MQ, IMQ, etc.), the interpolant converges

to a polynomial limit as the basis functions are continuously flattened by taking 6=(1/c)— 0 (see

[24]) . The asymptotic error of the interpolation as § — 0 is = ~0(8%).

For interpolation in two-dimensional space using IMQ on a uniform grid, the IMQ interpolant can
diverge or converge, as ¢ — oo, depending on the function interpolated. Based on observation, the
interpolant converges for essentially one-dimensional functions (such as sin(2wx)+cos(27y) ) and
bivariate polynomials (such as x’y). In the latter case, the error converges to zero. Divergent

behavior is observed for all other functions.



¢ On arandom grid, the IMQ interpolant converges for all functions as c— ¢ .

e For interpolation in two-dimensional space, GA interpolant always converges as ¢— oo, whether
the grid is uniform or random [33].

e For two-dimensional cases, whether the interpolant converges or diverges, an optimal ¢ exists at a
finite value, with the exception of the polynomial function (in that case, =— 0 as c — o0).
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ERROR ESTIMATE WITH RESPECT 10
SHAPE PARAMETER



Madych (1972)
- |

Madych’s theoretical analysis in 1992 [75] was the first, and until recently the only, error bound
that contains the shape parameter c¢. Madych’s results are presented for two different classes of

functions, B, and E_:

B, ={f €l (R"): f(§)=0 if|¢|> o} (43)
£, ={fel@)|f]_ <oc} (44)

where o is a positive constant,
&)= [ fixye ™ (45)

is the multivariate Fourier transform of function f(x), and

AL = J17ef & o (46)

]{ n



A Band Limited Function

sin(mx) sin(my)

Its Fourier Transform
X Ty



For a class of interpolators that include GA, MQ and IMQ, Madych provided the following error

estimates: for f€B_,

EWD(E‘EC}ECM), for 0<A<1 and a>0 (47)
andfor fcE_,

EmG(e“fz)«.”hJ, for 0<A<1 and a>0 (48)

We observe that these error estimates are made of the product of two competing terms as ¢ becomes

large—one part grows exponentially, and the other decays exponentially.



Luh (2010)

The only other theoretical error estimate that explores the role of the shape parameter ¢ is
provided by Luh [67-72]. The error estimates are generally expressed as

EMO(MN[c})a”“), for 0<A<1 (49)

where MN(c) is the part of the error estimate that is dependent on ¢. Methods are provided for the

estimate of A, and the optimal value of ¢, which will be further discussed in Section 11.
Luh [71] derived, based the node laid on the vertices of a uniform n-simplex in R", the
following estimates for the MQ family interpolating f €8,
MN(c)=e“"?c 7" for 1+5—n—40<0 (53)

where 3 is as defined in Table 1, and 3=—-1/2 for IMQ, n=2 for the two-dimensional functions

interpolated, /~1/h, and o is the range of the band limited function in Fourier transform space, as
defined in (43). For the function (41), o =2m . We can easily differentiate (53) to obtain the optimal ¢



S —
NUMERICAL EXPERIMENT



Empirical Error Estimate

- |
» IMQ

Em{}[e“‘m}fiu’“), for 0<A<1 and a>0

» (Gaussian

Em{}(e“fu”“), for 0<A<1 and a>0
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OPTIMAL SHAPE PARAMEITER



5 fs
c Gauss IMQ Gauss IMQ
0.1 | 1.01E-02 0.1 | 2.28E-03 0.1 | 3.13E-04 0.1 | 9.93E-04
0.2 | 2.25E-03 0.2 | 1.36E-03 0.2 | 9.89E-07 0.5 | 2.00E-06
1.0 | 9.47E-03 1.0 | 4.47E-03 1.0 | 3.53E-03 1.0 | 1.74E-04
f fs
€ Gauss IMQ Gauss IMQ
0.1 | 2.35E-02 0.1 | 6.83E-03 0.1 | 8.97E-03 0.1 | 5.99E-03
0.2 | 4.11E-03 0.4 | 2.68E-03 10 | 1.95E-06 1.3 | 1.87E-06
1.0 | 8.22E-02 1.0 | 5.08E-02 100 | 1.94E-06 2.0 | 9.82E-06
fs fs
c Gauss IMQ Gauss IMQ
0.1 | 1.59E-02 0.1 | 3.90E-03 0.1 | 5.94E-03 0.1 | 2.90E-03
0.3 | 1.58E-04 0.6 | 1.12E-04 1.2 | 3.49E-08 3.4 | 1.52E-07
1.0 | 1.16E-03 1.0 | 2.57E-04 2.0 | 7.14E-07 5.0 | 2.75E-06
fy fs
9 Gauss IMQ Gauss IMQ
0.1 | 3.45E-03 0.1 | 1.87E-03 0.1 | 1.16E-02 0.1 | 3.31E-03
0.4 | 8.11E-12 1.5 | 1.26E-08 1.0 | 1.27E-09 4.1 | 8.21E-09
1.0 | 1.96E-06 2.0 | 5.99E-08 2.0 | 1.00E-07 10 | 3.71E-04

Table 1: Root mean square error for interpolating functions f, through f;, using Gaussian and IMQ,

with mesh size h=0.1, and various ¢ values.



Shape Factor

N
» Madych (1992): For the interpolation of a
class of “essentially analytic functions”,
which are “band limited”, using a class of
basis functions that include the
multiquadric, Gaussian, ..., he proved

gzO(ea%C’h); 0<Ai<l a>0

> This means,as C—>®, & —0



» Madych also stated that for a “non-band-
limited” function,

SZO(GaCZXC/h); 0<A<1l a>0
InA

» In this case, there exista Copt = 7
SRk

WheresssE=tcs

> If we can use the ¢, then &~ o(;tl/hz)



Luh (2011)
S e

Luh [71] derived, based the node laid on the vertices of a uniform n-simplex in ", the

following estimates for the MQ family interpolating f €8,
MN(c)=e“ > "7 Y% for 1+ 3—n—40<0 (53)

where 3 is as defined in Table 1, and 3=—-1/2 for IMQ, n=2 for the two-dimensional functions

interpolated, /~1/h, and o is the range of the band limited function in Fourier transform space, as

defined in (43). For the function (41), 0 =2m. We can easily differentiate (53) to obtain the optimal ¢
value as

_—1—-p+n+4(
opt ™ 20

C (54)

For sufficiently small fill distance h, we can express ¢, ~2/ch.
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Empirical Optimal Shape Parameter

- |
» IMQ

Em{}(e“‘m}f”zf“), for 0<A<1 and a>0

o

c  ~0
o [ 3ah

» (Gaussian

E‘mﬂ(Eﬂcd;Rdh), for 0<A<1 and a>0

Cont ~0 2213 13173

(—In )Y ]



IMQ GA
1/h fs fs fs fs

C E c E c g c £

opt rms opt rms opt rms opt ~rms

4 15| 653E-03| 1.6 | 1.17E-03| 0.7 | 3.16E-03 | 0.8 | 2.20E-04
8 3.0| 496E-06 | 25| 9.66E-07| 1.1 | 2.85E-06 | 1.1 | 2.25E-07
16 47| 3.42E-13 | 55| 8.00E-15| 1.4 | 3.01e-14| 1.4 | 6.00E-17
32 81| 1.83E-30| 8.9 | 4.74E-33 1.8 | 1.08E-33 | 1.8 | 5.57E-36

Table 9: Optimal ¢ and the corresponding error for interpolating two functions by IMQ and GA.
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Figure 6: Plot of optimal ¢ versus 1/h for IMQ and GA interpolating f, and f,.



Luh (2011)

We should also mention that the formulas provided by Luh [70, 71] also seem to work well. For

example, for MQ interpolating the band limited function f,, equation (54) predicts the optimal ¢ values
as 1.4, 2.7, 5.2 and 10.3, respectively for 1/h=4,8,16,32. These can be compared to the 1.6, 2.5, 5.5

and 8.9 c__ values reported in Table 9.

opt



Error Estimate with Fill Distance Using

Optimal Shape Parameter
- |

» IMQ

g . ~0

i

2(—In))* ”

33I2 alfzhafz

exp{—

» (Gaussian

g . ~0

i

3(—InA)*"?
EXp|— 23;3 ﬂuahws
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CONDITION NUMBER AND

EFFECTIVE CONDITION NUMBER



Upper Bound for Condition Number

Ball [1] appears to be the first to investigate condition number associated with radial
basis functions. For ¢ =r, he provided the following upper bound for condition number

d+1
D

e —
2q

(1)

where g=(1/2)min,_, ij—ka is half the smallest separating distance between data points,

D = max ij —ka is the diameter of the data set (or, the size of the domain, assuming that the

j=k
domain is well covered by the data set), and d is the dimension of the data set (or the

interpolated domain).



Norwich and Ward

d r J1+r? In(14r?)

2 1 7(D/h)’ | 48(D* /h*)\1+D” exp(24/h?) | (D°/h*)log(1+D%)/K,(24/h*)
3 1 9(D/h) | 68(D° /h*)\1+D* exp(32/h?) | 2D’ /h*)log(1+D%)/K,(32/h*)

Table 1: Upper bound condition number for three radial basis functions, corresponding to a uniform

grid.



Based on the work of Norwich and Ward [71], Ball, et al. [2] presented an estimate for

inverse multiquadric 90:1/\/1—|—r2 upper bound for condition number as

D* 2d
ﬁgc_exp[_] 1)
h?\/1+ D? h

where d is the dimension.

For multiquadric ¢ =+/c* +r? , Buhman [11] reported that the following upper bound

d
O DT h€+1 exp[gTdC] (1)
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h C Condition Number
MQ IMQ Gaussian
0.2 1.0 | 3.41x10° 1.83x10° | 1.15x10"
0.1 1.0 | 5.21x10% | 1.39x10" | 2.26x10%
0.05 1.0 | 5.47x10%° | 7.26x10* | 1.17x10%
0.04 | 1.0 | 4.76x10" | 5.04x10% | 1.86x10""
0.033 | 1.0 | 3.89x10>* | 3.43x10> | 2.23x10™

Table 1: Condition numbers for multiquadric, inverse multiquadric, and Gaussian interpolationona 1x1

square, with c=1.
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Figure 1: Log condition number Inx versus ¢ /h for multiquadric and inverse multiquadric, with a

range of ¢ and h values, for ¢ <1.Symbols: computed result; dashed line: slope of 4.
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Figure 1: Log condition number Inx versus ¢*/?/h for multiquadric and inverse multiquadric, with a

range of ¢ and h values, for ¢ >1.Symbols: computed result; dashed line: slope of 5.5.
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Figure 1: Log condition number Ink versus ¢ /h for Gaussian, with a range of ¢ and h values, for

¢ <1.Symbol: computed result; dashed line: slope of 10.
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Figure 1: Log condition number Ink versus ¢ /h for Gaussian, with a range of ¢ and h values, for

c>1.Symbol: computed result; dashed line: slope of 10.




Condition Number Based on
Observation

Based on the observed fits, we present the following estimate of condition number on a

uniform grid, for both multiquadric and inverse multiquadric

b ot |

4 c*"
h

55 c1/3]

Kk~ 0O|exp

(1)

Kk~ 0|exp S |

h

Based on the data, the following estimate of condition number for Gaussian is given

10

Kk~ O|exp h aCc <1
1
10 cM* &

Kk~ 0O|exp b ey 1




Effective Condition Number
N e

The traditional condition number as defined by Wilkinson [97, 98] is the maximum ratio
of the relative error in {X} divided by the relative error in {b}, and is given by

a2

Lo
o

N

The effective condition number that takes into account the right hand side vector,
according to Rice [67], Banoczi et al [3], and Christiansen and Saranen [18], is

_ Il

=A@

Rest
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ROUND-OFF ERROR AND

INSTABILITY



Approximation Error and

Round-Off Error
N e

Approximation error Hf(x)—f(x)H

Round-off error Hf(x)—f(x)H ;
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Figure 1: Root mean square errors (left axis) based on infinite and finite precision computation as
compared to condition number and effective condition number, for inverse multiquadric interpolation
of f,,using h=0.1 and various ¢ values.
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Figure 1: Root mean square errors (left axis) based on infinite and finite precision computation as
compared to condition number and effective condition number, for Gaussian interpolation of f,, using

h=0.1 and various c¢ values.



IMQ
c Condition Number Hu” Interpolation RMS Error
K Ko arbitrary | double arbitrary double
precision | precision | precision precision

5.00 | 6.06E+42 | 3.39E+12 | 9.72E+28 | 1.23E+15 | 2.75E-06 6.73E-02
4.00 | 9.32E+38 | 3.74E+12 | 1.09E+25 | 4.29E+14 | 1.99E-07 2.48E-02
3.40 | 1.63E+36 | 1.16E+12 | 5.25E+22 | 1.94E+14 | 1.52E-07 2.92E-02
3.00 | 1.28E+34 | 1.02E+12 | 4.13E+20 | 8.09E+12 | 1.87E-07 1.20E-03
2.00 | 2.72E+27 | 2.27E+10 | 2.69E+15 | 3.82E+10 | 1.12E-06 1.05E-05
1.50 | 8.50E+22 | 2.17E+09 | 6.80E+11 | 5.29E+09 | 4.02E-06 4.07E-06
1.00 | 1.39E+17 | 3.42E+07 | 5.08E+07 | 2.27E+08 | 1.90E-05 2.05E-05
0.92 | 1.16E+16 | 1.22E+07 | 1.11E+07 | 1.46E+07 | 3.29E-05 3.31E-05
0.90 | 6.12E+15 | 9.68E+06 | 7.30E+06 | 7.00E+06 | 3.79E-05 3.78E-05
0.50 | 4.34E+09 | 2.79E+05 | 1.24E+02 | 1.24E+02 | 5.34E-04 5.34E-04
0.10 | 4.03E+02 | 5.11E+01 | 3.66E-02 | 3.66E-02 | 2.90E-03 2.90E-03

Table 13: Condition number and stability of interpolation coefficient a for IMQ interpolation.




Gauss
c Condition Number HHH RMS error
K Ky arbitrary | double | arbitrary double
precision | precision | precision | precision
4.00 | 3.54E+57 | 3.34E+10 | 1.17E+45 | 1.37E+15 | 1.52E-06 3.78E-01
2.00 | 3.03E+45 | 8.53E+10 | 4.21E+32 | 9.60E+13 | 7.14E-07 2.83E-02
1.20 | 3.58E+36 | 4.52E+12 | 1.09E+22 | 5.86E+12 | 3.49E-08 1.40E-03
1.00 | 2.26E+33 | 1.00E+13 | 3.42E+18 | 3.90E+11 | 6.19E-08 1.42E-04
0.70 | 1.20E+27 | 1.06E+12 | 2.24E+13 | 6.04E+09 | 3.09E-07 3.57E-06
0.60 | 2.32E+24 | 1.68E+11 | 3.18E+11 | 1.43E+08 | 1.12E-06 1.13E-06
0.40 | 1.97E+17 | 6.18E+08 | 1.21E+07 | 1.45E+07 | 2.28E-05 2.28E-05
0.37 | 9.23E+15 | 1.72E+08 | 2.29E+06 | 2.29E+06 | 4.83E-05 4.83E-05
0.30 | 3.16E+12 | 1.39E+07 | 1.34E+04 | 1.34E+04 | 2.18E-04 2.18E-04
0.10 | 2.94E+01 | 2.49E+01 | 5.07E-01 | 5.07E-01 | 5.90E-03 5.90E-03

Table 14: Condition number and stability of interpolation coefficient a for GA interpolation
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CONCLUSION



N
» Invertibility and (conditional) positive
definiteness

» Error estimate with respect to fill distance

» Optimal shape parameter

» Polynomial limit as c -> infinity

» Error estimate with respect to shape parameter
» Theoretical upper bounds for condition number
» Effective condition number



]
» Round-off error and instability

» Derivative data and solution of PDE

» Runge (edge) effect
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