國立中山大學

NATIONAL SUN YAT-SEN UNIVERSITY

線性代數 (一)

MATH 103 / GEAI 1215: Linear Algebra I

期末考

January 7, 2019

Final Examination

姓名 Name: _____ Solution

學號 Student ID # : _____

Lecturer: Jephian Lin 林晉宏

Contents: cover page,

9 pages of questions,

score page at the end

To be answered: on the test paper

Duration: 110 minutes

Total points: **35 points** + 7 extra points

Do not open this packet until instructed to do so.

Instructions:

- Enter your Name and Student ID # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by **underlining** it or circling it. If multiple answers are shown then no marks will be awarded.
- 可用中文或英文作答

1. [5pt] Find the general solution of the following linear system.

$$\begin{cases} w - 2x + 3y - z = 2\\ 2w - 4x + 6y - 1z = 6\\ 3w - 6x + 9y - 3z = 6 \end{cases}$$

That is, find \overrightarrow{p} and $\overrightarrow{eta_1},\ldots,\overrightarrow{eta_k}$ such that

$$\{\overrightarrow{p} + c_1\overrightarrow{\beta_1} + \dots + c_k\overrightarrow{\beta_k} : c_1, \dots, c_k \in \mathbb{R}\}$$

is the set of all solutions.

$$A = \begin{pmatrix} 1 & -2 & 3 & -1 & 2 \\ 2 & -4 & 6 & -1 & 6 \\ 3 & -6 & 9 & -3 & 6 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -2 & 3 & -1 & 2 \\ 0 & 0 & 0 & 1 & 42 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Let
$$x=y=0$$
. Solve $A\vec{p}=\vec{b}$ and get $\vec{p}=\begin{pmatrix} x \\ y \end{pmatrix}$.

Let
$$x=1$$
, $y=0$. Solve $A\vec{B}_1=\vec{0}$ and get $\vec{R}_1=\begin{bmatrix} 2\\0\\0 \end{bmatrix}$.

Let
$$x=0$$
, $y=1$. Solve $A\vec{p}_2 = \vec{0}$ and get $\vec{p}_2 = \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix}$

2. [5pt] Suppose $S = \{\vec{\boldsymbol{w}}_1, \dots, \vec{\boldsymbol{w}}_k\}$ is a set of nonzero vectors in \mathbb{R}^n such that $\vec{\boldsymbol{w}}_i \cdot \vec{\boldsymbol{w}}_j = 0$ for any distinct i and j. (That is, any two vectors in S are orthogonal to each other.) Show that S is linearly independent.

See Midtern 2.

3. [3pt] Let $\overrightarrow{x} = \begin{bmatrix} 3+i \\ i \\ 2+i \end{bmatrix}$ and $\overrightarrow{y} = \begin{bmatrix} 1-2i \\ 2+3i \\ 1 \end{bmatrix}$. Find the values of the inner products $\langle \overrightarrow{x}, \overrightarrow{y} \rangle$, $\langle \overrightarrow{x}, \overrightarrow{y} \rangle$ and the norm $|\overrightarrow{x}|$ in \mathbb{C}^3 .

$$\langle \vec{x}, \vec{y} \rangle = (3+i) \cdot (1+2i) + i (2-3i) + (2+i)$$

$$= (1+7i+3+2i+2+i) = 6+10i$$

$$\langle \vec{y}, \vec{x} \rangle = \langle \vec{x}, \vec{y} \rangle = 6-10i$$

$$|\vec{x}|^2 = 9+1+1+4+1 = 16$$

$$\Rightarrow |\vec{x}| = \sqrt{16} = 4.$$

5. [5pt] Let
$$V = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ -2 \\ 3 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ -4 \\ 6 \\ -1 \end{bmatrix}, \begin{bmatrix} 3 \\ -6 \\ 9 \\ -3 \end{bmatrix} \right\}$$
. Find a basis of V and a basis of V .

Let
$$A = \begin{pmatrix} 1 & -2 & 3 & -1 \\ 2 & -4 & 6 & -1 \\ 3 & -6 & 9 & -3 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -2 & 3 & -1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 6 \end{pmatrix}$$
.

$$V = Rowspace(A) \Rightarrow basis of V = \begin{cases} \begin{pmatrix} 1 \\ -2 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \end{cases}$$

$$\int_{0}^{1} = \text{Nullspace}(A)$$
Sulve
$$\begin{pmatrix} 1 & -2 & 3 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow x, y \text{ are free}.$$

Set X=1, Y=0. Solve $A\vec{p}_1=\vec{0} \Rightarrow \vec{p}_1=\begin{pmatrix} 2\\1\\0\\0 \end{pmatrix}$

Set
$$x=0$$
, $y=1$. Solve $A\vec{\beta} = \vec{0} \Rightarrow \vec{\beta}_2 = \begin{pmatrix} -3 \\ 0 \\ 0 \end{pmatrix}$

$$\Rightarrow basis f V^{\perp} = \begin{cases} 2 \\ 0 \\ 0 \end{cases} \begin{pmatrix} -3 \\ 0 \\ 0 \end{pmatrix}$$

6. [5pt] Consider the following data:

Find a line f(x) = ax + b such that the error

$$\sum_{i=1}^{5} (f(x_i) - y_i)^2$$

is minimized.

[The orthogonal projection of a vector \vec{v} onto the column space of a matrix A is $A(A^{\top}A)^{-1}A^{\top}\vec{v}$. Your answer can be a formula without computing the final answer, but you have to specify all matrices or vectors occurred in your formula.]

Let
$$A = \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1 \\ 5 & 1 \end{pmatrix}$$

$$Solve A \begin{pmatrix} a \\ b \end{pmatrix} = \overrightarrow{V}.$$

$$\Re \begin{pmatrix} 9 \\ 6 \end{pmatrix} = \begin{pmatrix} A^{T}A \end{pmatrix}^{-1}A^{T} \vec{V} = \begin{pmatrix} 7/10 \\ 1/2 \end{pmatrix}$$

7. [5pt] Let $f: V \to W$ be a homomorphism. Show that $f^{-1}(Y)$ is a subspace of V if Y is a subspace of W.

See version A.

8. [5pt] Let $f: V \to W$ be a homomorphism. Show that f is one-to-one if and only if $\operatorname{nullspace}(f) = \{\overrightarrow{\mathbf{0}}\}.$

See Version A.

9. Let

$$\vec{\boldsymbol{v}}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \vec{\boldsymbol{v}}_2 = \begin{bmatrix} 10 \\ 1 \\ 0 \end{bmatrix}, \vec{\boldsymbol{v}}_3 = \begin{bmatrix} 5 \\ 10 \\ 1 \end{bmatrix}, \text{ and } \vec{\boldsymbol{u}} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}.$$

Let $f: \mathbb{R}^3 \to \mathbb{R}^2$ be a homomorphism such that

$$f(\overrightarrow{\boldsymbol{v}}_1) = f(\overrightarrow{\boldsymbol{v}}_2) = f(\overrightarrow{\boldsymbol{v}}_3) = \overrightarrow{\boldsymbol{u}}.$$

(a) [extra 1pt] Find range(f) in set notation and give a brief reason to your answer. [Hint: $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is a basis of \mathbb{R}^3 .]

$$range(f) = \int t(f) \mid t \in \mathbb{R}$$

基底所有元素都送到 \vec{u} .

(b) [extra 2pt] Find the rank of f and the nullity of f.

(c) [extra 2pt] Find a basis of nullspace(f) and give a brief reason to your answer.

$$f(\vec{V_1} - \vec{V_2}) = \vec{u} - \vec{u} = \vec{0}$$

$$f(\vec{V_2} - \vec{V_2}) = \vec{u} - \vec{u} = \vec{0}$$
So $\vec{V_1} - \vec{V_2}$, $\vec{V_2} - \vec{V_3} \in \text{null space}(f)$

$$\begin{cases} \text{nullity} = 2. \\ \begin{cases} \overrightarrow{V_1} - \overrightarrow{V_2}, \overrightarrow{V_2} - \overrightarrow{V_3} \end{cases} \text{ in dependent} \end{cases}$$

$$\Rightarrow \{\vec{V}_1 - \vec{V}_2, \vec{V}_2 - \vec{V}_3\}$$
 is a basis of nullspace(f)

10. [extra 2pt] Recall that the trace of a matrix is the sum of its diagonal entries. That is,

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{i,i}$$

if $A = [a_{i,j}]$ is an $n \times n$ matrix. Let $\mathcal{M}_{n \times n}$ be the set of all $n \times n$ matrices. Then

$$f: \mathcal{M}_{n \times n} \to \mathbb{R}$$

 $A \mapsto \operatorname{tr}(A)$

is a homomorphism. (You don't have to check this fact.) Find the rank of f and the nullity of f in terms of n.

See version A.

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	5	
6	5	
7	5	
8	5	
9	2	
Total	35 (+7)	