## Math 165: 1110 Exam 3

| Name:    |  |
|----------|--|
|          |  |
| Section: |  |

1. (a) Find the general antiderivative of the function: (8pt)

$$f(x) = 2x + \frac{3}{2}\sqrt{x} + 6e^{3x} - \pi\sin(\pi x)$$

[You don't need to simplify your answer, but do remember to add "+C".]

(b) Suppose F'(x) = f(x) and F(0) = 5. Find F(x). (2pt) [Hint: Use F(0) = 5 to solve your C. Notice that  $e^0$  is 1 but not 0.]

2. Use the L'Hôpital's rule or any method to find the following limits. (10pt)

(a) 
$$\lim_{x \to \infty} \frac{\ln x}{x} =$$

(b) 
$$\lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 - x - 6} =$$

3. (a) Find the derivative of  $3^x$ .

[Use the fact  $3^x = e^{\ln(3^x)} = e^{(\ln 3)x}$  and the fact  $(e^u)' = e^u \cdot u'$ . When you see  $e^{(\ln 3)x}$  in your answer, replace it with  $3^x$ , since it looks nicer.]

(b) Find the derivative of  $x^x$ .

[Use the fact  $x^x = e^{\ln(x^x)} = e^{(\ln x)x}$  and the fact  $(e^u)' = e^u \cdot u'$ . When you see  $e^{(\ln x)x}$  in your answer, replace it with  $x^x$ , since it looks nicer.]

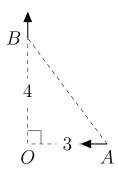
- 4. Following the steps below to determine the absolute maximum value of  $f(x) = x^3 3x^2 + 2$  on [1, 3].
  - (a) Find f'(x). (2pt) [Double check your answer, since the whole problem relies on it.]

(b) Find the critical point(s) inside [1, 3]. (3pt)

(c) Find the boundary point(s). (2pt)

(d) Compare the values of f(x) on these points to find the absolute maximum point. (3pt)

[Your answer should be of the form of (x, f(x)).]


5. Three points A, B, O are on a plane with  $\overline{AO} = 3$ ,  $\overline{BO} = 4$  and  $OA \perp OB$ . Car 1 starts at A driving toward O; Car 2 starts at B driving away from O. If at the beginning the speed of Car 1 is 1 and the rate of change of the distance between the two cars is 5, what is the speed of Car 2?

[You can use your own way to find the answer, below is one possible way to solve the question.]

(a) Let t be the time, starting at t = 0. Let x(t) be the distance between Car 1 and O at time t, y(t) the distance between Car 2 and O at time t, and w(t) the distance between Car 1 and Car 2 at time t. What is the relation between x(t), y(t) and w(t). (2pt)

(b) Base on what are given, find out x(0), y(0), w(0), x'(0), and w'(0). (5pt) [Be aware of the direction for x'(0).]

(c) The question is asking for y'(0). Take the derivative (with respect to t) on the both sides of the relation in (a) and find out the answer. (3pt)

