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Instructions:
e~ Enter your Name and Student ID # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.

- Any work necessary to arrive at an answer must be shown on the ex-
amination paper. Marks will not be given for final answers that are not
supported by appropriate work.

- Clearly indicate your final answer to each question either by underlining
it or circling it. If multiple answers are shown then no marks will be

awarded.
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1. [5pt] Find the general solution of the following linear system.

w—2r4+3y— z2=2
2w—-4zx+6y—12=6
3w—6x+9y—32=06

That is, find P and E,...,E;such that
{(P+api+  +abr:c,...,c €R}

is the set of all solutions.
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2. [5pt] Suppose S = {W1,...,W;} is a set of nonzero vectors in R™ such
that W; - @; = 0 for any distinct 4 and j. (That is, any two vectors in S
are orthogonal to each other.) Show that S is linearly independent.

Spe  Midiem 2,



Midterm 2 - November 2018 Linear Algebra I [MATH 103 / GEAI 1215]

3+1 1-22
3.[3pt) Let = | ¢ | and ¥ = |2+ 3i|. Find the values of the inner

2+1 1
——> products (2, Y), S,?///f} and the norm | 2| in C3.
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4. [2pt] Let @ = 2:] and ¥ = |1|. Find Z and ¥ suchthat w = 2 + y
3 1
with @ € span{@} and (v, y) = 0.
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1 2 3
-2 —4 6 . .
5. [5pt] Let V' = span sl lel|o . Find a basis of V and a
-1 —1 -3
basis of V+.
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6. [5pt] Consider the following data:

z|1]2]3]4]5
yi|1]2]2]3]3

Find a line f(z) = az + b such that the error
5
Z(f(l"i) — i)
i=1

is minimized.

[The orthogonal projection of a vector ¥ onto the column space of a
matrix A is A(ATA)ATY. Your answer can be a formula without
computing the final answer, but you have to specify all matrices or vectors
occurred in your formula.]
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7. [5pt] Let f : V — W be a homomorphism. Show that f~1(Y) is a
subspace of V' if Y is a subspace of W.
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8. [5pt] Let f: V — W be a hgmomorphism. Show that f is one-to-one if
and only if nullspace(f) = {0}.

See  Vergion A .
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10 ) 4
=11],d5=1]10 ,andﬂ’z[J.
0 0 1

Let f:R3 — R? be a homomorphism such that
f(@1) = f(¥2) = f(¥3) = .

(a) [extra 1pt] Find range(f) in set notation and give a brief reason to
your answer. [Hint: {¥, U, U3} is a basis of R3]
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(b) [extra 2pt] Find the rank of f and the nullity of f.

rank =\ = nulling =3~ vounk 2.
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(c) [extra 2pt] Find a basis of nullspace(f) and give a brief reason to your
answer.
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10. [extra 2pt] Recall that the trace of a matrix is the sum of its diagonal

entries. That is,
n
tr(A) = Z a;;
i=1

if A= [ai,j] is an n x n matrix. Let M,,«, be the set of all n x n matrices.

Then :
fiMpxn = R

A tr(A)

is a homomorphism. (You don’t have to check this fact.) Find the rank
of f and the nullity of f in terms of n.

§€é Vevsion A .
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